

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1903t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16LF1902/3 Family Types

×		× >		ash					LCD				
Device	Data Sheet Index	Program Memor Flash (words)	Data SRAM (bytes)	High-Endurance Fl (bytes)	I/OS ⁽²⁾	10-bit ADC (ch)	Timers (8/16-bit)	EUSART	Common Pins	Segment Pins	Total Segments	Debug ⁽¹⁾	ХГР
PIC16LF1902	(1)	2048	128	128	25	11	1/1		4	19	72 ⁽³⁾	Н	Y
PIC16LF1903	(1)	4096	256	128	25	11	1/1	_	4	19	72 ⁽³⁾	Н	Y
PIC16LF1904	(2)	4096	256	128	36	14	1/1	1	4	29	116	I/H	Y
PIC16LF1906	(2)	8192	512	128	25	11	1/1	1	4	19	72 ⁽³⁾	I/H	Y
PIC16LF1907	(2)	8192	512	128	36	14	1/1	1	4	29	116	I/H	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

2: One pin is input-only.

3: COM3 and SEG15 share a pin, so the total segments are limited to 72 for 28-pin devices.

Data Sheet Index: (Unshaded devices are described in this document.)

1: DS40001455 PIC16LF1902/1903 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.

2: DS40001569 PIC16LF1904/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.

Pin Diagrams

FIGURE 1: 28-PIN PDIP, SOIC, SSOP

	VPP/MCLR/RE3	1	28 RB7 ⁽¹⁾ /SEG13/ICSPDAT
	SEG12/AN0/RA0	2	27 RB6 ⁽¹⁾ /SEG14/ICSPCLK
	SEG7/AN1/RA1	3	26 RB5 ⁽¹⁾ /AN13/COM1
	COM2/AN2/RA2	4	25 RB4 ⁽¹⁾ /AN11/COM0
	SEG15/COM3/VREF+/AN3/RA3	5	24 RB3 ⁽¹⁾ /AN9/SEG26/VLCD3
	SEG4/T0CKI/RA4	6	23 RB2 ⁽¹⁾ /AN8/SEG25/VLCD2
	SEG5/AN4/RA5	7	22 RB1 ⁽¹⁾ /AN10/SEG24/VLCD1
	VSS	8	21 RB0 ⁽¹⁾ /AN12/INT/SEG0
	SEG2/CLKIN/RA7	9	20 VDD
	SEG1/CLKOUT/RA6	10	19 Vss
	T1CKI/T1OSO/RC0	11	18 RC7/SEG8
	T1OSI/RC1	12	17 RC6/SEG9
	SEG3/RC2	13	16 RC5/SEG10
	SEG6/RC3	14	15 RC4/T1G/SEG11
Note 1:	These pins have interrupt-on-change func	tionality.	

TABLE 3-3: PIC16LF1902/3 MEMORY MAP

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	_	28Ch	-	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh		20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	_	08Fh	—	10Fh	_	18Fh		20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	PORTE	090h	—	110h	—	190h	_	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	_	291h	_	311h	—	391h	—
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	_	292h	—	312h	_	392h	_
013h	—	093h	—	113h	—	193h	PMDATL	213h	—	293h	—	313h	—	393h	—
014h	_	094h	_	114h	_	194h	PMDATH	214h	—	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	_	195h	PMCON1	215h	_	295h	—	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	—	296h	—	316h	_	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	—	297h	—	317h	_	397h	—
018h	T1CON	098h	—	118h	_	198h	_	218h	—	298h	—	318h	_	398h	_
019h	T1GCON	099h	OSCCON	119h	_	199h	_	219h	—	299h	—	319h	_	399h	—
01Ah	_	09Ah	OSCSTAT	11Ah	_	19Ah	—	21Ah	—	29Ah	—	31Ah	_	39Ah	_
01Bh	_	09Bh	ADRESL	11Bh	_	19Bh	—	21Bh	—	29Bh	—	31Bh	_	39Bh	_
01Ch	—	09Ch	ADRESH	11Ch	—	19Ch	_	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh		21Dh	—	29Dh	—	31Dh	—	39Dh	_
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh		21Eh	—	29Eh	—	31Eh	—	39Eh	_
01Fh	—	09Fh	—	11Fh	—	19Fh	_	21Fh	—	29Fh	—	31Fh	—	39Fh	—
020h		0A0h	General Purpose Register 32 Bytes	120h 13Fh	General Purpose	1A0h	Unimplemented	220h	Unimplemented	2A0h	Unimplemented	320h	Unimplemented	3A0h	Unimplemented
06Eb	General Purpose Register	0EEb	General Purpose Register 48 Bytes ⁽¹⁾	140h 16Eb	Register 80 Bytes ⁽¹⁾	1FFh	Read as '0'	26Fh	Read as '0'	2EFh	Read as '0'	36Fh	Read as '0'	3EFh	Read as '0'
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16LF1903 only.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 0										
00Ch	PORTA	PORTA Dat	a Latch wher	written: PO	RTA pins whe	n read				xxxx xxxx	uuuu uuuu
00Dh	PORTB	PORTB Dat	a Latch wher	n written: PO	RTB pins whe	n read				xxxx xxxx	uuuu uuuu
00Eh	PORTC	PORTC Dat	a Latch wher	n written: PO	RTC pins whe	n read				xxxx xxxx	uuuu uuuu
00Fh	—	Unimpleme	nted							—	_
010h	PORTE	—				RE3		_	_	x	u
011h	PIR1	TMR1GIF	ADIF	TMR1IF	000	00000					
012h	PIR2	_				_	LCDIF	_	_	0	0
013h	_	Unimpleme	nted							_	_
014h	—	Unimpleme	nted							—	_
015h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	gister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of the	e 16-bit TMR1	Register			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu
01Ah to 01Fh	_	Unimpleme	nted							_	_
Ban	k 1										
08Ch	TRISA	PORTA Dat	a Direction R	egister						1111 1111	1111 1111
08Dh	TRISB	PORTB Dat	a Direction R	egister						1111 1111	1111 1111
08Eh	TRISC	PORTC Dat	a Direction R	legister						1111 1111	1111 1111
08Fh	—	Unimpleme	nted					1	1	_	—
090h	TRISE	-	—	_		(2)	_	—	—	1	1
091h	PIE1	TMR1GIE	ADIE	_		_	_	—	TMR1IE	000	00000
092h	PIE2	-	—	—	—	—	LCDIE	—	_	0	0
093h	—	Unimpleme	nted							—	
094h	—	Unimpleme	nted	1	1		1	1	1	_	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	01 0110	01 0110
098h		Unimplemented								_	_
099h	OSCCON	—	IRCF3	IRCF2	IRCF1	IRCF0	_	SCS1	SCS0	-011 1-00	-011 1-00
09Ah	OSCSTAT	T10SCR	_	OSTS	HFIOFR	_	—	LFIOFR	HFIOFS	0-d000	d-dd0d
09Bh	ADRESL	A/D Result I	Register Low							XXXX XXXX	uuuu uuuu
09Ch	ADRESH	A/D Result I	Register High	1						XXXX XXXX	uuuu uuuu
09Dh	ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	—	ADPREF1	ADPREF0	0000	0000
09Fh	—	Unimpleme	nted							—	—

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

REGISTER 4-1: CONFIGURATION WORD 1

		U-1	U-1	R/P-1	R/P-1	R/P-1	U-1
		—	—	CLKOUTEN	BORE	N<1:0>	—
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC	<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programm	nable bit	U = Unimplem	nented bit, read	1 as '1'	
'0' = Bit is clea	ared	'1' = Bit is set		-n = Value wh	en blank or afte	er Bulk Erase	
bit 13-12	Unimplemen	ted: Read as '1	, -				
bit 11	CLKOUTEN:	Clock Out Enal	ble bit				
	1 = CLKOUT	function is disa	abled. I/O tun bled on the (Ction on the CLK	COUT pin.		
bit 10-9	BOREN<1.0	Brown-out Re	set Enable b	its			
	11 = BOR en	abled					
	10 = BOR en	abled during op	eration and c	lisabled in Sleep			
	01 = BOR col	ntrolled by SBC	REN bit of th	e BORCON regi	ister		
hit 8		tod: Pead as '1	3				
bit 7	CP: Code Pro	tection bit	-				
	1 = Program	memory code p	rotection is d	isabled			
	0 = Program	memory code p	rotection is e	nabled			
bit 6	MCLRE: MCL	R/VPP Pin Fun	ction Select b	pit			
	If LVP bit = 1: This bit is	ignorod					
	If LVP bit = 0:	ignored.					
	1 = MCLR	VPP pin functio	n is MCLR; W	/ea <u>k pull-</u> up enab	led.		
		VPP pin function	n is digital inp	ut; MCLR interna	lly disabled; We	ak pull-up unde	er control of
hit 5		ior up Timor En	abla hit				
Dit 5	1 = PWRT di	sabled					
	0 = PWRT er	nabled					
bit 4-3	WDTE<1:0>:	Watchdog Time	er Enable bit				
	11 = WDT en	abled	ning and diag	blad in Class			
	10 = WDT en	abled while run	ning and disa SWDTEN bit i	ibled in Sleep in the WDTCON	register		
	00 = WDT dis	abled			logiotoi		
bit 2	Unimplemen	ted: Read as '1	,				
bit 1-0	FOSC<1:0>:	Oscillator Selec	ction bits				
	00 = INTOSC	oscillator: I/O f	unction on C	LKIN pin			
	01 = ECL: Ex	ternal Clock, Lo (ternal Clock, M	w-Power mo	de (0-0.5 MHz): r mode (0 5-4 M	device clock si Hz): device clo	upplied to CLK	IN PIN CLKIN pin
	11 = ECH: Ex	ternal Clock, H	igh-Power me	ode (4-32 MHz):	device clock s	upplied to CLK	IN pin
			-	. ,		-	-

5.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit

To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

13.3 FVR Control Registers

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	—	_	ADFV	२<1:0>
bit 7	·						bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared	q = Value dep	ends on conditi	ion	
bit 7	FVREN: Fixe	d Voltage Refe	rence Enable	bit			
	0 = Fixed Vo	Itage Referenc	e is disabled				
	1 = Fixed Vo	ltage Referenc	e is enabled				
bit 6	FVRRDY: Fix	ed Voltage Ref	erence Ready	y Flag bit ⁽¹⁾			
	0 = Fixed Vo	ltage Referenc	e output is no	t ready or not e	enabled		
	1 = Fixed Vo	ltage Referenc	e output is rea	ady for use			
bit 5	TSEN: Tempe	erature Indicato	or Enable bit				
	0 = Tempera	ture Indicator is	s disabled				
	1 = Tempera	ture Indicator is	s enabled				
bit 4	TSRNG: Tem	perature Indica	ator Range Se	election bit			
	0 = VOUT = V	'dd - 2Vt (Low	Range)				
	1 = VOUT = V	′DD - 4Vт (High	Range)				
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	ADFVR<1:0>	: ADC Fixed V	oltage Refere	nce Selection b	bit		
	00 = ADC Fix	ed Voltage Re	ference Peripl	heral output is	off.		
	01 = ADC Fix	ed Voltage Re	ference Peripl	heral output is	1x (1.024V)		
	10 = ADC Fix	ed Voltage Re	ference Peripl	heral output is	2x (2.048V) ⁽²⁾		
	11 = Reserve	d					
Note 1:	VRRDY will output	ut the true state	e of the band	gap.			

2: Fixed Voltage Reference output cannot exceed VDD.

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFVR1	ADFVR0	104

Legend: Shaded cells are not used with the Fixed Voltage Reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	112
ADCON1	ADFM	ADCS2	ADCS1	ADCS0		—	ADPREF1	ADPREF0	113
ADRESH	A/D Result I	Register High	1						114, 115
ADRESL	A/D Result I	Register Low							114, 115
ANSELA	—	—	ANSA5	-	ANSA3	ANSA2	ANSA1	ANSA0	91
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	94
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
PIE1	TMR1GIE	ADIE	-	-	-	—	—	TMR1IE	61
PIR1	TMR1GIF	ADIF				—	—	TMR1IF	63
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	90
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	93
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFVR1	ADFVR0	104

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

17.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

17.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

FIGURE 17-4: TIMER1 GATE TOGGLE MODE

17.10 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 17-2, is used to control Timer1 gate.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u					
TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS	<1:0>					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	are						
bit 7	TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function											
bit 6	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)											
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fl	r1 Gate Toggle ate Toggle mo ate Toggle mo ip-flop toggles	e Mode bit de is enabled de is disabled on every rising	and toggle flip- g edge.	flop is cleared							
bit 4	T1GSPM: Tim	ner1 Gate Sing	le-Pulse Mode	e bit								
	1 = Timer1 ga 0 = Timer1 ga	ate Single-Puls ate Single-Puls	se mode is ena se mode is disa	abled and is cor abled	ntrolling Timer1	gate						
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit							
	1 = Timer1 ga 0 = Timer1 ga	ate single-pulse ate single-pulse	e acquisition is e acquisition h	s ready, waiting as completed c	for an edge or has not been	started						
bit 2	T1GVAL: Tim	er1 Gate Curre	ent State bit									
	Indicates the Unaffected by	current state of Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L.						
bit 1-0	T1GSS<1:0>:	: Timer1 Gate	Source Select	bits								
	00 = Timer1 gate pin 01 = Timer0 overflow output 10 = Reserved 11 = Reserved											

REGISTER 17-2: T1GCON: TIMER1 GATE CONTROL REGISTER

18.4.3 AUTOMATIC POWER MODE SWITCHING

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 18-7). The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' Power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' Power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' Power mode is active. Refer to Figure 18-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 18-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
LRLA	\P<1:0>	LRLB	P<1:0>			LRLAT<2:0>	
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOI	R/Value at all ot	ner Resets
'1' = Bit is set	1	'0' = Bit is clea	ared				
bit 7-6	LRLAP<1:0>: During Time ir 00 = Internal 01 = Internal 10 = Internal 11 = Internal	LCD Reference Interval A (Refer LCD Reference LCD Reference LCD Reference LCD Reference	toFigure 18-4) Ladder is pow Ladder is pow Ladder is pow Ladder is pow Ladder is pow	ne Power Contro : vered down and vered in Low-Po vered in Medium vered in High-Po	ol bits unconnected wer mode n-Power mode ower mode		
bit 5-4	LRLBP<1:0>: During Time ir 00 = Internal 01 = Internal 10 = Internal 11 = Internal	LCD Reference nterval B (Refer LCD Reference LCD Reference LCD Reference LCD Reference	e Ladder B Tin to Figure 18-4 Ladder is pow Ladder is pow Ladder is pow Ladder is pow	ne Power Contro): /ered down and /ered in Low-Po /ered in Medium /ered in High-Po	ol bits unconnected wer mode n-Power mode ower mode		
bit 3	Unimplement	ted: Read as '0	,				
bit 2-0	LRLAT<2:0>: Sets the numb	LCD Reference oer of 32 kHz clo	e Ladder A Tim ocks that the A	e Interval Conti Time Interval Po	rol bits ower mode is ac	tive	
	For type A way	veforms (WFT =	= 0):				
	000 = Internal 001 = Internal 010 = Internal 011 = Internal 100 = Internal 101 = Internal 110 = Internal	LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference	e Ladder is alw e Ladder is in ' e Ladder is in '	vays in 'B' Powe A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode	er mode for 1 clock and for 2 clocks and for 3 clocks and for 4 clocks and for 5 clocks and for 6 clocks and for 7 clocks and	'B' Power mod d 'B' Power mod	e for 15 clocks e for 14 clocks e for 13 clocks e for 12 clocks e for 11 clocks e for 10 clocks de for 9 clocks
	For type B way	veforms (WFT =	= 1):				
	000 = Internal 001 = Internal 010 = Internal 011 = Internal 100 = Internal 101 = Internal 110 = Internal	LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference LCD Reference	e Ladder is alw e Ladder is in ' e Ladder is in '	vays in 'B' Powe A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode A' Power mode	r mode. for 1 clock and for 2 clocks and for 3 clocks and for 4 clocks and for 5 clocks and for 6 clocks and for 7 clocks and	'B' Power mod d 'B' Power mod	e for 31 clocks e for 30 clocks e for 29 clocks e for 28 clocks e for 27 clocks e for 26 clocks e for 25 clocks

REGISTER 18-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS

20.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 20-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

20.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 20-1: OPCODE FIELD DESCRIPTIONS

Field	Description							
f	Register file address (0x00 to 0x7F)							
W	Working register (accumulator)							
b	Bit address within an 8-bit file register							
k	Literal field, constant data or label							
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.							
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.							
n	FSR or INDF number. (0-1)							
mm	Pre-post increment-decrement mode selection							

TABLE 20-2: ABBREVIATION DESCRIPTIONS

Field	Description					
PC	Program Counter					
TO	Time-out bit					
С	Carry bit					
DC	Digit carry bit					
Z	Zero bit					
PD	Power-down bit					

PIC16LF1902				Standard Operating Conditions (unless otherwise stated)					
Param.	Dovice Characteristics	Min	Тур†	Max. +85°C	Max.	Unito	Conditions		
No.	Device Characteristics	WIIII.			+125°C	Units	Vdd	Note	
	Power-down Base Current (IPD) ⁽²⁾							
D023			0.15	1.0	3.0	μA	1.8	WDT, BOR, FVR and T1OSC	
		_	0.16	2.0	4.0	μA	3.0	disabled, all Peripherals Inactive	
			0.65	3.0	5.0	μA	3.6		
D024			0.27	2.0	4.0	μA	1.8	WDT Current (Note 1)	
		l	0.56	3.0	5.0	μA	3.0		
			0.75	4.0	6.0	μA	3.6		
D025			17.5	31	35	μA	1.8	FVR current	
			17.7	33	38	μA	3.0		
		_	17.8	35	41	μA	3.6		
D026		_	0.15	2.3	3.56	μA	3.0	LPBOR current	
		_	0.21	3.4	4.70	μA	3.6		
D027		_	7.0	10	12	μA	3.0	BOR Current	
		_	7.5	12	14	μA	3.6		
D028		_	0.50	2.0	4.0	μA	1.8	T1OSC Current	
		_	0.60	3.0	5.0	μA	3.0		
		_	0.70	4.0	6.0	μA	3.6		
D029		_	0.40	2.0	4.0	μA	1.8	ADC Current (Note 1, Note 3),	
		_	0.70	3.0	5.0	μA	3.0	no conversion in progress	
		_	0.90	4.0	6.0	μA	3.6		
D030			—	250	_	μA	1.8	ADC Current (Note 1, Note 3),	
			_	250	_	μA	3.0	conversion in progress	
			_	250	_	μA	3.6		
D031	LCD Bias Ladder		•	•	•				
	Low power	_	1	2	6	μA	1.8		
	Medium Power	_	10	13	21	μA	3.0	1	
	High Power	_	100	111	120	μA	3.6	1	
L	+ Data in "Typ" column is at 3	01/ 250		othonwing	otatad Tha	oo norom	otoro oro	for decign guidenee only and are	

TABLE 21-3: POWER-DOWN CURRENTS (IPD)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Legend: TBD = To Be Determined

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory High Voltage Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP/RE3 pin	8.0	_	9.0	V	(Note 2)
D111	IDDVPP	Programming/Erase Current on VPP, High Voltage Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	—	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	—	VDD max.	V	
D114	IPPPGM	Programming/Erase Current on VPP, Low Voltage Programming	_	—	1.0	mA	
D115	IDDPGM	Programming/Erase Current on VDD, High or Low Voltage Programming	—		5.0	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	1K	10K	_	E/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	Vdd min.	—	VDD max.	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated

TABLE 21-5: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 21-6: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θЈΑ	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package			
			80	°C/W	28-pin SOIC package			
			90	°C/W	28-pin SSOP package			
			27.5	°C/W	28-pin UQFN 4x4mm package			
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package			
			24	°C/W	28-pin SOIC package			
			24	°C/W	28-pin SSOP package			
			24	°C/W	28-pin UQFN 4x4mm package			
TH03	Тјмах	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	—	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pı/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	Pder	Derated Power	_	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾			

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

TABLE 21-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	External Clock (ECL)			
			DC	—	4	MHz	External Clock (ECM)			
			DC	—	20	MHz	External Clock (ECH)			
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	×	ns	External Clock (EC)			
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 21-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽²⁾	±8% ±6.5%		16 16	—	MHz MHz	$0^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0V at +25°C	
OS10A*	TIOSC ST	HFINTOSC 16 MHz Oscillator Wake-up from Sleep Start-up Time	_		5 5	15 15	μs μs	VDD = 2.0V, -40°C to +85°C VDD = 3.0V, -40°C to +85°C	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.