

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1902t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- · Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾	
PIC16LF1902	2,048	07FFh	0780h-07FFh	
PIC16LF1903	4,096	0FFFh	0F80h-0FFFh	

Note 1: High-endurance Flash applies to low byte of each address in the range.

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16LF1902/3 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1, and 3-2).

FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 21.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

TABLE 9-1:	WDT OF	'ERATING	MODES
------------	--------	-----------------	-------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	х	Х	Active
10	37	Awake	Active
TO	A	Sleep	Disabled
0.1	1	~	Active
UI	0	~	Disabled
00	х	х	Disabled

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Change INTOSC divider (IRCF bits)	Unaffected		

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail event
- · WDT is disabled

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See Section 3.0 "Memory Organization" and STATUS register (Register 3-1) for more information.

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER	
------------	---	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—	IRCF<3:0>			—	SCS	<1:0>	53	
STATUS	—	_	—	TO	PD	Z	DC	С	16
WDTCON	—		— WDTPS<4:(>		SWDTEN	70

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8		—		—	CLKOUTEN	BORE	N<1:0>	—	24
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>	_	FOSC	<1:0>	34

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.0 I/O PORTS

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- · LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

TABLE 11-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	PORTE
PIC16LF1902/3	•	•	٠	•

The Data Latch (LATA register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATA register has the same effect as a write to the corresponding PORTA register. A read of the LATA register reads of the values held in the I/O PORT latches, while a read of the PORTA register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

EXAMPLE 11-1: INITIALIZING PORTA

; This code example illustrates ; initializing the PORTA register. The ; other ports are initialized in the same ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	93
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	93
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	93

TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

15.2.5 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - · Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - · Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.3 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

;This code block configures the ADC
;for polling, Vdd and Vss references, Frc
;clock and ANO input.
;

;Conversion start & polling for completion ; are included.

;		
BANKSEL	ADCON1	;
MOVLW	B'11110000'	;Right justify, Frc
		;clock
MOVWF	ADCON1	;Vdd and Vss Vref
BANKSEL	TRISA	;
BSF	TRISA,0	;Set RA0 to input
BANKSEL	ANSEL	;
BSF	ANSEL,0	;Set RA0 to analog
BANKSEL	ADCON0	;
MOVLW	B'0000001'	;Select channel ANO
MOVWF	ADCON0	;Turn ADC On
CALL	SampleTime	;Acquisiton delay
BSF	ADCON0, ADGO	;Start conversion
BTFSC	ADCON0, ADGO	;Is conversion done?
GOTO	\$-1	;No, test again
BANKSEL	ADRESH	;
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	;store in GPR space
BANKSEL	ADRESL	;
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	;Store in GPR space

15.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

sumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - 1}) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

As

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.715\mus

Therefore:

$$TACQ = 2\mu s + 1.715\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.96\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

TABLE 17-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
PIE1	TMR1GIE	ADIE	-	—	—	_	—	TMR1IE	61
PIR1	TMR1GIF	ADIF	-	—	—	_	—	TMR1IF	63
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							126*	
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						126*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	96
T1CON	TMR1CS1	TMR1CS0	T1CKP	S<1:0>	T10SCEN	T1SYNC	—	TMR10N	130
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	131

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
LRLAP<1:0>		LRLB	P<1:0>			LRLAT<2:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOI	R/Value at all ot	ner Resets
'1' = Bit is set	1	'0' = Bit is clea	ared				
bit 7-6	LRLAP<1:0>: During Time ir 00 = Internal 01 = Internal 10 = Internal 11 = Internal	LCD Reference Interval A (Refer LCD Reference LCD Reference LCD Reference LCD Reference	toFigure 18-4) Ladder is pow Ladder is pow Ladder is pow Ladder is pow Ladder is pow	ne Power Contro : vered down and vered in Low-Po vered in Medium vered in High-Po	ol bits unconnected wer mode n-Power mode ower mode		
bit 5-4	bit 5-4 LRLBP<1:0>: LCD Reference Ladder B Time Power Control bits During Time interval B (Refer to Figure 18-4): 00 = Internal LCD Reference Ladder is powered down and unconnected 01 = Internal LCD Reference Ladder is powered in Low-Power mode 10 = Internal LCD Reference Ladder is powered in Medium-Power mode 11 = Internal LCD Reference Ladder is powered in Medium-Power mode						
bit 3	Unimplement	ted: Read as '0	,				
bit 2-0	LRLAT<2:0>: LCD Reference Ladder A Time Interval Control bits Sets the number of 32 kHz clocks that the A Time Interval Power mode is active						
	For type A way	veforms (WFT =	= 0):				
 000 = Internal LCD Reference Ladder is always in 'B' Power mode 001 = Internal LCD Reference Ladder is in 'A' Power mode for 1 clock and 'B' Power mode for 15 010 = Internal LCD Reference Ladder is in 'A' Power mode for 2 clocks and 'B' Power mode for 14 011 = Internal LCD Reference Ladder is in 'A' Power mode for 3 clocks and 'B' Power mode for 13 100 = Internal LCD Reference Ladder is in 'A' Power mode for 4 clocks and 'B' Power mode for 12 101 = Internal LCD Reference Ladder is in 'A' Power mode for 5 clocks and 'B' Power mode for 11 101 = Internal LCD Reference Ladder is in 'A' Power mode for 6 clocks and 'B' Power mode for 10 111 = Internal LCD Reference Ladder is in 'A' Power mode for 7 clocks and 'B' Power mode for 9 				e for 15 clocks e for 14 clocks e for 13 clocks e for 12 clocks e for 11 clocks e for 10 clocks de for 9 clocks			
	For type B way	veforms (WFT =	= 1):				
000 = Internal LCD Reference Ladder is always in 'B 001 = Internal LCD Reference Ladder is in 'A' Power 010 = Internal LCD Reference Ladder is in 'A' Power 011 = Internal LCD Reference Ladder is in 'A' Power 100 = Internal LCD Reference Ladder is in 'A' Power 101 = Internal LCD Reference Ladder is in 'A' Power 110 = Internal LCD Reference Ladder is in 'A' Power 110 = Internal LCD Reference Ladder is in 'A' Power			vays in 'B' Powe A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode	r mode. for 1 clock and for 2 clocks and for 3 clocks and for 4 clocks and for 5 clocks and for 6 clocks and for 7 clocks and	'B' Power mod d 'B' Power mod	e for 31 clocks e for 30 clocks e for 29 clocks e for 28 clocks e for 27 clocks e for 26 clocks e for 25 clocks	

REGISTER 18-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{• FSR + 1 (preincrement)} \\ &\text{• FSR - 1 (predecrement)} \\ &\text{• FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be either:} \\ &\text{• FSR + 1 (all increments)} \\ &\text{• FSR - 1 (all decrements)} \\ &\text{• Unchanged} \end{split}$
Status Affected:	Z

Status Affected:

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB	Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \leq k \leq 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W reg- ister. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1

After Ins	tructio	on	
	W	=	0x5A

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

TABLE 21-4: I/O PORTS

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min. Typ† Max.				Conditions			
	VIL	Input Low Voltage								
D032		with TTL buffer	—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 3.6V$			
D033		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$1.8V \leq V\text{DD} \leq 3.6V$			
D034		MCLR, OSC1	—	_	0.2 Vdd	V				
	Vih	Input High Voltage								
		I/O ports:								
D040		with TTL buffer	0.25 VDD + 0.8	-	-	V	$1.8V \le V\text{DD} \le 3.6V$			
D041		with Schmitt Trigger buffer	0.8 VDD	_		V	$1.8V \leq V\text{DD} \leq 3.6V$			
D042		MCLR	0.8 VDD	_		V				
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 125	nA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance @ 85°C			
				± 5	± 1000	nA	125°C			
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$VSS \le VPIN \le VDD @ 85^{\circ}C$			
	IPUR	Weak Pull-up Current								
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS			
	Vol	Output Low Voltage								
D080		I/O ports	_	—	0.6	V	IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
VOH Output High Voltage										
D090		I/O ports	Vdd - 0.7	_	_	V	Іон = 3mA, VDD = 3.3V Іон = 1mA, VDD = 1.8V			
		Capacitive Loading Specs on	Output Pins							
D101*	Сю	All I/O pins	—	_	50	pF				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

TABLE 21-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic		Тур†	Typ† Max. Uni		Conditions		
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μS μS	VDD = 3.0V, -40°C to +85°C VDD = 3.0V		
31	FWDTLP	Low Frequency Internal Oscillator Frequency	19	33	52	kHz			
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	—	Tosc	(Note 2)		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	_	2048	—	Tosc	Clocked by LFINTOSC		
34*	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset		_	2.0	μS			
35	VBOR	Brown-out Reset Voltage: BORV = 0 BORV = 1	2.55 1.80	2.70 1.90	2.85 2.05	V V			
35A*	VHYST	Brown-out Reset Hysteresis	25 —	50 —	75 100	mV mV	-40°C to +85°C -40°C to +125°C		
35B*	TBORDC	Brown-out Reset DC Response Time	1	3	5 10	μS μS	$VDD \le VBOR$, -40°C to +85°C $VDD \le VBOR$		
35C	TBORAC	Brown-out Reset AC Response Time	_	100		ns	Transient Response immunity for a noise spike that goes from VDD to VSS and back with 10 ns rise and fall times. Guidance only.		
36	TFVRS	Fixed Voltage Reference Turn-on Time		_	5	μS	Turn on to specified stability		
37	Vlpbor	Low-Power Brown-out Reset Voltage	1.85	1.95	2.10	V	-40°C to +85°C		
38*	VZPHYST	Zero-Power Brown-out Reset Hysteresis	0	25	60	mV	-40°C to +85°C		
39*	Tzpbpw	Zero-Power Brown-out Reset AC Response Time for BOR detection	10		500	nVs	VDD \leq VBOR, -40°C to +85°C		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- 2: Period of the slower clock.
- 3: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 21-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

|--|

Standard Operating Conditions(unless otherwise stated)									
Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High I	Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
				With Prescaler	10	—	_	ns	
41*	TT0L	T0CKI Low F	ulse Width	No Prescaler	0.5 TCY + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	T⊤0P	T0CKI Period	t	•	Greater of:	—	-	ns	N = prescale value
					20 or <u>Tcy + 40</u> N				(2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, N	lo Prescaler	0.5 TCY + 20	—	_	ns	
		Time	Synchronous, with Prescaler		15	_		ns	
			Asynchronous		30	—		ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
		Time	Synchronous, v	vith Prescaler	15	—	_	ns	
			Asynchronous		30	—	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—	_	ns	
48	F⊤1	Timer1 Oscill (oscillator en	llator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	om External Clock Edge to Timer ent		2 Tosc	—	7 Tosc	—	Timers in Sync mode
* Those parameters are characterized but not tested									

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N		3	
Dimension	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (01/2011)

Original release.

Revision B (04/2011)

Revised Sections: Flexible Oscillator Structure; Low-Power Features; Electrical Specifications; Changed ULPBOR to LPBOR.

Revision C (07/2014)

Updated Example 3-2, Register 4-2 and Table 5-1; Updated section 6, Oscillator Module, and section 9, Watchdog Timer; Updated table 10-3 and Figure 18-7; Removed Figure 19-1; Updated section 21, Electrical Specifications; Other minor corrections.

Revision D (04/2015)

Updated Equation 15-1; Figures 5-1, 18-7, 21-2, and 21-8; Register 4-2; Sections 4.1, 18.4.5, and 21.0; and Table 5-1, 9-2, 10-4, 21-1, and 21-10.

Revision E (01/2016)

Added 'Memory' section; Updated 'PIC16LF1902/3 Family Types' table; Other minor corrections.

Revision F (05/2016)

Updated Figure 21-2. Removed parameter 34A in Table 21-10. Removed Table 18-7, LCD Worksheet. Other minor corrections.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15