### NXP USA Inc. - <u>KMSC8126TVT6400 Datasheet</u>





Welcome to E-XFL.COM

#### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

#### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Details

| Product Status          | Obsolete                                                                |
|-------------------------|-------------------------------------------------------------------------|
| Туре                    | SC140 Core                                                              |
| Interface               | DSI, Ethernet, RS-232                                                   |
| Clock Rate              | 400MHz                                                                  |
| Non-Volatile Memory     | External                                                                |
| On-Chip RAM             | 1.436MB                                                                 |
| Voltage - I/O           | 3.30V                                                                   |
| Voltage - Core          | 1.20V                                                                   |
| Operating Temperature   | -40°C ~ 105°C (TJ)                                                      |
| Mounting Type           | Surface Mount                                                           |
| Package / Case          | 431-BFBGA, FCBGA                                                        |
| Supplier Device Package | 431-FCPBGA (20x20)                                                      |
| Purchase URL            | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmsc8126tvt6400 |
|                         |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Feature                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SC140 Core                                 | <ul> <li>Four SC140 cores:</li> <li>Up to 8000 MMACS using 16 ALUs running at up to 500 MHz.</li> <li>A total of 1436 KB of internal SRAM (224 KB per core + 16 KB ICache per core + the shared M2 memory).</li> <li>Each SC140 core provides the following:</li> <li>Up to 2000 MMACS using an internal 500 MHz clock. A MAC operation includes a multiply-accumulate command with the associated data move and pointer update.</li> <li>4 ALUs per SC140 core.</li> <li>16 data registers, 40 bits each.</li> <li>27 address registers, 32 bits each.</li> <li>Hardware support for fractional and integer data types.</li> <li>Very rich 16-bit wide orthogonal instruction set.</li> <li>Up to six instructions executed in a single clock cycle.</li> <li>Variable-length execution set (VLES) that can be optimized for code density and performance.</li> <li>JTAG port complies with IEEE® Std 1149.1<sup>TM</sup>.</li> <li>Enhanced on-device emulation (EOnCE) with real-time debugging capabilities.</li> </ul> |
| Extended Core                              | <ul> <li>Each SC140 core is embedded within an extended core that provides the following:</li> <li>224 KB M1 memory that is accessed by the SC140 core with zero wait states.</li> <li>Support for atomic accesses to the M1 memory.</li> <li>16 KB instruction cache, 16 ways.</li> <li>A four-entry write buffer that frees the SC140 core from waiting for a write access to finish.</li> <li>External cache support by asserting the global signal (GBL) when predefined memory banks are accessed.</li> <li>Programmable interrupt controller (PIC).</li> <li>Local interrupt controller (LIC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             |
| Multi-Core Shared<br>Memories              | <ul> <li>M2 memory (shared memory):<br/>—A 476 KB memory working at the core frequency.<br/>—Accessible from the local bus.<br/>—Accessible from all four SC140 cores using the MQBus.</li> <li>4 KB bootstrap ROM.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M2-Accessible<br>Multi-Core Bus<br>(MQBus) | <ul> <li>A QBus protocol multi-master bus connecting the four SC140 cores and the VCOP to the M2 memory.</li> <li>Data bus access of up to 128-bit read and up to 64-bit write.</li> <li>Operation at the SC140 core frequency.</li> <li>A central efficient round-robin arbiter controlling SC140 core access on the MQBus.</li> <li>Atomic operation control of access to M2 memory by the four SC140 cores and the local bus.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Table 1. Extended SC140 Cores and Core Memories

### Table 2. Phase-Lock Loop (PLL)

| Feature      | Description                                                                                                                                                                                                                            |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal PLL | <ul> <li>Generates up to 500 MHz core clock and up to 166 MHz bus clocks for the 60x-compatible local and system buses and other modules.</li> <li>PLL values are determined at reset based on configuration signal values.</li> </ul> |

| Feature    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSC8126ADS | <ul> <li>Host debug through single JTAG connector supports both processors.</li> <li>MSC8103 as the MSC8126 host with both devices on the board. The MSC8103 system bus connects to the MSC8126 DSI.</li> <li>Flash memory for stand-alone applications.</li> <li>Communications ports: <ul> <li>—10/100Base-T.</li> <li>—155 Mbit ATM over Optical.</li> <li>—T1/E1 TDM interface.</li> <li>—H.110.</li> <li>—Voice codec.</li> <li>—RS-232.</li> <li>—High-density (MICTOR) logic analyzer connectors to monitor MSC8126 signals</li> <li>—6U CompactPCI form factor.</li> </ul> </li> <li>Emulates MSC8126 DSP farm by connecting to three other ADS boards.</li> </ul> |

#### Table 10. Application Development System (ADS) Board

## **Product Documentation**

The documents listed in **Table 11** are required for a complete description of the MSC8126 and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale Semiconductor sales office, or a Freescale Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back of this document.

| Name                                         | Description                                                                                                              | Order Number                  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MSC8126 Technical<br>Data                    | MSC8126 features list and physical, electrical, timing, and package specifications.                                      | MSC8126                       |
| MSC8126 User's Guide                         | User information includes system functionality, getting started, and programming topics.                                 | Availability TBD              |
| MSC8126 Reference<br>Manual                  | Detailed functional description of the MSC8126 memory and peripheral configuration, operation, and register programming. | MSC8126RM                     |
| StarCore™ SC140 DSP<br>Core Reference Manual | Detailed description of the SC140 family processor core and instruction set.                                             | MNSC140CORE                   |
| Application Notes                            | Documents describing specific applications or optimized device operation including code examples.                        | See the website product page. |

| Table 11. MSC8126 | Documentation |
|-------------------|---------------|
|-------------------|---------------|

### Direct Slave Interface, System Bus, Ethernet, and Interrupt Signals

| Table 1-5. | DSI, System Bus, Ethernet, and Interrupt Signals (Continued) |
|------------|--------------------------------------------------------------|
|------------|--------------------------------------------------------------|

| Signal Name | Туре          | Description                                                                                                                                                                |
|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HD55        | Input/ Output | Host Data Bus 55<br>Bit 55 of the DSI data bus.                                                                                                                            |
| D55         | Input/ Output | System Bus Data 55<br>For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives<br>valid data on this bus.            |
| ETHTX_ER    | Output        | Ethernet Transmit Data Error<br>In MII mode only, indicates a transmit data error.                                                                                         |
| Reserved    | Input         | In RMII mode, this signal is reserved and can be left unconnected.                                                                                                         |
| HD56        | Input/ Output | Host Data Bus 56<br>Bit 56 of the DSI data bus.                                                                                                                            |
| D56         | Input/ Output | System Bus Data 56<br>For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives<br>valid data on this bus.            |
| ETHRX_DV    | Input         | Ethernet Receive Data Valid<br>Indicates that the receive data is valid.                                                                                                   |
| ETHCRS_DV   | Input         | Ethernet Carrier Sense/Receive Data Valid<br>In RMII mode, indicates that a carrier is detected and after the connection is established that the receive<br>data is valid. |
| HD57        | Input/ Output | Host Data Bus 57<br>Bit 57 of the DSI data bus.                                                                                                                            |
| D57         | Input/ Output | System Bus Data 57<br>For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives<br>valid data on this bus.            |
| ETHRX_ER    | Input         | Ethernet Receive Data Error<br>In MII and RMII modes, indicates a receive data error.                                                                                      |
| HD58        | Input/ Output | Host Data Bus 58<br>Bit 58 of the DSI data bus.                                                                                                                            |
| D58         | Input/ Output | System Bus Data 58<br>For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives<br>valid data on this bus.            |
| ETHMDC      | Output        | Ethernet Management Clock<br>In MII and RMII modes, used for the MDIO reference clock.                                                                                     |
| HD59        | Input/ Output | Host Data Bus 59<br>Bit 59 of the DSI data bus.                                                                                                                            |
| D59         | Input/ Output | System Bus Data 59<br>For write transactions, the bus master drives valid data on this line. For read transactions, the slave drives<br>valid data on this bus.            |
| ETHMDIO     | Input/ Output | Ethernet Management Data<br>In MII and RMII modes, used for station management data input/output.                                                                          |

| Signal Name | Туре          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BG          | Input/ Output | <b>Bus Grant</b> <sup>2</sup><br>When the MSC8126 acts as an internal arbiter, it asserts this signal as an output to grant bus ownership to an external bus master. When an external arbiter is used, it asserts this signal as an input to grant bus ownership to the MSC8126.                                                                                                                                                                |
| DBG         | Input/ Output | <b>Data Bus Grant</b> <sup>2</sup><br>When the MSC8126 acts as an internal arbiter, it asserts this signal as an output to grant data bus ownership to an external bus master. When an external arbiter is used, it asserts this signal as an input to grant data bus ownership to the MSC8126.                                                                                                                                                 |
| ABB         | Input/ Output | Address Bus Busy <sup>1</sup><br>The MSC8126 asserts this signal as an output for the duration of the address bus tenure. Following an $\overline{AACK}$ , which terminates the address bus tenure, the MSC8126 deasserts $\overline{ABB}$ for a fraction of a bus cycle and then stops driving this signal. The MSC8126 does not assume bus ownership as long as it senses this signal is asserted as an input by an external bus master.      |
| IRQ4        | Input         | Interrupt Request 4<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                                                                                                                                                                                                                         |
| DBB         | Input/ Output | <b>Data Bus Busy</b> <sup>1</sup><br>The MSC8126 asserts this signal as an output for the duration of the data bus tenure. Following a $\overline{TA}$ , which terminates the data bus tenure, the MSC8126 deasserts $\overline{DBB}$ for a fraction of a bus cycle and then stops driving this signal. The MSC8126 does not assume data bus ownership as long as it senses that this signal is asserted as an input by an external bus master. |
| IRQ5        | Input         | Interrupt Request 5<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                                                                                                                                                                                                                         |
| TS          | Input/ Output | Bus Transfer Start<br>This signal indicates the beginning of a new address bus tenure. The MSC8126 asserts this signal when<br>one of its internal bus masters begins an address tenure. When the MSC8126 senses that this signal is<br>asserted by an external bus master, it responds to the address bus tenure as required (snoop if enabled,<br>access internal MSC8126 resources, memory controller support).                              |
| AACK        | Input/ Output | Address Acknowledge<br>A bus slave asserts this signal to indicate that it has identified the address tenure. This signal terminates<br>the address tenure.                                                                                                                                                                                                                                                                                     |
| ARTRY       | Input/ Output | Address Retry<br>This signal indicates whether the bus master should retry the bus transaction. An external master asserts<br>this signal to enforce data coherency with its caches and to prevent deadlock situations.                                                                                                                                                                                                                         |
| D[0–31]     | Input/ Output | Data Bus Bits 0–31<br>In write transactions, the bus master drives the valid data on this bus. In read transactions, the slave<br>drives the valid data on this bus.                                                                                                                                                                                                                                                                            |
| Reserved    | Input         | The primary configuration selection (default after reset) is reserved.                                                                                                                                                                                                                                                                                                                                                                          |
| DP0         | Input/ Output | <b>System Bus Data Parity 0</b><br>The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 0 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 0 and D[0–7].                                                                                                                                                                             |
| DREQ1       | Input         | DMA Request 1<br>Used by an external peripheral to request DMA service.                                                                                                                                                                                                                                                                                                                                                                         |
| EXT_BR2     | Input         | <b>External Bus Request 2</b><br>An external master asserts this signal to request bus ownership from the internal arbiter.                                                                                                                                                                                                                                                                                                                     |

| Table 1-5. | DSI, Sys | tem Bus, Et | hernet, and | Interrupt Signals | (Continued) |
|------------|----------|-------------|-------------|-------------------|-------------|
|------------|----------|-------------|-------------|-------------------|-------------|

| Table 1-6. | Memory | Controller Signals | (Continued) |
|------------|--------|--------------------|-------------|
|            | wemory | Controller Signals | Commueu     |

| Signal Name | Туре   | Description                                                                                                                                                                                                                                          |
|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSDA10      | Output | System Bus SDRAM A10<br>From the bus SDRAM controller. The precharge command defines which bank is precharged. When the<br>row address is driven, it is a part of the row address. When column address is driven, it is a part of column<br>address. |
| PGPL0       | Output | System Bus UPM General-Purpose Line 0<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |
| PSDWE       | Output | System Bus SDRAM Write Enable<br>From the bus SDRAM controller. Should connect to SDRAM WE input.                                                                                                                                                    |
| PGPL1       | Output | System Bus UPM General-Purpose Line 1<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |
| POE         | Output | System Bus Output Enable<br>From the bus GPCM. Controls the output buffer of memory devices during read operations.                                                                                                                                  |
| PSDRAS      | Output | System Bus SDRAM RAS<br>From the bus SDRAM controller. Should connect to SDRAM RAS input.                                                                                                                                                            |
| PGPL2       | Output | System Bus UPM General-Purpose Line 2<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |
| PSDCAS      | Output | System Bus SDRAM CAS<br>From the bus SDRAM controller. Should connect to SDRAM CAS input.                                                                                                                                                            |
| PGPL3       | Output | System Bus UPM General-Purpose Line 3<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |
| PGTA        | Input  | System GPCM TA<br>Terminates external transactions during GPCM operation. Requires an external pull-up resistor for proper<br>operation.                                                                                                             |
| PUPMWAIT    | Input  | System Bus UPM Wait<br>An external device holds this signal low to force the UPM to wait until the device is ready to continue the<br>operation.                                                                                                     |
| PGPL4       | Output | System Bus UPM General-Purpose Line 4<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |
| PPBS        | Output | System Bus Parity Byte Select<br>In systems that store data parity in a separate chip, this output is used as the byte-select for that chip.                                                                                                         |
| PSDAMUX     | Output | System Bus SDRAM Address Multiplexer<br>Controls the system bus SDRAM address multiplexer when the MSC8126 is in external master mode.                                                                                                               |
| PGPL5       | Output | System Bus UPM General-Purpose Line 5<br>One of six general-purpose output lines from the UPM. The values and timing of this signal are<br>programmed in the UPM.                                                                                    |

|  | Table 1-7. | GPIO, TDM, | UART, | Ethernet, | and Timer | Signals | (Continued |
|--|------------|------------|-------|-----------|-----------|---------|------------|
|--|------------|------------|-------|-----------|-----------|---------|------------|

| Signal Name | Туре          | Description                                                                                                                                                                                                                                           |
|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPIO3       | Input/ Output | <b>General-Purpose Input Output 3</b><br>One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.<br>For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.                  |
| TDM3TSYN    | Input/ Output | <b>TDM3 Transmit Frame Sync</b><br>Transmit frame sync for TDM 3.                                                                                                                                                                                     |
| IRQ1        | Input         | Interrupt Request 1<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                               |
| ETHTXD2     | Output        | Ethernet Transmit Data 2<br>For MII mode only, bit 2 of the Ethernet transmit data.                                                                                                                                                                   |
| GPIO4       | Input/ Output | <b>General-Purpose Input Output 4</b><br>One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.<br>For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.                  |
| TDM3TCLK    | Input         | TDM3 Transmit Clock<br>Transmit Clock for TDM 3                                                                                                                                                                                                       |
| IRQ2        | Input         | Interrupt Request 2<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                               |
| ETHTX_ER    | Output        | Ethernet Transmit Data Error<br>For MII mode only, indicates whether a transmit data error occurred.                                                                                                                                                  |
| GPIO5       | Input/ Output | <b>General-Purpose Input/Output 5</b><br>One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.<br>For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.                  |
| TDM3TDAT    | Input/ Output | <b>TDM3 Serial Transmitter Data</b><br>The serial transmit data signal for TDM 3. As an output, it provides the DATA_D signal for TDM 3. For<br>configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation. |
| IRQ3        | Input         | Interrupt Request 3<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                               |
| ETHRXD3     | Input         | Ethernet Receive Data 3<br>For MII mode only, bit 3 of the Ethernet receive data.                                                                                                                                                                     |
| GPIO6       | Input/ Output | <b>General-Purpose Input Output 6</b><br>One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs.<br>For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.                  |
| TDM3RSYN    | Input/ Output | <b>TDM3 Receive Frame Sync</b><br>The receive sync signal for TDM 3. As an input, this can be the DATA_B data signal for TDM 3.For<br>configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation.           |
| IRQ4        | Input         | Interrupt Request 4<br>One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the<br>SC140 core.                                                                                               |
| ETHRXD2     | Input         | Ethernet Receive Data 2<br>For MII mode only, bit 2 of the Ethernet receive data.                                                                                                                                                                     |

| Characteristic                                                            | Symbol                               | Min  | Typical                              | Max   | Unit     |
|---------------------------------------------------------------------------|--------------------------------------|------|--------------------------------------|-------|----------|
| Input high voltage <sup>1</sup> , all inputs except CLKIN                 | V <sub>IH</sub>                      | 2.0  |                                      | 3.465 | V        |
| Input low voltage <sup>1</sup>                                            | V <sub>IL</sub>                      | GND  | 0                                    | 0.4   | V        |
| CLKIN input high voltage                                                  | V <sub>IHC</sub>                     | 2.4  | 3.0                                  | 3.465 | V        |
| CLKIN input low voltage                                                   | V <sub>ILC</sub>                     | GND  | 0                                    | 0.4   | V        |
| Input leakage current, V <sub>IN</sub> = V <sub>DDH</sub>                 | I <sub>IN</sub>                      | -1.0 | 0.09                                 | 1     | μA       |
| Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$  | I <sub>OZ</sub>                      | -1.0 | 0.09                                 | 1     | μA       |
| Signal low input current, $V_{IL} = 0.4 V^2$                              | ΙL                                   | -1.0 | 0.09                                 | 1     | μA       |
| Signal high input current, $V_{IH} = 2.0 V^2$                             | Ι <sub>Η</sub>                       | -1.0 | 0.09                                 | 1     | μA       |
| Output high voltage, I <sub>OH</sub> = -2 mA,<br>except open drain pins   | V <sub>OH</sub>                      | 2.0  | 3.0                                  | —     | V        |
| Output low voltage, I <sub>OL</sub> = 3.2 mA                              | V <sub>OL</sub>                      | _    | 0                                    | 0.4   | V        |
| Internal supply current: <ul> <li>Wait mode</li> <li>Stop mode</li> </ul> | I <sub>DDW</sub><br>I <sub>DDS</sub> |      | 375 <sup>3</sup><br>290 <sup>3</sup> |       | mA<br>mA |
| Typical power at 400 MHz <sup>4</sup>                                     | Р                                    | _    | 1.15                                 | —     | W        |
| Notes: 1. See Figure 2-1 for undershoot and overshoot volt                | ages                                 |      |                                      |       |          |

Table 2-4. **DC Electrical Characteristics** 

See Figure 2-1 for undershoot and overshoot voltages. 1.

2. Not tested. Guaranteed by design.

Measured for 1.2 V core at 25°C junction temperature. 3.

The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No 4. peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and all four cores. It was created using CodeWarrior<sup>®</sup> 2.5. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of this document and in MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601).



# 2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50  $\Omega$  transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

# 2.5.5 System Bus Access Timing

## 2.5.5.1 Core Data Transfers

Generally, all MSC8126 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as **Table 2-12** shows.

| PCI K/SC140 alaak   | Tick Spacing (T1 Occurs at the Rising Edge of REFCLK) |            |             |  |  |  |
|---------------------|-------------------------------------------------------|------------|-------------|--|--|--|
| BCLN/SC140 Clock    | T2                                                    | Т3         | T4          |  |  |  |
| 1:4, 1:6, 1:8, 1:10 | 1/4 REFCLK                                            | 1/2 REFCLK | 3/4 REFCLK  |  |  |  |
| 1:3                 | 1/6 REFCLK                                            | 1/2 REFCLK | 4/6 REFCLK  |  |  |  |
| 1:5                 | 2/10 REFCLK                                           | 1/2 REFCLK | 7/10 REFCLK |  |  |  |

| Table 2-12. Tick Spacing for Memory Controller Signals |
|--------------------------------------------------------|
|--------------------------------------------------------|

| Figuro 2 5 | ic o | araphical | roprosontation | of Toble | 2 12  |
|------------|------|-----------|----------------|----------|-------|
| rigule 2-3 | 15 a | graphical | representation | of table | 2-12. |



Figure 2-5. Internal Tick Spacing for Memory Controller Signals

## 2.5.5.2 CLKIN to CLKOUT Skew

Table 2-15 describes the CLKOUT-to-CLKIN skew timing.

Table 2-15.CLKOUT Skew

| No.    | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                           | Min <sup>1</sup> | Max <sup>1</sup> | Units |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------|--|--|
| 20     | Rise-to-rise skew                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                | 0.85             | ns    |  |  |
| 21     | Fall-to-fall skew                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.8             | 1.0              | ns    |  |  |
| 22     | CLKOUT phase high and low (1.2 V, 133 MHz) 2.8 —                                                                                                                                                                                                                                                                                                                                                                                         |                  |                  |       |  |  |
| Notes: | <ol> <li>A positive number indicates that CLKOUT precedes CLKIN, A negative number indicates that CLKOUT follows CLKIN.</li> <li>Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. The same skew is valid for all clock modes.</li> <li>CLKOUT skews are measured using a load of 10 pF.</li> <li>CLKOUT skews and phase are not measured for 500/166 Mhz parts because these parts only use CLKIN mode.</li> </ol> |                  |                  |       |  |  |

For designs that use the CLKOUT synchronization mode, use the skew values listed in **Table 2-15** to adjust the riseto-fall timing values specified for CLKIN synchronization. **Figure 2-7** shows the relationship between the CLKOUT and CLKIN timings. CLKOUT synchronization mode is not supported above 400 MHz core operation.



Figure 2-7. CLKOUT and CLKIN Signals.

### 2.5.5.3 DMA Data Transfers

**Table 2-16** describes the DMA signal timing.

| Na    | Characteristic                                                                 | Ref = CLKIN |     | Ref = C | Unito                                                                                                                              |       |
|-------|--------------------------------------------------------------------------------|-------------|-----|---------|------------------------------------------------------------------------------------------------------------------------------------|-------|
| NO.   | Characteristic                                                                 | Min         | Max | Min     | LKOUT         Un           Max         n           —         n           —         n           —         r           8.4         r | Units |
| 37    | DREQ set-up time before the 50% level of the falling edge of REFCLK            | 5.0         |     | 5.0     |                                                                                                                                    | ns    |
| 38    | DREQ hold time after the 50% level of the falling edge of REFCLK               | 0.5         |     | 0.5     |                                                                                                                                    | ns    |
| 39    | DONE set-up time before the 50% level of the rising edge of REFCLK             | 5.0         |     | 5.0     |                                                                                                                                    | ns    |
| 40    | DONE hold time after the 50% level of the rising edge of REFCLK                | 0.5         |     | 0.5     |                                                                                                                                    | ns    |
| 41    | DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge            | 0.5         | 7.5 | 0.5     | 8.4                                                                                                                                | ns    |
| Note: | CLKOUT synchronization mode is not supported in cores operating above 400 MHz. |             |     |         |                                                                                                                                    |       |

Table 2-16. DMA Signals

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 2-16**. Figure 2-8 shows synchronous peripheral interaction.



Figure 2-8. DMA Signals

# 2.5.6.2 DSI Synchronous Mode

| No.    | Characteristic                                                                                                                  | Expression             | Min  | Max  | Units |
|--------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|-------|
| 120    | HCLKIN Cycle Time <sup>1, 2</sup>                                                                                               | HTC                    | 10.0 | 55.6 | ns    |
| 121    | HCLKIN high Pulse Width                                                                                                         | $(0.5\pm0.1)	imes$ HTC | 4.0  | 33.3 | ns    |
| 122    | HCLKIN low Pulse Width                                                                                                          | $(0.5\pm0.1)	imes$ HTC | 4.0  | 33.3 | ns    |
| 123    | HA[11–29] inputs set-up time                                                                                                    | —                      | 1.2  | —    | ns    |
| 124    | HD[0-63] inputs set-up time                                                                                                     | -                      | 0.4  | —    | ns    |
| 125    | HCID[0-4] inputs set-up time                                                                                                    |                        | 1.3  | _    | ns    |
| 126    | All other inputs set-up time                                                                                                    | _                      | 1.2  | —    | ns    |
| 127    | All inputs hold time                                                                                                            | -                      | 1.5  | —    | ns    |
| Notes: | <ol> <li>Values are based on a frequency range of 18–100 MH</li> <li>Refer to Table 2-6 for HCLKIN frequency limits.</li> </ol> | Ζ.                     |      |      |       |

| Table 2-18. | DSI Inputs- | -Synchronous | Mode |
|-------------|-------------|--------------|------|
|-------------|-------------|--------------|------|

| Table 2-19. | DSI Outputs—Synchronous Mode |
|-------------|------------------------------|
|-------------|------------------------------|

| No. | Characteristic                                | Min | Max | Units |
|-----|-----------------------------------------------|-----|-----|-------|
| 128 | HCLKIN high to HD[0–63] output active         | 2.0 | —   | ns    |
| 129 | HCLKIN high to HD[0–63] output valid          |     | 6.3 | ns    |
| 130 | HD[0–63] output hold time                     | 1.7 | —   | ns    |
| 131 | HCLKIN high to HD[0–63] output high impedance | —   | 7.6 | ns    |
| 132 | HCLKIN high to HTA output active              | 2.0 | —   | ns    |
| 133 | HCLKIN high to HTA output valid               | _   | 5.9 | ns    |
| 134 | HTA output hold time                          | 1.7 | —   | ns    |
| 135 | HCLKIN high to HTA high impedance             | _   | 6.3 | ns    |



Figure 2-12. DSI Synchronous Mode Signals Timing Diagram

# 2.5.10 Ethernet Timing

## 2.5.10.1 Management Interface Timing

| No. | Characteristics                           | Min | Max | Unit |
|-----|-------------------------------------------|-----|-----|------|
| 801 | ETHMDIO to ETHMDC rising edge set-up time | 10  |     | ns   |
| 802 | ETHMDC rising edge to ETHMDIO hold time   | 10  |     | ns   |





Figure 2-18. MDIO Timing Relationship to MDC

### 2.5.10.2 MII Mode Timing

| Table 2-24. | MII Mode Signal Timing |
|-------------|------------------------|
|-------------|------------------------|

| No. | Characteristics                                                      | Min | Max  | Unit |
|-----|----------------------------------------------------------------------|-----|------|------|
| 803 | ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time | 3.5 | —    | ns   |
| 804 | ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time   | 3.5 | _    | ns   |
| 805 | ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay            | 1   | 12.6 | ns   |



Figure 2-19. MII Mode Signal Timing

#### Packaging



Figure 3-1. MSC8126 Package, Top View

| Signal Name | Location<br>Designator | Signal Name | Location<br>Designator |
|-------------|------------------------|-------------|------------------------|
| A0          | AA20                   | BADDR27     | J8                     |
| A1          | AB21                   | BADDR28     | L7                     |
| A2          | AA21                   | BADDR29     | L8                     |
| A3          | AA22                   | BADDR30     | K8                     |
| A4          | Y21                    | BADDR31     | G10                    |
| A5          | Y22                    | BCTLO       | G18                    |
| A6          | W22                    | BCTL1       | J18                    |
| Α7          | W21                    | BG          | N16                    |
| A8          | V19                    | BNKSEL0     | G11                    |
| A9          | V20                    | BNKSEL1     | H10                    |
| A10         | V21                    | BNKSEL2     | J11                    |
| A11         | V22                    | BM0         | G11                    |
| A12         | U21                    | BM1         | H10                    |
| A13         | U22                    | BM2         | J11                    |
| A14         | T22                    | BR          | P16                    |
| A15         | T21                    | CHIP_ID0    | B19                    |
| A16         | R22                    | CHIP_ID1    | C18                    |
| A17         | R20                    | CHIP_ID2    | C17                    |
| A18         | R21                    | CHIP_ID3    | D17                    |
| A19         | P22                    | CLKIN       | J10                    |
| A20         | N22                    | CLKOUT      | K14                    |
| A21         | M22                    | CNFGS       | W3                     |
| A22         | L22                    | CS0         | N18                    |
| A23         | N21                    | CS1         | G17                    |
| A24         | M21                    | CS2         | K18                    |
| A25         | L21                    | CS3         | L18                    |
| A26         | K20                    | CS4         | H17                    |
| A27         | L20                    | CS5         | K16                    |
| A28         | K22                    | CS5         | J18                    |
| A29         | K21                    | CS6         | J16                    |
| A30         | J22                    | CS7         | H16                    |
| A31         | H22                    | D0          | V5                     |
| AACK        | H12                    | D1          | V6                     |
| ABB         | G12                    | D2          | U5                     |
| ALE         | K17                    | D3          | U6                     |
| ARTRY       | H11                    | D4          | V7                     |

 Table 3-1.
 MSC8126 Signal Listing By Name

| Signal Name | Location<br>Designator | Signal Name | Location<br>Designator |
|-------------|------------------------|-------------|------------------------|
| D5          | V8                     | D41         | AB18                   |
| D6          | U7                     | D42         | AA17                   |
| D7          | V9                     | D43         | Y14                    |
| D8          | U8                     | D44         | AB17                   |
| D9          | U9                     | D45         | AB16                   |
| D10         | V10                    | D46         | AA15                   |
| D11         | U10                    | D47         | AB15                   |
| D12         | V11                    | D48         | AB14                   |
| D13         | V12                    | D49         | AB13                   |
| D14         | U11                    | D50         | AB12                   |
| D15         | U12                    | D51         | Y11                    |
| D16         | T12                    | D52         | AA11                   |
| D17         | U13                    | D53         | AB11                   |
| D18         | V13                    | D54         | AA10                   |
| D19         | U14                    | D55         | AB10                   |
| D20         | V14                    | D56         | AB9                    |
| D21         | T14                    | D57         | AB8                    |
| D22         | U15                    | D58         | Y8                     |
| D23         | T15                    | D59         | AA7                    |
| D24         | V16                    | D60         | Y7                     |
| D25         | U16                    | D61         | AB7                    |
| D26         | U17                    | D62         | AB6                    |
| D27         | V17                    | D63         | AA6                    |
| D28         | U18                    | DACK1       | G21                    |
| D29         | V18                    | DACK1       | T18                    |
| D30         | T19                    | DACK2       | F22                    |
| D31         | U19                    | DACK2       | R19                    |
| D32         | W18                    | DACK3       | T17                    |
| D33         | W16                    | DACK4       | T16                    |
| D34         | Y19                    | DBB         | H13                    |
| D35         | AA19                   | DBG         | J12                    |
| D36         | AB20                   | DONE1       | F19                    |
| D37         | Y18                    | DONE2       | G22                    |
| D38         | AA18                   | DP0         | P19                    |
| D39         | AB19                   | DP1         | T18                    |
| D40         | W14                    | DP2         | R19                    |

Table 3-1. MSC8126 Signal Listing By Name (Continued)

| Table 3-1. | MSC8126 | Signal | Listing By | y Name | (Continued) |
|------------|---------|--------|------------|--------|-------------|
|------------|---------|--------|------------|--------|-------------|

| Signal Name | Location<br>Designator | Signal Name | Location<br>Designator |
|-------------|------------------------|-------------|------------------------|
| GPIO3       | C20                    | HA14        | L3                     |
| GPIO4       | D19                    | HA15        | K2                     |
| GPIO5       | C21                    | HA16        | K4                     |
| GPIO6       | C22                    | HA17        | G6                     |
| GPIO7       | C19                    | HA18        | J2                     |
| GPIO8       | D22                    | HA19        | H5                     |
| GPIO9       | E19                    | HA20        | H2                     |
| GPIO10      | E21                    | HA21        | КЗ                     |
| GPIO11      | F20                    | HA22        | F6                     |
| GPIO12      | E22                    | HA23        | G5                     |
| GPIO13      | E20                    | HA24        | G2                     |
| GPIO14      | F21                    | HA25        | G4                     |
| GPIO15      | G19                    | HA26        | J3                     |
| GPIO16      | F19                    | HA27        | G3                     |
| GPIO17      | G21                    | HA28        | H3                     |
| GPIO18      | F18                    | HA29        | F5                     |
| GPIO19      | F22                    | HBCS        | N9                     |
| GPIO20      | F17                    | HBRST       | M16                    |
| GPIO21      | H19                    | HCID0       | E7                     |
| GPIO22      | G22                    | HCID1       | C7                     |
| GPIO23      | J19                    | HCID2       | D7                     |
| GPIO24      | H18                    | HCID3       | D8                     |
| GPIO25      | J21                    | HCLKIN      | P9                     |
| GPIO26      | N20                    | HCS         | N17                    |
| GPIO27      | E6                     | HD0         | T5                     |
| GPIO28      | C6                     | HD1         | T4                     |
| GPIO29      | D17                    | HD2         | U4                     |
| GPIO30      | C16                    | HD3         | V2                     |
| GPIO31      | D16                    | HD4         | W4                     |
| HA7         | R14                    | HD5         | W3                     |
| HA8         | D8                     | HD6         | W2                     |
| НА9         | W11                    | HD7         | Y2                     |
| HA10        | W10                    | HD8         | AB5                    |
| HA11        | L4                     | HD9         | Y5                     |
| HA12        | L2                     | HD10        | AA5                    |
| HA13        | J5                     | HD11        | AB4                    |

| Table 3-1. | MSC8126 | Signal | Listing By | /Name ( | (Continued) |
|------------|---------|--------|------------|---------|-------------|
|------------|---------|--------|------------|---------|-------------|

| Signal Name        | Location<br>Designator | Signal Name      | Location<br>Designator |
|--------------------|------------------------|------------------|------------------------|
| TIMER1             | C17                    | V <sub>DD</sub>  | E11                    |
| TIMER2             | C16                    | V <sub>DD</sub>  | E13                    |
| TIMER3             | D16                    | V <sub>DD</sub>  | E16                    |
| TMCLK              | C16                    | V <sub>DD</sub>  | F8                     |
| TMS                | E4                     | V <sub>DD</sub>  | F9                     |
| TRST               | E3                     | V <sub>DD</sub>  | F10                    |
| TS                 | R18                    | V <sub>DD</sub>  | F12                    |
| TSZ0               | Т8                     | V <sub>DD</sub>  | F14                    |
| TSZ1               | R8                     | V <sub>DD</sub>  | G8                     |
| TSZ2               | Т9                     | V <sub>DD</sub>  | G9                     |
| TSZ3               | R9                     | V <sub>DD</sub>  | G13                    |
| ТТО                | R14                    | V <sub>DD</sub>  | G16                    |
| TT1                | T13                    | V <sub>DD</sub>  | H4                     |
| TT2                | K16                    | V <sub>DD</sub>  | H9                     |
| TT3                | J16                    | V <sub>DD</sub>  | H15                    |
| TT4                | H16                    | V <sub>DD</sub>  | H20                    |
| URXD               | E6                     | V <sub>DD</sub>  | J4                     |
| UTXD               | C6                     | V <sub>DD</sub>  | J9                     |
| V <sub>CCSYN</sub> | P12                    | V <sub>DD</sub>  | J13                    |
| V <sub>DD</sub>    | B8                     | V <sub>DD</sub>  | J15                    |
| V <sub>DD</sub>    | B10                    | V <sub>DD</sub>  | K15                    |
| V <sub>DD</sub>    | B12                    | V <sub>DD</sub>  | M8                     |
| V <sub>DD</sub>    | B14                    | V <sub>DD</sub>  | R11                    |
| V <sub>DD</sub>    | B16                    | V <sub>DD</sub>  | R12                    |
| V <sub>DD</sub>    | B18                    | V <sub>DD</sub>  | R13                    |
| V <sub>DD</sub>    | B20                    | V <sub>DD</sub>  | T11                    |
| V <sub>DD</sub>    | B21                    | V <sub>DD</sub>  | Y6                     |
| V <sub>DD</sub>    | C3                     | V <sub>DD</sub>  | AA2                    |
| V <sub>DD</sub>    | C9                     | V <sub>DD</sub>  | B3                     |
| V <sub>DD</sub>    | C11                    | V <sub>DD</sub>  | AB22                   |
| V <sub>DD</sub>    | C13                    | V <sub>DDH</sub> | D6                     |
| V <sub>DD</sub>    | D10                    | V <sub>DDH</sub> | D18                    |
| V <sub>DD</sub>    | D12                    | V <sub>DDH</sub> | D20                    |
| V <sub>DD</sub>    | D14                    | V <sub>DDH</sub> | H21                    |
| V <sub>DD</sub>    | D15                    | V <sub>DDH</sub> | L5                     |
| V <sub>DD</sub>    | E9                     | V <sub>DDH</sub> | L6                     |

| Des. | Signal Name                 | Des. | Signal Name                        |
|------|-----------------------------|------|------------------------------------|
| B3   | V <sub>DD</sub>             | C18  | GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1 |
| B4   | GND                         | C19  | GPIO7/TDM3RCLK/IRQ5/ETHTXD3        |
| B5   | GND                         | C20  | GPIO3/TDM3TSYN/IRQ1/ETHTXD2        |
| B6   | NMI_OUT                     | C21  | GPIO5/TDM3TDAT/IRQ3/ETHRXD3        |
| B7   | GND                         | C22  | GPIO6/TDM3RSYN/IRQ4/ETHRXD2        |
| B8   | V <sub>DD</sub>             | D2   | TDI                                |
| B9   | GND                         | D3   | EE0                                |
| B10  | V <sub>DD</sub>             | D4   | EE1                                |
| B11  | GND                         | D5   | GND                                |
| B12  | V <sub>DD</sub>             | D6   | V <sub>DDH</sub>                   |
| B13  | GND                         | D7   | HCID2                              |
| B14  | V <sub>DD</sub>             | D8   | HCID3/HA8                          |
| B15  | GND                         | D9   | GND                                |
| B16  | V <sub>DD</sub>             | D10  | V <sub>DD</sub>                    |
| B17  | GND                         | D11  | GND                                |
| B18  | V <sub>DD</sub>             | D12  | V <sub>DD</sub>                    |
| B19  | GPIO0/CHIP_ID0/IRQ4/ETHTXD0 | D13  | GND                                |
| B20  | V <sub>DD</sub>             | D14  | V <sub>DD</sub>                    |
| B21  | V <sub>DD</sub>             | D15  | V <sub>DD</sub>                    |
| B22  | GND                         | D16  | GPIO31/TIMER3/SCL                  |
| C2   | GND                         | D17  | GPIO29/CHIP_ID3/ETHTX_EN           |
| C3   | V <sub>DD</sub>             | D18  | V <sub>DDH</sub>                   |
| C4   | TDO                         | D19  | GPIO4/TDM3TCLK/IRQ2/ETHTX_ER       |
| C5   | SRESET                      | D20  | V <sub>DDH</sub>                   |
| C6   | GPIO28/DREQ2/UTXD           | D21  | GND                                |
| C7   | HCID1                       | D22  | GPIO8/TDM3RDAT/IRQ6/ETHCOL         |
| C8   | GND                         | E2   | тск                                |
| C9   | V <sub>DD</sub>             | E3   | TRST                               |
| C10  | GND                         | E4   | TMS                                |
| C11  | V <sub>DD</sub>             | E5   | HRESET                             |
| C12  | GND                         | E6   | GPIO27/DREQ1/URXD                  |
| C13  | V <sub>DD</sub>             | E7   | HCID0                              |
| C14  | GND                         | E8   | GND                                |
| C15  | GND                         | E9   | V <sub>DD</sub>                    |
| C16  | GPIO30/TIMER2/TMCLK/SDA     | E10  | GND                                |
| C17  | GPIO2/TIMER1/CHIP_ID2/IRQ6  | E11  | V <sub>DD</sub>                    |

 Table 3-2.
 MSC8126 Signal Listing by Ball Designator

| Des. | Signal Name             | Des. | Signal Name                               |
|------|-------------------------|------|-------------------------------------------|
| M15  | V <sub>DDH</sub>        | P12  | V <sub>CCSYN</sub>                        |
| M16  | HBRST                   | P13  | GND                                       |
| M17  | V <sub>DDH</sub>        | P14  | GND                                       |
| M18  | V <sub>DDH</sub>        | P15  | TĀ                                        |
| M19  | GND                     | P16  | BR                                        |
| M20  | V <sub>DDH</sub>        | P17  | TEA                                       |
| M21  | A24                     | P18  | PSDVAL                                    |
| M22  | A21                     | P19  | DP0/DREQ1/EXT_BR2                         |
| N2   | HD26                    | P20  | V <sub>DDH</sub>                          |
| N3   | HD30                    | P21  | GND                                       |
| N4   | HD29                    | P22  | A19                                       |
| N5   | HD24                    | R2   | HD18                                      |
| N6   | PWE2/PSDDQM2/PBS2       | R3   | V <sub>DDH</sub>                          |
| N7   | V <sub>DDH</sub>        | R4   | GND                                       |
| N8   | HWBS0/HDBS0/HWBE0/HDBE0 | R5   | HD22                                      |
| N9   | HBCS                    | R6   | HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6 |
| N10  | GND                     | R7   | HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4 |
| N14  | GND                     | R8   | TSZ1                                      |
| N15  | HRDS/HRW/HRDE           | R9   | TSZ3                                      |
| N16  | BG                      | R10  | IRQ1/GBL                                  |
| N17  | HCS                     | R11  | V <sub>DD</sub>                           |
| N18  | CSO                     | R12  | V <sub>DD</sub>                           |
| N19  | PSDWE/PGPL1             | R13  | V <sub>DD</sub>                           |
| N20  | GPIO26/TDM0RDAT         | R14  | TT0/HA7                                   |
| N21  | A23                     | R15  | IRQ7/DP7/DREQ4                            |
| N22  | A20                     | R16  | IRQ6/DP6/DREQ3                            |
| P2   | HD20                    | R17  | IRQ3/DP3/DREQ2/EXT_BR3                    |
| P3   | HD27                    | R18  | TS                                        |
| P4   | HD25                    | R19  | IRQ2/DP2/DACK2/EXT_DBG2                   |
| P5   | HD23                    | R20  | A17                                       |
| P6   | HWBS3/HDBS3/HWBE3/HDBE3 | R21  | A18                                       |
| P7   | HWBS2/HDBS2/HWBE2/HDBE2 | R22  | A16                                       |
| P8   | HWBS1/HDBS1/HWBE1/HDBE1 | T2   | HD17                                      |
| P9   | HCLKIN                  | Т3   | HD21                                      |
| P10  | GND                     | T4   | HD1/DSISYNC                               |
| P11  | GND <sub>SYN</sub>      | T5   | HD0/SWTE                                  |

 Table 3-2.
 MSC8126 Signal Listing by Ball Designator (Continued)

# 4.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to  $V_{DDH}$  or GND, except for the following:

- If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be disconnected.
- When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down, depending on design requirements.
- HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the DCR[DSRFA] bit is set.
- When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1–3]/HDBS[1–3]/HWBE[1–3]/ HDBE[1–3] and HWBS[4–7]/HDBS[4–7]/HWBE[4–7]/HDBE[4–7]/PWE[4–7]/PSDDQM[4–7]/PBS[4–7].
- When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] must be pulled up.
- When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.
- In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC\_ACR[EARB] = 0):
  - BG, DBG, and TS can be left unconnected.
  - EXT\_BG[2–3], EXT\_DBG[2–3], and GBL can be left unconnected if they are multiplexed to the system bus functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.
  - BR must be pulled up.
  - EXT\_BR[2–3] must be pulled up if multiplexed to the system bus functionality.
- If there is an external bus master (BCR[EBM] = 1):
  - BR, BG, DBG, and TS must be pulled up.
  - EXT\_BR[2-3], EXT\_BG[2-3], and EXT\_DBG[2-3] must be pulled up if multiplexed to the system bus functionality.
- In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other modes, they must be pulled up.
- **Note:** The MSC8126 does not support DLL-enabled mode. For the following two clock schemes, ensure that the DLL is disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).
- If no system synchronization is required (for example, the design does not use SDRAM), you can use any of the available clock modes.
- In the CLKIN synchronization mode, use the following connections:
  - Connect the oscillator output through a buffer to CLKIN.
  - Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay
    path between the clock buffer to the MSC8126 and the SDRAM is equal (that is, has a skew less than 100
    ps).
  - Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.