

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	- · · · · · · · · · · · · · · · · · · ·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1903-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	PORTA Dat	a Latch wher	written: PO	RTA pins whe	n read				xxxx xxxx	uuuu uuuu
00Dh	PORTB	PORTB Dat	a Latch wher	n written: PO	RTB pins whe	n read				xxxx xxxx	uuuu uuuu
00Eh	PORTC	PORTC Dat	a Latch wher	n written: PO	RTC pins whe	n read				xxxx xxxx	uuuu uuuu
00Fh	—	Unimpleme	nted							—	_
010h	PORTE	—				RE3		_	_	x	u
011h	PIR1	TMR1GIF	ADIF	_	_		_	_	TMR1IF	000	00000
012h	PIR2	_				_	LCDIF	_	_	0	0
013h	_	Unimpleme	nted							_	_
014h	—	Unimpleme	nted							—	_
015h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	gister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of the	e 16-bit TMR1	Register			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu
01Ah to 01Fh	_	Unimpleme	nted							_	_
Ban	k 1										
08Ch	TRISA	PORTA Dat	a Direction R	egister						1111 1111	1111 1111
08Dh	TRISB	PORTB Dat	a Direction R	egister						1111 1111	1111 1111
08Eh	TRISC	PORTC Dat	a Direction R	legister						1111 1111	1111 1111
08Fh	—	Unimpleme	nted					1	1	_	—
090h	TRISE	-	—	_		(2)	_	—	—	1	1
091h	PIE1	TMR1GIE	ADIE	_		_	_	—	TMR1IE	000	00000
092h	PIE2	-	—	—	—	—	LCDIE	—	_	0	0
093h	—	Unimpleme	nted							—	
094h	—	Unimpleme	nted	1	1		1	1	1	_	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	01 0110	01 0110
098h		Unimpleme	nted	-				1	1	_	_
099h	OSCCON	—	IRCF3	IRCF2	IRCF1	IRCF0	_	SCS1	SCS0	-011 1-00	-011 1-00
09Ah	OSCSTAT	T10SCR	_	OSTS	HFIOFR	_	—	LFIOFR	HFIOFS	0-d000	d-dd0d
09Bh	ADRESL	A/D Result I	Register Low							XXXX XXXX	uuuu uuuu
09Ch	ADRESH	A/D Result I	Register High	1						XXXX XXXX	uuuu uuuu
09Dh	ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	—	ADPREF1	ADPREF0	0000	0000
09Fh	—	Unimpleme	nted							—	—

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

	LE 3-3. 3	PECIAL	FUNCTIO		31EK 30			IUED)						
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets			
Ban	k 2													
10Ch	LATA	PORTA Dat	a Latch							xxxx xxxx	uuuu uuuu			
10Dh	LATB	PORTB Dat	ORTB Data Latch											
10Eh	LATC	PORTC Dat	a Latch							xxxx xxxx	uuuu uuuu			
10Fh to 115h	_	Unimpleme	implemented —											
116h	BORCON	SBOREN	BORFS	—	—	—	—	—	BORRDY	10q	uuu			
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR1	ADFVR0	0q0000	0q0000			
118h to 11Fh	_	Unimpleme	Jnimplemented — -											
Ban	ik 3													
18Ch	ANSELA	—	_	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111	11 1111			
18Dh	ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111			
18Eh	—	Unimpleme	nted							_	_			
18Fh	_	Unimpleme	Unimplemented — — —											
190h	_	Unimpleme	Jnimplemented — — —											
191h	PMADRL	Program Me	emory Addres	ss Register L	ow Byte					0000 0000	0000 0000			
192h	PMADRH	(2)	Program Me	emory Addres	ss Register Hig	gh Byte				1000 0000	1000 0000			
193h	PMDATL	Program Me	emory Read I	Data Registe	r Low Byte					xxxx xxxx	uuuu uuuu			
194h	PMDATH	—	—	Program Me	emory Read D	ata Register	High Byte		•	xx xxxx	uu uuuu			
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000			
196h	PMCON2	Program Me	emory Contro	l Register 2						0000 0000	0000 0000			
197h to 19Fh	_	Unimpleme	nted							_	—			
Ban	ik 4													
20Ch	—	Unimpleme	nted	r	1	1	1	1	•	—	—			
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111			
20Eh	_	Unimpleme	nted							_	_			
20Fh	—	Unimpleme	nted				1			—	—			
210h	WPUE	—	—	—	—	WPUE3	—	—	—	1	1			
211h to 21Fh	_	Unimpleme	nted							-	_			
Ban	ik 5													
28Ch	—	Unimpleme	nted							-	—			
 29Fh														
Ban	ik 6													
30Ch	_	Unimpleme	nted							_	_			
 31Eb														
Legen	d: x = unknov	$v_{n_{11}} = u_{n_{21}}$	anged g = va	lue depends	on condition	- = unimplem	ented read	as'0'r = re	served					

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Shaded locations are unimplemented, read as '0'. Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note:	The DEBUG bit in Configuration Words is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

9.6 Watchdog Control Register

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
	_			WDTPS<4:0>	>		SWDTEN
bit 7		-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-1	WDTPS<4:0	>: Watchdog Ti	mer Period Se	elect bits ⁽¹⁾			
	Bit Value = F	Prescale Rate					
	00000 = 1:3	32 (Interval 1 m	s nominal)				
	00001 = 1:0	54 (Interval 2 m 128 (Interval 4 r	s nominal)				
	00010 = 1:2 00011 = 1:2	256 (Interval 8 r	ns nominal)				
	00100 = 1:5	512 (Interval 16	ms nominal)				
	00101 = 1 :1	1024 (Interval 3	2 ms nominal)			
	00110 = 1:2	2048 (Interval 6	4 ms nominal)			
	00111 = 1.2 01000 = 1.8	196 (Interval 1	20 ms nomina 56 ms nomina	ai <i>)</i> al)			
	01001 = 1:1	16384 (Interval	512 ms nomir	nal)			
	01010 = 1:3	32768 (Interval	1s nominal)				
	01011 = 1:6	65536 (Interval	2s nominal) ((Reset value)			
	01100 = 1:1	131072 (2 ¹⁷) (Ir 262144 (2 ¹⁸) (Ir	iterval 4s nor	ninal) ninal)			
	01101 = 1.2 01110 = 1.5	524288 (2 ¹⁹) (Ir	nterval 16s no	minal)			
	01111 = 1 :1	1048576 (2 ²⁰) (Interval 32s n	ominal)			
	10000 = 1:2	2097152 (2 ²¹) (Interval 64s n	ominal)			
	10001 = 1:4	4194304 (2 ²²) (Interval 128s	nominal)			
	10010 = 1:8	5388608 (2-3) (interval 256S	nominal)			
	10011 = Re	eserved. Result	s in minimum	interval (1:32)			
	•						
	•						
	- 11111 = Re	eserved. Result	s in minimum	interval (1:32)			
bit 0	SWDTEN: Se	oftware Enable	Disable for W	/atchdog Timer	bit		
	If WDTE<1:0	> = 00:					
	This bit is ign	ored.					
	If WDTE<1:0	> = 01:					
	1 = WDT is t	turned on					
		$\tan \theta = 1x^{-1}$					
	This bit is ign	iored.					

10.2.3 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the PMADRH:PMADRL register pair with any address within the row to be erased.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the FREE and WREN bits of the PMCON1 register.
- 4. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the PMCON1 register to begin the erase operation.

See Example 10-2.

After the "BSF PMCON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 WRITE instruction.

FIGURE 10-4: FLA

FLASH PROGRAM MEMORY ERASE FLOWCHART

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
- ; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:	USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
-------------	--	-----------

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

*] * *	This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO								
	BANKSEL	PMADRL	;	Select correct Bank					
	MOVLW	PROG_ADDR_LO	;						
	MOVWF	PMADRL	;	Store LSB of address					
	CLRF	PMADRH	;	Clear MSB of address					
	BSF	PMCON1,CFGS	;	Select Configuration Space					
	BCF	INTCON,GIE	;	Disable interrupts					
	BSF	PMCON1,RD	;	Initiate read					
	NOP		;	Executed (See Figure 10-2)					
	NOP		;	Ignored (See Figure 10-2)					
	BSF	INTCON,GIE	;	Restore interrupts					
	MOVF	PMDATL,W	;	Get LSB of word					
	MOVWF	PROG_DATA_LO	;	Store in user location					
	MOVF	PMDATH,W	;	Get MSB of word					
	MOVWF	PROG_DATA_HI	;	Store in user location					

REGISTER 11-5: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0		
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-7: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	bit U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all oth		other Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 11-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits⁽¹⁾

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 11-12: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

-n/n = Value at POR and BOR/Value at all other Resets

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit,			nented bit, read	as '0'			

REGISTER 12-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

bit 7-0

'1' = Bit is set

u = Bit is unchanged

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

x = Bit is unknown

'0' = Bit is cleared

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

REGISTER 15-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—	—	_	—		ADRE	S<9:8>		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o							other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-2 Reserved: Do not use. bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 15-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
	ADRES<7:0>							
bit 7 bit								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

FIGURE 18-5: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A WAVEFORM (1/2 MUX, 1/2 BIAS DRIVE)

FIGURE 18-19: WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE (EXAMPLE – TYPE-B, NON-STATIC)

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 19-3 for more information.

FIGURE 19-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING

TABLE 21-12: PIC16LF1902/3 CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

VDD = 3.	VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD01	NR	Resolution	_		10	bit				
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error		±1	±1	LSb	No missing codes VREF = 3.0V			
AD04	EOFF	Offset Error		±1	±2.5	LSb	VREF = 3.0V			
AD05	Egn	Gain Error		±1	±2.0	LSb	VREF = 3.0V			
AD06	Vref	Reference Voltage	1.8		Vdd	V	Vref = (Vrpos - Vrneg)			
AD07	VAIN	Full-Scale Range	Vss		Vref	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source		_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 22.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

TABLE 21-13: PIC16LF1902/3 A/D CONVERSION REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic		/lin. Typ† N		Units	Conditions				
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based				
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = x11 (ADC FRC mode)				
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11		Tad	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	_	5.0		μS					
AD133*	Тнср	Holding Capacitor Disconnect Time		1/2 TAD 1/2 TAD + 1TCY			Fosc-based ADCS<2:0> = x11 (ADC FRC mode)				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

24.2 Package Marking Information

28-Lead UQFN (4x4x0.5 mm)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC [®] designator _(e3)) can be found on the outer packaging for this package.
Note:	In the ever be carriec characters	It the full Microchip part number cannot be marked on one line, it will over to the next line, thus limiting the number of available for customer-specific information.

Example

24.3 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.380	-	1.565
Tip to Seating Plane	L	.115	_	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	_	.070
Lower Lead Width	b	.014	_	.022
Overall Row Spacing §	eB	_	_	.700

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-079B