

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1902-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾
PIC16LF1902	2,048	07FFh	0780h-07FFh
PIC16LF1903	4,096	0FFFh	0F80h-0FFFh

Note 1: High-endurance Flash applies to low byte of each address in the range.

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16LF1902/3 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1, and 3-2).

TABL	E 3-3: Pl	C16L	F1902/3 ME	MORY	(MAP (CON	TINU	ED)						
	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh	
40Ch	Unimplemented Read as '0'		Unimplemented Read as '0'	68Ch	Unimplemented Read as '0'	70Ch	Unimplemented Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh	
470h	Common RAM	4F0h	Common RAM	570h	Common RAM	5F0h	Common RAM	670h	Common RAM	6F0h	Common RAM	770h	Common RAM

5FFh

(Accesses 70h – 7Fh)

(Accesses 70h – 7Fh)

(Accesses 70h – 7Fh)

57Fh

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	Core Registers (Table 3-2)Table 3-2	880h	Core Registers (Table 3-2)	900h	Core Registers (Table 3-2)	980h	Core Registers (Table 3-2)	A00h	Core Registers (Table 3-2)	A80h	Core Registers (Table 3-2)	B00h	Core Registers (Table 3-2)	B80h	Core Registers (Table 3-2)
80Bh	02	88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h 87Fh	Common RAM (Accesses 70h – 7Fh)	8F0h 8FFh	Common RAM (Accesses 70h – 7Fh)	970h 97Fh	Common RAM (Accesses 70h – 7Fh)	9F0h 9FFh	Common RAM (Accesses 70h – 7Fh)	A70h A7Fh	Common RAM (Accesses 70h – 7Fh)	AF0h AFFh	Common RAM (Accesses 70h – 7Fh)	B70h B7Fh	Common RAM (Accesses 70h – 7Fh)	BF0h BFFh	Common RAM (Accesses 70h – 7Fh)

67Fh

(Accesses 70h – 7Fh)

6FFh

(Accesses 70h – 7Fh)

77Fh

(Accesses 70h – 7Fh)

PIC16LF1902/3

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh	
C0Ch		C8Ch		D0Ch		D8Ch		E0Ch		E8Ch		F0Ch	
	Unimplemented Read as '0'												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh	
C70h	Common RAM (Accesses 70h – 7Fh)	CF0h	Common RAM (Accesses 70h – 7Fh)	D70h	Common RAM (Accesses 70h – 7Fh)	DF0h	Common RAM (Accesses 70h – 7Fh)	E70h	Common RAM (Accesses 70h – 7Fh)	EF0h	Common RAM (Accesses 70h – 7Fh)	F70h	Common RAM (Accesses 70h – 7Fh)
C7Fh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh	

= Unimplemented data memory locations, read as '0' Legend:

(Accesses 70h – 7Fh)

47Fh

4FFh

ТАВ											
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	15 (Continued)										
7ABh	_	Unimpleme	nted							—	—
7ACh	LCDDATA12	—	—	_	-	—	SEG26 COM0	SEG25 COM0	SEG24 COM0	xxx	uuu
7ADh	—	Unimpleme	nted							—	—
7AEh	—	Unimpleme	nted							—	—
7AFh	LCDDATA15	—			—	_	SEG26 COM1	SEG25 COM1	SEG24 COM1	xxx	uuu
7B0h	—	Unimpleme	nted							—	—
7B1h	—	Unimpleme	nted							_	_
7B2h	LCDDATA18	_	_		—	_	SEG26 COM2	SEG25 COM2	SEG24 COM2	xxx	uuu
7B3h	—	Unimpleme	nted							—	_
7B4h	—	Unimpleme	nted							—	_
7B5h	LCDDATA21	_	_		—	_	SEG26 COM3	SEG25 COM3	SEG24 COM3	xxx	uuu
7B6h	—	Unimpleme	nted							—	—
7EFh											
Ban	k 16-30										
x0Ch or x8Ch to x1Fh or x9Fh	_	Unimpleme	Jnimplemented								_
	k 31										
F8Ch	_	Unimpleme	nted							—	—
FE3h								1	-		
FE4h	STATUS_SHAD	—	—	—	-	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_SHAD	Working Re	gister Norma	I (Non-ICD)	1					XXXX XXXX	uuuu uuuu
FE6h	BSR_SHAD	_		_	Bank Select I		· · ·			x xxxx	u uuuu
FE7h	PCLATH_SHAD	—	Program Counter Latch High Register Normal (Non-ICD) Shadow							-xxx xxxx	uuuu uuuu
FE8h	FSR0L_SHAD		Indirect Data Memory Address 0 Low Pointer Normal (Non-ICD) Shadow							XXXX XXXX	uuuu uuuu
FE9h	FSR0H_SHAD		ndirect Data Memory Address 0 High Pointer Normal (Non-ICD) Shadow								uuuu uuuu
FEAh	FSR1L_SHAD		Indirect Data Memory Address 1 Low Pointer Normal (Non-ICD) Shadow								uuuu uuuu
FEBh	FSR1H_SHAD	Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow								XXXX XXXX	uuuu uuuu
FECh	-	Unimpleme	Unimplemented —							—	—
FEDh	0	_	Current Stack Pointer 1 1111								1 1111
FEEh	TOSL	Top of Stack	Top of Stack Low byte xxxx xxxx u								
FEFh	TOSH	—	Top of Stack							-xxx xxxx	-uuu uuuu
Legen	d: x = unknov	vn, u = uncha	anged, q = va	lue depends	on condition,	- = unimplem	nented, read a	as '0', r = re	served.		

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-5:**

Legend: Note

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

These registers can be addressed from any bank.

1: 2: Unimplemented, read as '1'.

GURE 6-4:	INTERNAL OSCILLATOR SWITCH TIMING
HENGORC	LFINTOSC (WOT disabled)
HFINTOSC	Ovjetsky Colleg ¹⁰ - 2 cprile Sync
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
	LENETOSO (WOY enabled)
HFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
(39870SQ)	
	LFUECCE and an analysis
65969030	
MERICISC.	
\$\$C\$ <\$C\$	
System Circle	
Nexte 1 2 - See 3	anaamaanaamaanaamaanaamaanaanaanaanaanaa

TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Switch From	Switch To	Oscillator Delay
	LFINTOSC	1 cycle of each clock source
	HFINTOSC	2 μs (approx.)
Any clock source	ECH, ECM, ECL	2 cycles
	Secondary Oscillator	1024 Secondary Oscillator Cycles

6.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Word 1
- · Secondary oscillator 32 kHz crystal
- Internal Oscillator Block (INTOSC)

6.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Word 1.
- When the SCS bits of the OSCCON register = 01, the system clock source is the secondary oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 6-2.

6.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<1:0> bits in the Configuration Word 1, or from the internal clock source.

6.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSI and T1CKI/T1OSO device pins.

The secondary oscillator is enabled using the T1OSCEN control bit in the T1CON register. See **Section 17.0 "Timer1 Module with Gate Control**" for more information about the Timer1 peripheral.

6.3.4 SECONDARY OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the secondary oscillator is ready to be used before it is selected as a system clock source. The Secondary Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the secondary oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the secondary oscillator.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

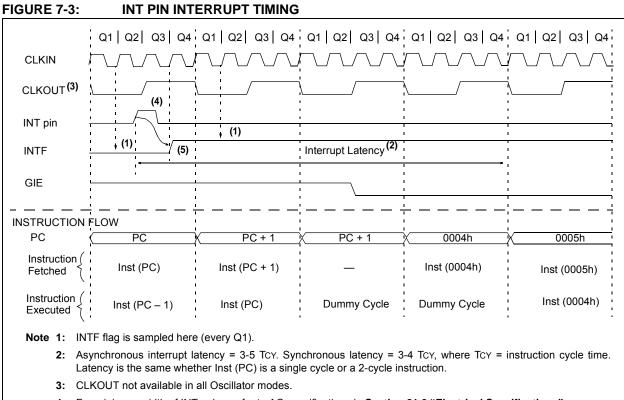
- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.


The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

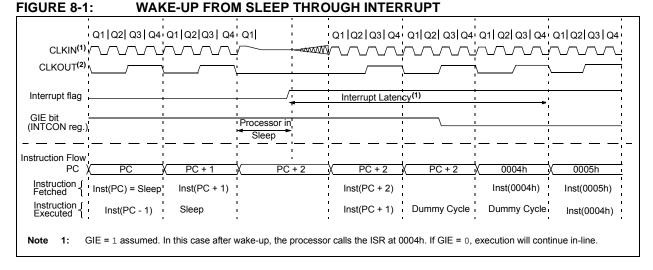
- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7.3 for more details.

4: For minimum width of INT pulse, refer to AC specifications in Section 21.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.


8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	101
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	101
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	101
PIE1	TMR1GIE	ADIE	_	—	_	—	_	TMR1IE	61
PIE2	—	_	_	—	_	LCDIE	_	—	62
PIR1	TMR1GIF	ADIF	_	—	_	—	_	TMR1IF	63
PIR2	—	_	_	—	_	LCDIF	_	—	64
STATUS	_	_	_	TO	PD	Z	DC	С	16
WDTCON	_			١	NDTPS<4:0>	>		SWDTEN	70

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

REGISTER 11-1: PORTA: PORTA REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit C
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimplem	nented bit, read a	is '0'	
		x = Bit is unkno		-n/n = Value a	t POR and BOR	Value at all oth	_ /
u = Bit is uncha	anged	X - DILIS UNKIN	JWII			value at all othe	er Resets

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISA<7:4>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	TRISA3: RA3 Port Tri-State Control bit This bit is always '1' as RA3 is an input only
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

REGISTER 11-3: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

12.0 INTERRUPT-ON-CHANGE

The PORTB pins can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTB pin, or combination of PORTB pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 12-1 is a block diagram of the IOC module.

12.1 Enabling the Module

To allow individual PORTB pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

12.2 Individual Pin Configuration

For each PORTB pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated IOCBPx bit of the IOCBP register is set. To enable a pin to detect a falling edge, the associated IOCBNx bit of the IOCBN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both the IOCBPx bit and the IOCBNx bit of the IOCBP and IOCBN registers, respectively.

12.3 Interrupt Flags

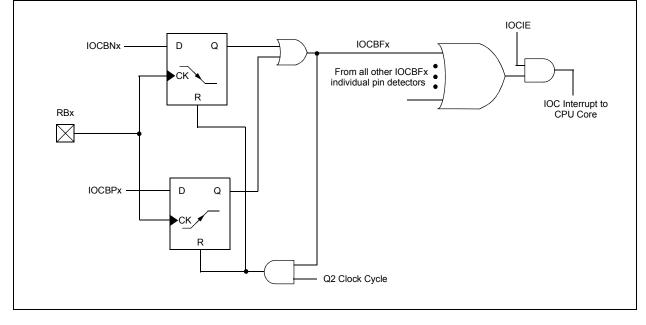
The IOCBFx bits located in the IOCBF register are status flags that correspond to the interrupt-on-change pins of PORTB. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCBFx bits.

12.4 Clearing Interrupt Flags

The individual status flags, (IOCBFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 12-1:


```
MOVLW 0xff
XORWF IOCBF, W
ANDWF IOCBF, F
```

12.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCBF register will be updated prior to the first instruction executed out of Sleep.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>			_	ADPRE	ADPREF<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'		
u = Bit is unc	hanged	x = Bit is unkı	nown	-		OR/Value at all	other Resets	
'1' = Bit is se	t	'0' = Bit is cle	ared					
bit 6-4	loaded. ADCS<2:0> 000 = Fosc. 001 = Fosc. 010 = Fosc.	: A/D Conversic /2 /8 /32 clock supplied fi /4	n Clock Selec	t bits		when the conve	ersion result is	
	110 = Fosc 111 = Frc (rom a dedicate	ed RC oscillato	r)			
bit 3-2	111 = FRC (clock supplied from a dedicated RC oscillator)Unimplemented: Read as '0'							
bit 1-0	ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits 00 = VREF+ is connected to VDD 01 = Reserved 10 = VREF+ is connected to external VREF+ pin ⁽¹⁾ 11 = Reserved							

Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 21.0 "Electrical Specifications"** for details.

17.10 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 17-2, is used to control Timer1 gate.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>
bit 7				·			bit C
Legend:							
R = Readable		W = Writable			nented bit, read		
u = Bit is unch	anged	x = Bit is unkr			at POR and BC		other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are	
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function							
bit 6	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)						
bit 5	T1GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge.						
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	bit			
		ate Single-Puls ate Single-Puls			ntrolling Timer1	gate	
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit		
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 						
bit 2	T1GVAL: Timer1 Gate Current State bit						
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).						
bit 1-0		: Timer1 Gate	Source Select	bits			
	00 = Timer1 gate pin 01 = Timer0 overflow output 10 = Reserved 11 = Reserved						

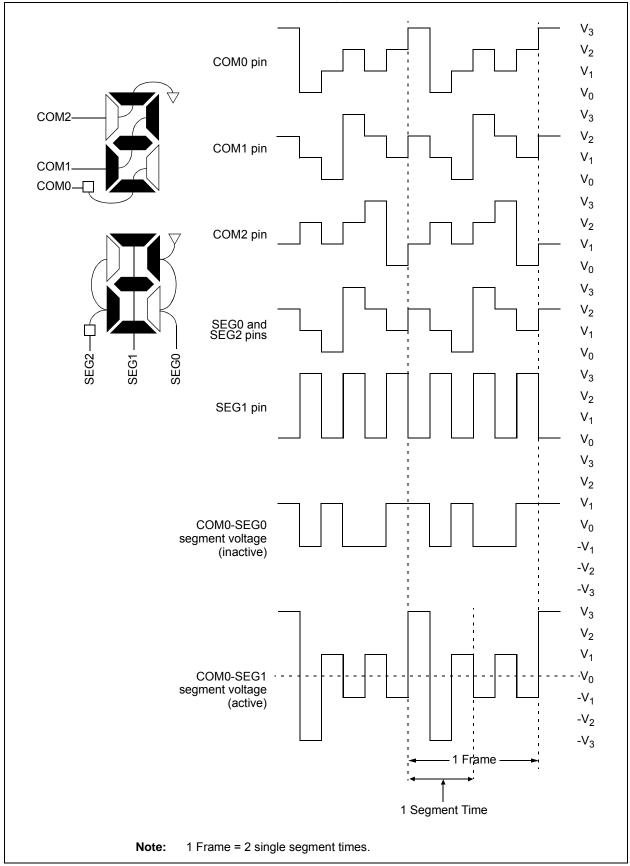
REGISTER 17-2: T1GCON: TIMER1 GATE CONTROL REGISTER

TABLE 18-1: LCD SEGMENT AND DATA REGISTERS

	# of LCD	Registers
Device	Segment Enable	Data
PIC16LF1902/3	3	12

The LCDCON register (Register 18-1) controls the operation of the LCD Driver module. The LCDPS register (Register 18-2) configures the LCD clock source prescaler and the type of waveform; Type-A or Type-B. The LCDSEn registers (Register 18-5) configure the functions of the port pins.

The following LCDSEn registers are available:


- LCDSE0 SE<7:0>
- LCDSE1 SE<15:8>
- LCDSE3 SE<26:24>

Once the module is initialized for the LCD panel, the individual bits of the LCDDATAn registers are cleared/set to represent a clear/dark pixel, respectively:

- LCDDATA0 SEG<7:0>COM0
- LCDDATA1 SEG<15:8>COM0
- LCDDATA3 SEG<7:0>COM1
- LCDDATA4 SEG<15:8>COM1
- LCDDATA6 SEG<7:0>COM2
- LCDDATA7 SEG<15:8>COM2
- LCDDATA9 SEG<7:0>COM3
- LCDDATA10 SEG<15:8>COM3
- LCDDATA12 SEG<26:24>COM0
- LCDDATA15 SEG<26:24>COM1
- LCDDATA18 SEG<26:24>COM2
- LCDDATA21 SEG<26:24>COM3

As an example, LCDDATAn is detailed in Register 18-6.

Once the module is configured, the LCDEN bit of the LCDCON register is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN bit of the LCDCON register.

19.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more ICSP™ information on refer to the "PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification" (DS41397).

19.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

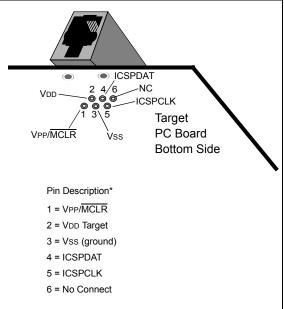
19.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See **Section 5.3 "Low-Power Brown-out Reset (LPBOR)"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

19.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 19-1.

Mnemo	onic,	Description	Cvcles		14-Bit	Opcode	•	Status	Notes
Opera	nds	Description		MSb			LSb	Affected	Note
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	NS				
	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC f	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF f	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF f	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF f	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF f	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF f	F	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW -	-	Clear W	1	00	0001	0000	00xx	Z	
COMF f	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF f	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF f	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF f	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF f	F	Move W to f	1	00	0000	lfff	ffff		2
RLF f	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF f	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF f	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB f	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF f	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF f	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ f	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ f	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE R	EGISTER OPER	RATION	IS			•	
BCF f	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF f	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED S	SKIP OPERATIO	NS				•	
BTFSC f	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS f	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL OF	PERA							1	
	ĸ	Add literal and W	1	11	1110	kkkk		C, DC, Z	
	ĸ	AND literal with W	1	11	1001	kkkk		Z	
	ĸ	Inclusive OR literal with W	1	11	1000	kkkk		Z	
	ĸ	Move literal to BSR	1	00	0000	001k			
	ĸ	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
	ĸ	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW I	ĸ	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW I	ĸ	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 20-3: PIC16LF1902/3 ENHANCED INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR + 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR + 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

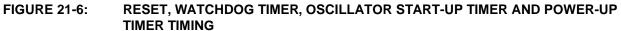
NOP	
Syntax:	

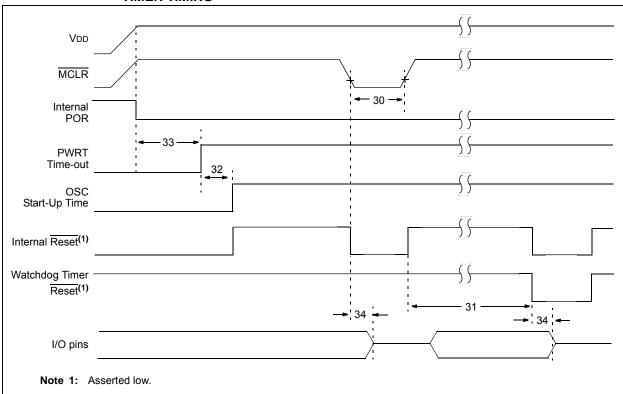
No Operation

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

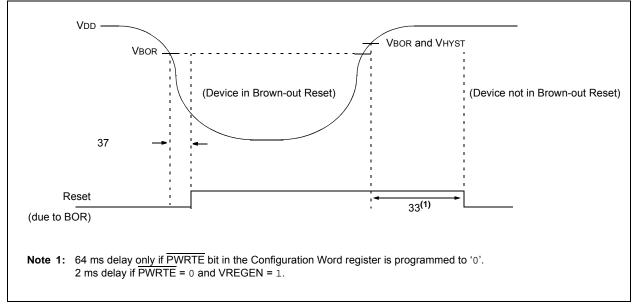
OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset			
Syntax:	[label] RESET			
Operands:	None			
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.			
Status Affected:	None			
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.			

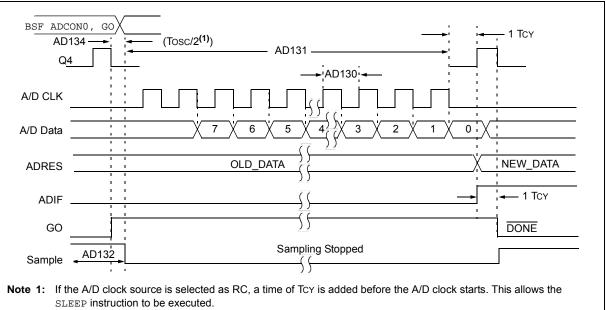

TABLE 21-4: I/O PORTS

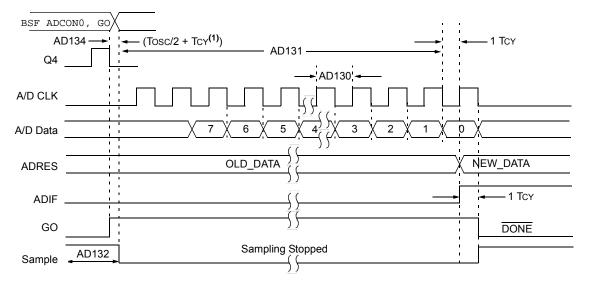

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D032		with TTL buffer	—	_	0.15 VDD	V	$1.8V \le VDD \le 3.6V$	
D033		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$1.8V \leq V\text{DD} \leq 3.6V$	
D034		MCLR, OSC1		_	0.2 VDD	V		
	VIH	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	0.25 VDD + 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 3.6V$	
D041		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$1.8V \leq V\text{DD} \leq 3.6V$	
D042		MCLR	0.8 VDD	_	—	V		
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance @ 85°C	
				± 5	± 1000	nA	125°C	
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD @ 85^{\circ}C$	
	IPUR	Weak Pull-up Current						
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS	
	Vol	Output Low Voltage						
D080		I/O ports	_	_	0.6	V	IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V	
D090	Voн	Output High Voltage						
		I/O ports	Vdd - 0.7	_	_	V	IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V	
		Capacitive Loading Specs on	Output Pins		•		•	
D101*	Сю	All I/O pins	_	_	50	pF		

* These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.





Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.