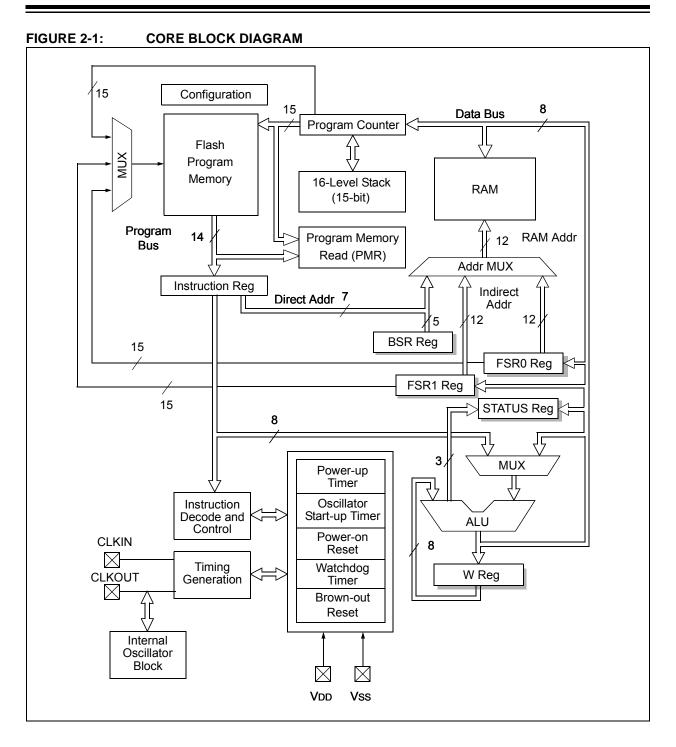


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1903t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- · Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾
PIC16LF1902	2,048	07FFh	0780h-07FFh
PIC16LF1903	4,096	0FFFh	0F80h-0FFFh

Note 1: High-endurance Flash applies to low byte of each address in the range.

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16LF1902/3 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1, and 3-2).

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1	
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOR	BORV ⁽³⁾	STVREN	_	
		bit 13		·			bit 8	
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	
<u> </u>				<u> </u>		WRT<		
bit 7						, with	bit	
Legend:								
R = Reada		P = Program		-	nented bit, read			
'0' = Bit is	cleared	'1' = Bit is set		-n = Value wh	en blank or aft	er Bulk Erase		
bit 13		Itage Program	ning Enable bit	.(1)				
bit 10		ige programmir						
	0 = High-volta	age on MCLR r	nust be used fo	or programming	9			
bit 12		Circuit Debugge						
	1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins							
bit 11		0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger LPBOR: Low-Power BOR bit						
		er BOR is disal						
		er BOR is enat						
bit 10	BORV: Brown	n-out Reset Vol	Itage Selection	bit ⁽³⁾				
			e (VBOR), low tr					
1.1.0		-	e (VBOR) high tr		ed			
bit 9			nderflow Reset flow will cause					
			flow will not ca					
bit 8-2		ted: Read as '						
bit 1-0	-		Self-Write Prote	ection bits				
		nemory (PIC16						
		ite protection o					hal	
						by PMCON cont by PMCON cont		
						by PMCON con		
	<u>4 kW Flash m</u>	nemory (PIC16	LF1903 only):					
		ite protection o						
						by PMCON con by PMCON con		
						by PMCON con		
Note 1:	The LVP bit cann	ot be programr	ned to '0' wher	n Programming	mode is enter	ed via LVP.		
	The DEBUG bit in						ols including	
	debuggers and p							
	00 1	rogrammers. r					a ⊥.	

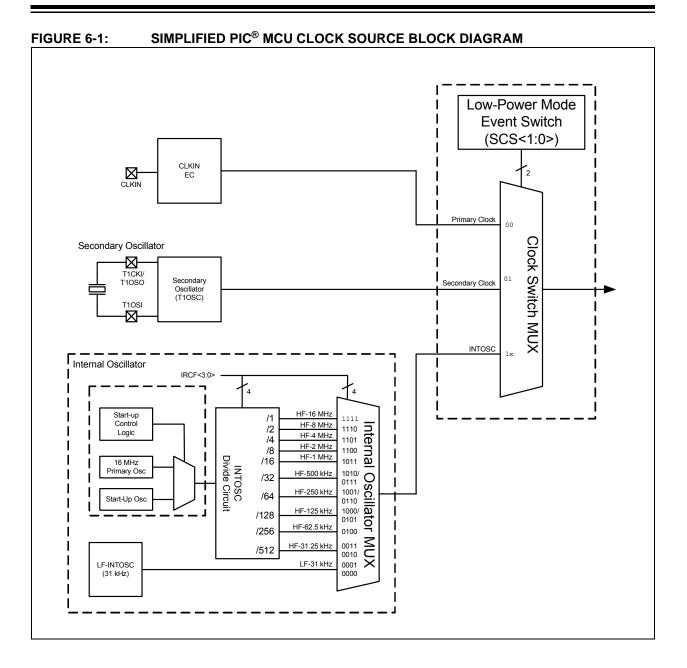
REGISTER 4-2: CONFIGURATION WORD 2

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection is controlled independently. Internal access to the program memory is unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.


4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 10.4 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification" (DS41397).

6.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. An example is: oscillator module (EC mode) circuit.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate the internal system clock sources: the 16 MHz High-Frequency Internal Oscillator and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 6.3 "Clock Switching"** for additional information.

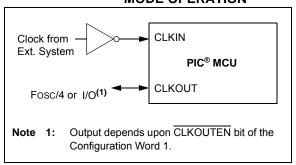
6.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Secondary oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 6.3 "Clock Switching" for more information.

6.2.1.1 EC Mode


The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input. CLKOUT is available for general purpose I/O or CLKOUT. Figure 6-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Word 1:

- High power, 4-20 MHz (FOSC = 11)
- Medium power, 0.5-4 MHz (FOSC = 10)
- Low power, 0-0.5 MHz (FOSC = 01)

There is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 6-2: EXTERNAL CLOCK (EC) MODE OPERATION

6.4 Oscillator Control Registers

'1' = Bit is set

REGISTER 6-1: OSCCON: OSCILLATOR CONTROL REGISTER

'0' = Bit is cleared

U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
—		IRCF	<3:0>		_	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is uncha	nged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

bit 7	Unimplemented: Read as '0'
bit 6-3	IRCF<3:0>: Internal Oscillator Frequency Select bits
	000x = 31 kHz LF
	001x = 31.25 kHz
	0100 = 62.5 kHz
	0101 = 125 kHz
	0110 = 250 kHz
	0111 = 500 kHz (default upon Reset)
	$1000 = 125 \text{kHz}^{(1)}$
	$1001 = 250 \text{ kHz}^{(1)}$
	1010 = 500 kHz ⁽¹⁾
	1011 = 1 MHz
	1100 = 2 MHz
	1101 = 4 MHz
	1110 = 8 MHz
	1111 = 16 MHz
bit 2	Unimplemented: Read as '0'
bit 1-0	SCS<1:0>: System Clock Select bits
	1x = Internal oscillator block
	01 = Secondary oscillator
	00 = Clock determined by FOSC<1:0> in Configuration Word 1.
	, , , , , , , , , , , , , , , , , , , ,

Note 1: Duplicate frequency derived from HFINTOSC.

R-1/q	U-0	R-q/q	R-0/q	U-0	U-0	R-0/0	R-0/g
T1OSCR	_	OSTS	HFIOFR	_	_	LFIOFR	HFIOFS
bit 7		0010				Linorit	bit C
							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	al		
bit 7	T1OSCR: Tin	ner1 Oscillator	Ready bit				
	If T1OSCEN						
	1 = Timer1 oscillator is ready						
	0 = Timer1 oscillator is not ready						
	If T1OSCEN = 0: 1 = Timer1 clock source is always ready						
bit 6		ted: Read as '					
bit 5	-	ator Start-up Ti		hit			
bit 0		•					
	 1 = Running from the external clock source (EC) 0 = Running from an internal oscillator (FOSC<1:0> = 00) 						
bit 4	HFIOFR: High	n-Frequency Ir	ternal Oscillat	or Ready bit			
	1 = HFINTOS	SC is ready					
	0 = HFINTOSC is not ready						
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	LFIOFR: Low-Frequency Internal Oscillator Ready bit						
	1 = LFINTOSC is ready						
		SC is not ready					
bit 0	•	n-Frequency In					
				and is driving			
	0 = HFINTOS	SC 16 MHz os	cillator is not st	able, the Start-	up Oscillator is	driving IN FOS	C

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON			IRCF	<3:0>		_	SCS	<1:0>	53
OSCSTAT	T1OSCR	_	OSTS	HFIOFR	_	_	LFIOFR	HFIOFS	54
T1CON	TMR10	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	130

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3:SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

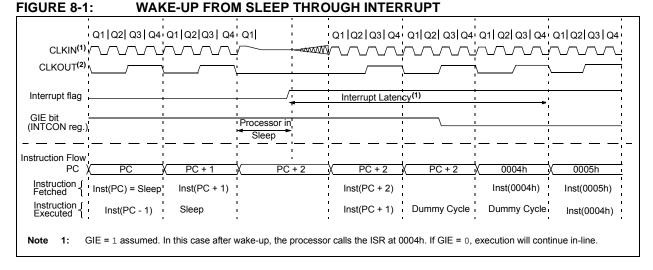
Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	_	CLKOUTEN	BOREI	N<1:0>	—	24
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	<1:0>	_	FOSC	<1:0>	34

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		121
PIE1	TMR1GIE	ADIE	_	_	_	_	_	TMR1IE	61
PIE2	_	_	_	_	_	LCDIE	_	—	62
PIR1	TMR1GIF	ADIF	_	_	_	_	_	TMR1IF	63
PIR2		_	_	_		LCDIF		_	64

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.


8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	101
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	101
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	101
PIE1	TMR1GIE	ADIE	_	—	_	—	_	TMR1IE	61
PIE2	—	_	_	—	_	LCDIE	_	—	62
PIR1	TMR1GIF	ADIF	_	—	_	—	_	TMR1IF	63
PIR2	—	_	_	—	_	LCDIF	_	—	64
STATUS	_	_	_	TO	PD	Z	DC	С	16
WDTCON	_			١	NDTPS<4:0>	>		SWDTEN	70

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

9.6 Watchdog Control Register

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

	Resets
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other 1' = Bit is set '0' = Bit is cleared -m/n = Value at POR and BOR/Value at all other Dit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other Dit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other Dit 5-1 WDTPS WDTPS -m/n = Value at POR and BOR/Value at all other Dit 5-1 WDTPS	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other 1' = Bit is set '0' = Bit is cleared -m/n = Value at POR and BOR/Value at all other bit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other bit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other bit 5-1 WDTPS WDTPS Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00010 = 1:266 (Interval 2 ms nominal) 00010 = 1:28 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00101 = 1:204 (Interval 32 ms nominal) 0010 = 1:2048 (Interval 16 ms nominal) 00110 = 1:2048 (Interval 32 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 0110 = 1:2048 (Interval 512 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 0101 = 1:16384 (Interval 151 ms nominal) 0101 = 1:65536 (Interval 2s nominal) 0101 = 1:65536 (Interval 4s nominal) 0101 = 1:132768 (Interval 2s nominal) 0101 = 1:131072 (2 ¹⁷) (Interval 4s nominal) 0101 = 1:131072 (2 ¹⁷)	Resets
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other 1' = Bit is set '0' = Bit is cleared -m/n = Value at POR and BOR/Value at all other bit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other bit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other bit 5-1 WDTPS WDTPS Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00010 = 1:266 (Interval 2 ms nominal) 00010 = 1:28 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00101 = 1:204 (Interval 32 ms nominal) 0010 = 1:2048 (Interval 16 ms nominal) 00110 = 1:2048 (Interval 32 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 0110 = 1:2048 (Interval 512 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 0101 = 1:16384 (Interval 151 ms nominal) 0101 = 1:65536 (Interval 2s nominal) 0101 = 1:65536 (Interval 4s nominal) 0101 = 1:132768 (Interval 2s nominal) 0101 = 1:131072 (2 ¹⁷) (Interval 4s nominal) 0101 = 1:131072 (2 ¹⁷)	Resets
u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other 1' = Bit is set '0' = Bit is cleared -m/n = Value at POR and BOR/Value at all other 0't 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other obit 7-6 Unimplemented: Read as '0' -m/n = Value at POR and BOR/Value at all other obit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00010 = 1:428 (Interval 2 ms nominal) 00011 = 1:256 (Interval 4 ms nominal) 00010 = 1:512 (Interval 4 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 0011 = 1:4096 (Interval 128 ms nominal) 00101 = 1:2048 (Interval 51 ms nominal) 01010 = 1:2048 (Interval 51 ms nominal) 0101 = 1:16384 (Interval 51 ms nominal) 0101 = 1:16384 (Interval 51 ms nominal) 0101 = 1:65536 (Interval 1s nominal) 0101 = 1:65536 (Interval 2s nominal) 0101 = 1:131072 (2 ¹⁷) (Interval 4s nominal) 0100 = 1:131072 (2 ¹⁷) 0111 = 1:4096 (Interval 4s nominal) 0100 = 1:131072 (2 ¹⁷)	Resets
1' = Bit is set'0' = Bit is clearedbit 7-6Unimplemented: Read as '0'bit 5-1WDTPS<4:0>: Watchdog Timer Period Select bits(1)Bit Value = Prescale Rate $00000 = 1:32$ (Interval 1 ms nominal) $0001 = 1:64$ (Interval 2 ms nominal) $00010 = 1:128$ (Interval 4 ms nominal) $00010 = 1:256$ (Interval 8 ms nominal) $00100 = 1:512$ (Interval 16 ms nominal) $00101 = 1:1024$ (Interval 32 ms nominal) $00110 = 1:2048$ (Interval 64 ms nominal) $00111 = 1:4096$ (Interval 128 ms nominal) $00101 = 1:16384$ (Interval 512 ms nominal) $01001 = 1:16384$ (Interval 512 ms nominal) $01010 = 1:32768$ (Interval 1s nominal) $01011 = 1:65536$ (Interval 2s nominal) $01011 = 1:65536$ (Interval 2s nominal) $01011 = 1:65536$ (Interval 2s nominal) $01010 = 1:327768$ (Interval 2s nominal) $01010 = 1:31072$ (2 ¹⁷) (Interval 4s nominal)	Resets
bit 7-6 Unimplemented: Read as '0' bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 0001 = 1:64 (Interval 2 ms nominal) 00100 = 1:128 (Interval 4 ms nominal) 0011 = 1:256 (Interval 8 ms nominal) 00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1224 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 00111 = 1:4096 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) $01011 = 1:131072$ (2^{17}) (Interval 4s nominal)	
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00011 = 1:64 (Interval 2 ms nominal) 00010 = 1:128 (Interval 4 ms nominal) 00101 = 1:256 (Interval 4 ms nominal) 00100 = 1:512 (Interval 6 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01010 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01011 = 1:65536 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) $01011 = 1:131072$ (2^{17}) (Interval 4s nominal)	
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits ⁽¹⁾ Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00011 = 1:64 (Interval 2 ms nominal) 00010 = 1:128 (Interval 4 ms nominal) 00101 = 1:256 (Interval 4 ms nominal) 00100 = 1:512 (Interval 6 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01010 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01011 = 1:65536 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) $01011 = 1:131072$ (2^{17}) (Interval 4s nominal)	
Bit Value = Prescale Rate 00000 = 1:32 (Interval 1 ms nominal) 00011 = 1:64 (Interval 2 ms nominal) 00010 = 1:128 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 16 ms nominal) 00101 = 1:2048 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01001 = 1:16384 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) 01011 = 1:65536 (Interval 2s nominal) $01010 = 1:131072$ (2^{17}) (Interval 4s nominal)	
00000 = 1:32 (Interval 1 ms nominal) 00001 = 1:64 (Interval 2 ms nominal) 00010 = 1:128 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (217) (Interval 4s nominal)	
00001 = 1:64 (Interval 2 ms nominal) 00010 = 1:128 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01011 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) $01100 = 1:131072 (2^{17}) (Interval 4s nominal)$	
00010 = 1:128 (Interval 4 ms nominal) 00011 = 1:256 (Interval 8 ms nominal) 00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01010 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) $01011 = 1:131072$ (2^{17}) (Interval 4s nominal)	
00011 = 1:256 (Interval 8 ms nominal) 0100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) 01011 = 1:65536 (Interval 2s nominal) $01000 = 1:131072$ (2^{17}) (Interval 4s nominal)	
00100 = 1:512 (Interval 16 ms nominal) 00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) $01011 = 1:131072$ (2^{17}) (Interval 4s nominal)	
00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) 01001 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
00110 = 1:2048 (Interval 64 ms nominal) 00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
00111 = 1:4096 (Interval 128 ms nominal) 01000 = 1:8192 (Interval 256 ms nominal) 01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
01001 = 1:16384 (Interval 512 ms nominal) 01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
01010 = 1:32768 (Interval 1s nominal) 01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
01011 = 1:65536 (Interval 2s nominal) (Reset value) 01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
01100 = 1:131072 (2 ¹⁷) (Interval 4s nominal)	
$01100 = 1.131072 (2) (Interval 48 nominal) 01101 = 1.262144 (2^{18}) (Interval 88 nominal)$	
01110 = 1:524288 (2 ¹⁹) (Interval 16s nominal)	
01111 = 1:1048576 (2 ²⁰) (Interval 32s nominal)	
10000 = 1:2097152 (2 ²¹) (Interval 64s nominal) 10001 = 1:4194304 (2 ²²) (Interval 128s nominal)	
$10001 = 1:4194304 (2^{22}) (Interval 128s nominal)$	
10010 = 1:8388608 (2 ²³) (Interval 256s nominal)	
10011 = Reserved. Results in minimum interval (1:32)	
•	
•	
11111 = Reserved. Results in minimum interval (1:32)	
bit 0 SWDTEN: Software Enable/Disable for Watchdog Timer bit	
$\frac{\text{If WDTE<1:0> = 00:}}{\text{If wDTE<1:0> = 00:}}$	
This bit is ignored.	
<u>If WDTE<1:0> = 01</u> :	
1 = WDT is turned on	
0 = WDT is turned off	
<u>If WDTE<1:0> = 1x</u> : This bit is ignored.	

17.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

17.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins T1OSI (input) and T1OSO. This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OS-CEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note:	The oscillator requires a start-up and sta-
	bilization time before use. Thus, T1OS-
	CEN should be set and a suitable delay
	observed prior to enabling Timer1.

17.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 17.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

- **Note:** When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.
- 17.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

17.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

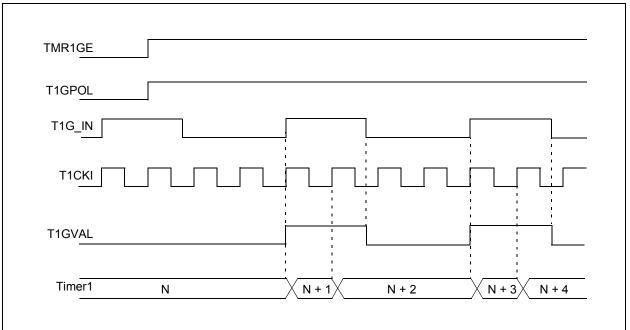
17.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

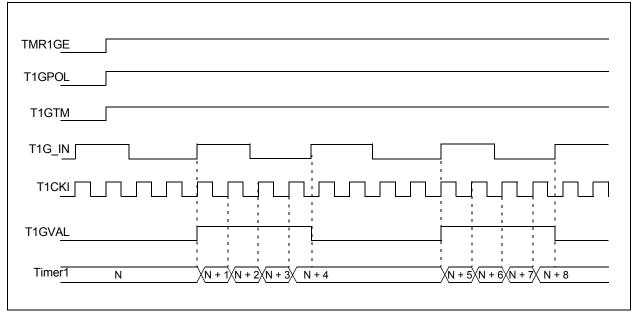
When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 17-3 for timing details.

TABLE 17-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts


17.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

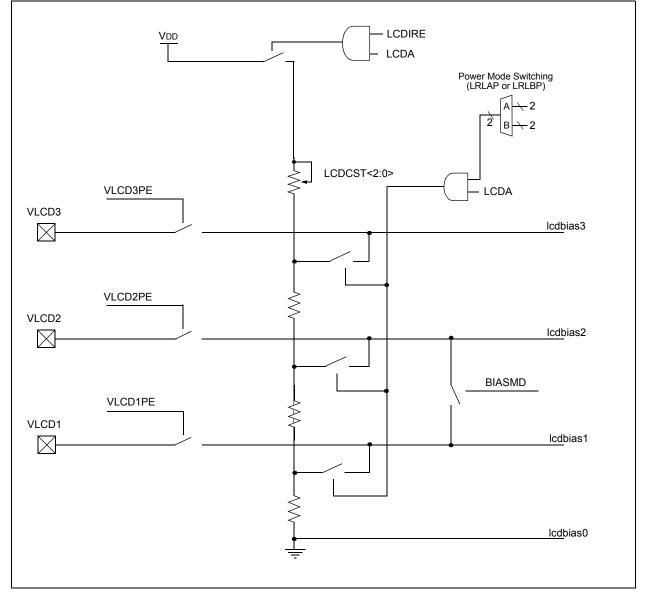

TABLE 17-4: TIMER1 GATE SOURCES

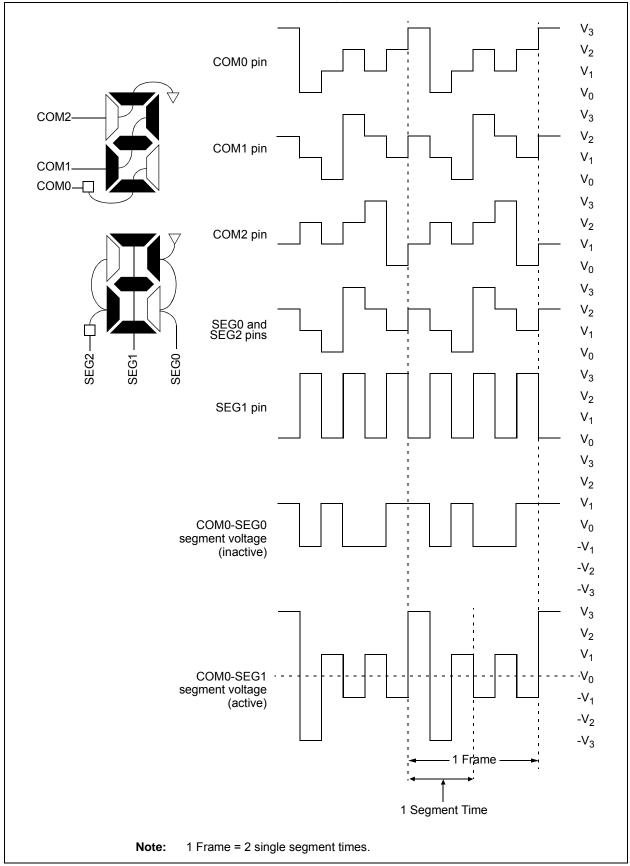
T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)

FIGURE 17-4: TIMER1 GATE TOGGLE MODE

18.3 LCD Bias Voltage Generation

The LCD module can be configured for one of three bias types:


- Static Bias (2 voltage levels: Vss and VLCD)
- 1/2 Bias (3 voltage levels: Vss, 1/2 VLcD and VLcD)
- 1/3 Bias (4 voltage levels: Vss, 1/3 VLCD, 2/3 VLCD and VLCD)


TABLE 18-2: LCD BIAS VOLTAGES

	Static Bias	1/2 Bias	1/3 Bias
LCD Bias 0	Vss	Vss	Vss
LCD Bias 1	_	1/2 Vdd	1/3 Vdd
LCD Bias 2	_	1/2 Vdd	2/3 Vdd
LCD Bias 3	VLCD3	VLCD3	VLCD3

So that the user is not forced to place external components and use up to three pins for bias voltage generation, internal contrast control and an internal reference ladder are provided internally to the PIC16LF1902/3. Both of these features may be used in conjunction with the external VLCD<3:1> pins, to provide maximum flexibility. Refer to Figure 18-3.

FIGURE 18-3: LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM

19.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more ICSP™ information on refer to the "PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification" (DS41397).

19.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

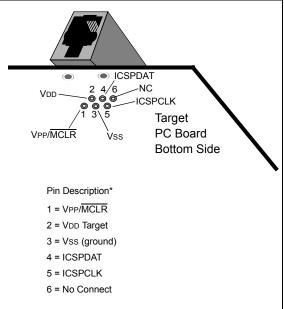
19.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See **Section 5.3 "Low-Power Brown-out Reset (LPBOR)"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

19.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6 connector) configuration. See Figure 19-1.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$(PC)+ 1 \rightarrow TOS,$ $k \rightarrow PC<10:0>,$ $(PCLATH<6:3>) \rightarrow PC<14:11>$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COM
Syntax:	[label] CALLW	Syntax
Operands:	None	Opera
Operation:	(PC) +1 → TOS, (W) → PC<7:0>, (PCLATH<6:0>) → PC<14:8>	Opera Status
Status Affected:	None	Descri
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.	

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow$ (destination)
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ \text{1} \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch						
Syntax:	[<i>label</i>] GOTO k						
Operands:	$0 \leq k \leq 2047$						
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<6:3> \rightarrow PC<14:11>						
Status Affected:	None						
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.						

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

TABLE 21-12: PIC16LF1902/3 CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

VDD = $3.0V$, TA = $25^{\circ}C$							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—	_	10	bit	
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	VREF = 3.0V
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V
AD06	VREF	Reference Voltage	1.8	_	Vdd	V	VREF = (VRPOS - VRNEG)
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source	—		10	kΩ	Can go higher if external $0.01\mu F$ capacitor is present on input pin.

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

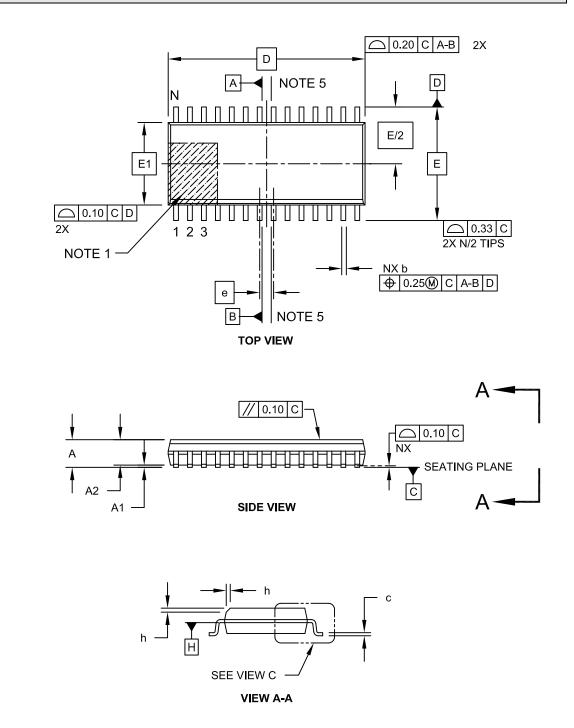
Note 1:Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 22.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

TABLE 21-13: PIC16LF1902/3 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	6.0	μS	Fosc-based
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2.0	6.0	μS	ADCS<2:0> = x11 (ADC FRC mode)
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	-	11	—	Tad	Set GO/DONE bit to conversion complete
AD132*	TACQ	Acquisition Time		5.0		μS	
AD133*	Тнср	Holding Capacitor Disconnect Time		1/2 TAD 1/2 TAD + 1TCY			Fosc-based ADCS<2:0> = x11 (ADC FRC mode)


These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2