

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1902t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16LF1902/3

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers (SFRs) are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for PIC16LF1902 and PIC16LF1903 are as shown in **Table 3-3**.

PIC16LF1902/3

PIC16LF1902/3 MEMORY MAP (CONTINUED) **TABLE 3-3:**

Bank 15

780h	Core Registers
	(Table 3-2)
78Bh	
78Ch	
	Unimplemented
	Read as 0
790h	1.00.001
791h	LCDCON
792h	LCDPS
793h	
794h	LCDCST
795h	LCDRL
796h	
797h	—
798h	LCDSE0
799h	LCDSE1
79Ah	-
79Bh	LCDSE3
79Ch	Unimplemented
	Read as '0'
79Eh	
740h	
7A1h	
7A2h	
7A3h	L CDDATA3
7A4h	LCDDATA4
7A5h	_
7A6h	LCDDATA6
7A7h	LCDDATA7
7A8h	—
7A9h	LCDDATA9
7AAh	LCDDATA10
7ABh	_
7ACh	LCDDATA12
7ADh	_
7AEh	_
7AFh	LCDDATA15
7B0h	_
7B1h	_
7B2h	LCDDATA18
7B3h	—
7B4h	—
7B5h	LCDDATA21
7B6h	_
7B7h	_
7B8h	
	Read as '0'
7EEh	ricau as 0
7 L I II	

	Bank 31
F80h F8Bh	Core Registers (Table 3-2)
F8Ch	Unimplemented Read as '0'
FE3h	
FE4h	STATUS_SHAD
FE5h	WREG_SHAD
FE6h	BSR_SHAD
FE7h	PCLATH_SHAD
FE8h	FSR0L_SHAD
FE9h	FSR0H_SHAD
FEAh	FSR1L_SHAD
FEBh	FSR1H_SHAD
FECh	
FEDh	STKPTR
FEEh	TOSL
FEFh	TOSH
FF0h	Common RAM (Accesses 70h – 7Fh)
FFFh	

Legend:

= Unimplemented data memory locations, read as '0',

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

PIC16LF1902/3

4: For minimum width of INT pulse, refer to AC specifications in Section 21.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the **Section 8.0** "**Power-Down Mode (Sleep)**" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

7.6 Interrupt Control Registers

7.6.1 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, interrupt-on-change and external INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R-0/0						
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all active interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TMROIE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt
bit 3	IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the interrupt-on-change interrupt 0 = Disables the interrupt-on-change interrupt
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur
bit 0	IOCIF: Interrupt-on-Change Interrupt Flag bit 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash Program Memory can be protected in two ways; by code protection (CP bit in Configuration Word 1) and write protection (WRT<1:0> bits in Configuration Word 2).

Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash Program Memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash Program Memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash Program Memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1:	Code	protection	of	the	entire	Flas	h
	Progra	am Memory	/ ar	ray i	s enab	led b	y
	clearin	g the CP bit	of C	onfigu	uration V	Vord 2	1.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 32K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash Program Memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash Program Memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash Program Memory structure for erase and programming operations. Flash Program Memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

See Table 10-1 for Erase Row size and the number of write latches for Flash Program Memory.

Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash Program Memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations.

DS40001455F-page 79

© 2011-2016 Microchip Technology Inc

PIC16LF1902/3

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART

U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
		ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	
bit 7			•	•	•		bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Rese				

REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

'0' = Bit is cleared

bit 7-6	Unimplemented: Read as '0'
bit 5	 ANSA5: Analog Select between Analog or Digital Function on pins RA5, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
bit 4	Unimplemented: Read as '0'
bit 3-0	 ANSA<3:0>: Analog Select between Analog or Digital Function on pins RA<3:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
	When a string a gin to an angle a input the approximation TDIC bit must be act to leave mode in and a to and a

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 11-3: SUMMARY OF REGIST	FERS ASSOCIATED WITH PORTA
-------------------------------	----------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	91
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	90
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		121
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	90
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	90

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	—	_	CLKOUTEN	BOREI	N<1:0>	—	24
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC	<1:0>	34

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

'1' = Bit is set

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V or 2.048V selectable output levels. The output of the FVR can be configured as the FVR input channel on the ADC.

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC is routed through two independent programmable gain amplifiers. Each amplifier can be configured to amplify the reference voltage by 1x or 2x, to produce the two possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0** "**Analog-to-Digital Converter** (**ADC**) **Module**" for additional information.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See **Section 21.0** "**Electrical Specifications**" for the minimum delay requirement.

TABLE 13-1:	PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 100 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined			
	as a digital input may cause the input			
	buffer to conduct excess current.			

15.1.2 CHANNEL SELECTION

There are up to 11 channel selections available:

- AN<13:0> pins
- · Temperature Indicator
- FVR (Fixed Voltage Reference) Output

Refer to Section 13.0 "Fixed Voltage Reference (FVR)" and Section 14.0 "Temperature Indicator Module" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 21.0** "**Electrical Specifications**" for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

FIGURE 17-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1 <u>GE</u>		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled of	Cleared by hardware on falling edge of T1GVAL
T1G_IN		
т1СКІ		
T1GVAL		
Timer1	Ν	N + 1 N + 2 N + 3 N + 4
TMR1GIF	- Cleared by software	Set by hardware on Cleared by falling edge of T1GVAL

18.4.3 AUTOMATIC POWER MODE SWITCHING

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 18-7). The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' Power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' Power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' Power mode is active. Refer to Figure 18-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 18-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
LCDCON	LCDEN	SLPEN	WERR	—	CS1	CS0	LMUX	(<1:0>	135
LCDCST	_	—	_	—	—	l	_CDCST<2:0	>	138
LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	139
LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	139
LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	139
LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	139
LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	139
LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	139
LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	139
LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	139
LCDDATA12	—	—	—	—	—	SEG26 COM0	SEG25 COM0	SEG24 COM0	139
LCDDATA15	-	—	—	—	—	SEG26 COM1	SEG25 COM1	SEG24 COM1	139
LCDDATA18	—	_	_	_	_	SEG26 COM2	SEG25 COM2	SEG24 COM2	139
LCDDATA21	—	_	—	—	—	SEG26 COM3	SEG25 COM3	SEG24 COM3	139
LCDPS	WFT	BIASMD	LCDA	WA		LP<	<3:0>		136
LCDREF	LCDIRE	—	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	—	137
LCDRL	LRLA	D<1:0>	LRLB	P<1:0>	—		LRLAT<2:0>		146
LCDSE0				SE	<7:0>				139
LCDSE1				SE	<15:8>				139
LCDSE3			_	_	_		SE<26:24>		139
PIE2	_	—	—	—	—	LCDIE	—	—	62
PIR2	_	_	_	_	_	LCDIF	_	_	64
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	130

TABLE 18-8:	SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 19-2.

FIGURE 19-2: PICkit[™] STYLE CONNECTOR INTERFACE

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from literal			
Syntax:	[label] SL	JBLW k		
Operands:	$0 \leq k \leq 255$			
Operation:	$k \operatorname{-}(W) \operatorname{\rightarrow}(W$	/)		
Status Affected:	C, DC, Z			
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.			
	C = 0	W > k		
	C = 1	$W \le k$		
	DC = 0	W<3:0> > k<3:0>		
	DC = 1	$W < 3:0 > \le k < 3:0 >$		

SLEEP	Enter Sleep mode		
Syntax:	[label] SLEEP		
Operands:	None		
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$		
Status Affected:	TO, PD		
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its pres-caler are cleared. The processor is put into Sleep mode with the oscillator stopped.		

SUBWF	Subtract W from f		
Syntax:	[label] SU	IBWF f,d	
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	$(f) - (W) \to (d$	estination)	
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.		
	C = 0	W > f	
	C = 1	$W \leq f$	

	DC = 0	W<3:0> > f<3:0>	
	DC = 1	$W<3:0> \le f<3:0>$	
SUBWFB	Subtract	W from f with Borrow	
Syntax:	SUBWFB	f {,d}	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - (W) - (f)	$(\overline{B}) \rightarrow dest$	
Status Affected:	C, DC, Z		
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple ment method). If 'd' is '0', the result i stored in W. If 'd' is '1', the result is		

stored back in register 'f'.

24.3 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.380	-	1.565
Tip to Seating Plane	L	.115	_	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	_	.070
Lower Lead Width	b	.014	_	.022
Overall Row Spacing §	eB	_	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-079B