E·XFL

NXP USA Inc. - KMSC8126VT8000 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	500MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmsc8126vt8000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.	Buses and	Memory	Controller
----------	-----------	--------	------------

Feature	Description		
60x-Compatible System Bus	 64/32-bit data and 32-bit address 60x bus. Support for multiple-master designs. Four-beat burst transfers (eight-beat in 32-bit wide mode). Port size of 64, 32, 16, and 8 controlled by the internal memory controller. Bus can access external memory expansion or off-device peripherals, or it can enable an external host device to access internal resources. Slave support, direct access by an external host to internal resources including the M1 and M2 memories. On-device arbitration between up to four master devices. 		
Direct Slave Interface (DSI)	 A 32/64-bit wide slave host interface that operates only as a slave device under the control of an external host processor. 21–25 bit address, 32/64-bit data. Direct access by an external host to internal and external resources, including the M1 and the M2 memories as well as external devices on the system bus. Synchronous and asynchronous accesses, with burst capability in the synchronous mode. Dual or single-strobe modes. Write and read buffers improve host bandwidth. Byte enable signals enables 1, 2, 4, and 8 byte write access granularity. Sliding window mode enables access with reduced number of address pins. Chip ID decoding enables using one CS signal for multiple DSPs. Broadcast CS signal enables parallel write to multiple DSPs. Big-endian, little-endian, and munged little-endian support. 		
3-Mode Signal Multiplexing	 64-bit DSI, 32-bit system bus. 32-bit DSI, 64-bit system bus. 32-bit DSI, 32-bit system bus. 		
Memory Controller	 Flexible eight-bank memory controller: Three user-programmable machines (UPMs), general-purpose chip-select machine (GPCM), and a page-mode SDRAM machine. Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash memory, and other user-definable peripherals. Byte enables for either 64-bit or 32-bit bus width mode. Eight external memory banks (banks 0–7). Two additional memory banks (banks 9, 11) control IPBus peripherals and internal memories. Each bank has the following features: —32-bit address decoding with programmable mask. —Variable block sizes (32 KB to 4 GB). —Selectable memory controller machine. —Two types of data errors check/correction: normal odd/even parity and read-modify-write (RMW) odd/even parity for single accesses. —Write-protection capability. —Control signal generation machine selection on a per-bank basis. —Support for internal or external masters on the system bus. —Data buffer controls activated on a per-bank basis. —RMW data parity check (on system bus only). —Extensive external memory-controller/bus-slave support. —Parity byte select pin, which enables a fast, glueless connection to RMW-parity devices (on the system bus only). —Data pipeline to reduce data set-up time for synchronous devices. 		

 Table 7.
 Coprocessors

Feature	Description		
VCOP	 Fully programmable feed-forward channel decoding, feed-forward channel equalization and traceback sessions. Up to 400 3GPP 12.2kbps AMR channels (channel decoding, number of channels linear to frequency). Up to 200 blind transport format detect (BTFD) channels according to the 3GPP standard. Number of channels linear to frequency. For channel decoding: Constraint length between K = 5 and K = 9. Puncture Codes. Rate 1/2, 1/3, 1/4 and 1/6. Four fully programmable polynomials (rate 1/6 is implemented by three polynomials only). History buffer with up to 768 stages for 3G standards. Input symbols are 8-bit (256 levels) signed soft symbols. Output is hard decision (1-bit). For GSM channel equalization: Fully programmable 4 to 6 estimated channel autocorrelation coefficients (S-Parameters). History buffer with up to 4090 stages for GSM. Matched filter input is 8-bit (256 levels). SOVA assist algorithm. Output 8-bit coded detta values for SOVA assist algorithm, 1-bit hard decision traceback and history buffer or recursive traceback. Fully programmable block length for all sessions. Programmable learning period length for the traceback session. Supports the start of feed-forward according to a presaved PM memory content. However the history buffer is not saved. Therefore the traceback is according to the current block only. Each SC140 can program the VCOP parameters while the VCOP is in IDLE mode and then the VCOP can run independently on the whole block of data. Dumping path metrics to the internal memory on up to 12 predefined stages; this is needed for BTFD applications. Interrupt lines and status bits notify the cores on session completion. 		
ТСОР	 Full support of 3GPP and CDMA2000 standards in Turbo decode. Up to 20 turbo-coding 384 kbps channels. 8 state PCCC with polynomial as supported by the 3G standards. Iterative decoding structure based on Maximum A-Posteriori probability (MAP), with calculations performed in the LOG domain. Encoding rate of 1/2, 1/3, 1/4, 1/5 with programmable puncturing for the parity symbols. Full flexibility interleave function via a look-up table. Flexible block size (1–32767 bits). MAX log MAP and log MAP (MAX*) approximation. Programmable number of iterations, with resolution of half iteration (one MAP). Fully automatic execution when the GO command executes. High data rates (for multi-channel systems or multiple channel accumulating to high data rates). Can stop processing after every MAP when soft lambda all reach a programmable quality threshold. Minimum and maximum number of iterations to execute in conjunction with the stop criteria. The SC140 core or host can stop the processing after every MAP during run time. Automatic, internal normalization for α, β overflow handling, with zero overhead. Automatic, internal Λ clipping for Λ overflow handling, with zero overhead. Additional least significant bit in α, β, γ arithmetic guarding against precision loss during the gamma calculation due to the division by 2. 		

Table 8.	Power and Packaging
----------	---------------------

Feature	Description		
Reduced Power Dissipation	 Low-power CMOS design. Separate power supply for internal logic (1.2 V for 400 MHz or 500 MHz) and I/O (3.3 V). Low-power standby modes. Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent). 		
Packaging	 0.8 mm pitch Flip-Chip Plastic Ball-Grid Array (FC-PBGA). 431-connection (ball). 20 mm × 20 mm. 		

Table 9. Software Support

Feature	Description		
Real-Time Operating System (RTOS)	 The real-time operating system (RTOS) fully supports device architecture (multi-core, memory hierarchy, ICache, timers, DMA controller, interrupts, peripherals), as follows: High-performance and deterministic, delivering predictive response time. Optimized to provide low interrupt latency with high data throughput. Preemptive and priority-based multitasking. Fully interrupt/event driven. Small memory footprint. Comprehensive set of APIs. 		
Multi-Core Support	 One instance of kernel code in all four SC140 cores. Dynamic and static memory allocation from local memory (M1) and shared memory (M2). 		
Distributed System Support	 Transparent inter-task communications between tasks running inside the SC140 cores and the other tasks running in on-board devices or remote network devices: Messaging mechanism between tasks using mailboxes and semaphores. Networking support; data transfer between tasks running inside and outside the device using networking protocols. Includes integrated device drivers for such peripherals as TDM, UART, and external buses. 		
Software Support	 Task debugging utilities integrated with compilers and vendors. Board support package (BSP) for the application development system (ADS). Integrated development environment (IDE): -C/C++ compiler with in-line assembly so developers can generate highly optimized DSP code. Translates C/C++ code into parallel fetch sets and maintains high code density. -Librarian. User can create libraries for modularity. -A collection of C/C++ functions for developer use. -Highly efficient linker to produce executables from object code. -Seamlessly integrated real-time, non-intrusive multi-mode debugger for debugging highly optimized DSP algorithms. The developer can choose to debug in source code, assembly code, or mixed mode. -Device simulation models enable design and simulation before hardware availability. -Profiler using a patented binary code instrumentation (BCI) technique helps developers identify program design inefficiencies. -Version control. Metrowerks® CodeWarrior® includes plug-ins for ClearCase, Visual SourceSafe, and CVS. 		
Boot Options	 External memory. External host. UART. TDM. I²C 		

Signals/Connections

Signal Name	Туре	Description	
IRQ1	Input	Interrupt Request 1 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP1	Input/ Output	System Bus Data Parity 1 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 1 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 1 and D[8–15].	
DACK1	Output	DMA Acknowledge 1 The DMA controller drives this output to acknowledge the DMA transaction on the bus.	
EXT_BG2	Output	External Bus Grant 2² The MSC8126 asserts this signal to grant bus ownership to an external bus master.	
IRQ2	Input	Interrupt Request 2 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP2	Input/ Output	System Bus Data Parity 2 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 2 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 2 and D[16–23].	
DACK2	Output	DMA Acknowledge 2 The DMA controller drives this output to acknowledge the DMA transaction on the bus.	
EXT_DBG2	Output	External Data Bus Grant 2 ² The MSC8126 asserts this signal to grant data bus ownership to an external bus master.	
IRQ3	Input	Interrupt Request 3 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP3	Input/ Output	System Bus Data Parity 3 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 3 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 3 and D[24–31].	
DREQ2	Input	DMA Request 2 Used by an external peripheral to request DMA service.	
EXT_BR3	Input	External Bus Request 3 ² An external master should assert this signal to request bus ownership from the internal arbiter.	
IRQ4	Input	Interrupt Request 4 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.	
DP4	Input/ Output	System Bus Data Parity 4 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 4 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 4 and D[32–39].	
DACK3	Output	DMA Acknowledge 3 The DMA controller drives this output to acknowledge the DMA transaction on the bus.	
EXT_DBG3	Output	External Data Bus Grant 3² The MSC8126 asserts this signal to grant data bus ownership to an external bus master.	

Table 1-5. DSI, System Bus, Ethernet, and Interrupt Signals (Continued)

Table 1-5.	DSI, System Bus,	Ethernet, and	I Interrupt Signals	(Continued)
------------	------------------	---------------	---------------------	-------------

Signal Name	Туре	Description		
IRQ5	Input	Interrupt Request 5 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from th SC140 core.		
DP5	Input/ Output	System Bus Data Parity 5 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 5 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 5 and D[40–47].		
DACK4	Output	DMA Acknowledge 4 The DMA controller drives this output to acknowledge the DMA transaction on the bus.		
EXT_BG3	Output	External Bus Grant 3² The MSC8126 asserts this signal to grant bus ownership to an external bus.		
ÎRQ6	Input	Interrupt Request 6 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.		
DP6	Input/ Output	System Bus Data Parity 6 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 6 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 6 and D[48–55].		
DREQ3	Input	DMA Request 3 Used by an external peripheral to request DMA service.		
IRQ7	Input	Interrupt Request 7 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.		
DP7	Input/ Output	System Bus Data Parity 7 The agent that drives the data bus also drives the data parity signals. The value driven on the data parity 7 signal should give odd parity (odd number of ones) on the group of signals that includes data parity 7 and D[56–63].		
DREQ4	Input	DMA Request 4 Used by an external peripheral to request DMA service.		
TA	Input/ Output			
TEA	Input/ Output			
NMI	Input	Non-Maskable Interrupt When an external device asserts this line, it generates an non-maskable interrupt in the MSC8126, which is processed internally (default) or is directed to an external host for processing (see NMI_OUT).		
NMI_OUT	Output	Non-Maskable Interrupt Output An open-drain signal driven from the MSC8126 internal interrupt controller. This output indicates whether a non-maskable interrupt is pending in the MSC8126 internal interrupt controller, waiting to be handled by an external host.		
PSDVAL	Input/ Output	Port Size Data Valid Indicates that a data beat is valid on the data bus. The difference between the TA signal and the PSDVAL signal is that the TA signal is asserted to indicate data transfer terminations, while the PSDVAL signal is asserted with each data beat movement. When TA is asserted, PSDVAL is always asserted. However, when PSDVAL is asserted, TA is not necessarily asserted. For example, if the DMA controller initiates a double word (2×64 bits) transaction to a memory device with a 32-bit port size, PSDVAL is asserted three times without TA and, finally, both signals are asserted to terminate the transfer.		

Signals/Connections

Signal Name	Туре	Description		
GPIO23	Input/ Output	General-Purpose Input Output 23 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
TDM0TDAT	Input/ Output	TDM0 Serial Transmitter Data The transmit data signal for TDM 0. As an output, this can be the DATA_D data signal for TDM 0. For configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation.		
IRQ13	Input	Interrupt Request 13 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.		
GPIO24	Input/ Output	General-Purpose Input Output 24 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
TDMORSYN	Input/ Output	TDM0 Receive Frame Sync The receive sync signal for TDM 0. As an input, this can be the DATA_B data signal for TDM 0. For configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation.		
IRQ14	Input	Interrupt Request 14 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.		
GPIO25	Input/ Output	General-Purpose Input Output 25 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
TDM0RCLK	Input/ Output	TDM0 Receive Clock The receive clock signal for TDM 0. As an input, this can be the DATA_C data signal for TDM 0. For configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation.		
IRQ15	Input	Interrupt Request 15 One of fifteen external lines that can request a service routine, via the internal interrupt controller, from the SC140 core.		
GPIO26	Input/ Output	General-Purpose Input Output 26 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
TDM0RDAT	Input/ Output	TDM0 Serial Receiver Data The receive data signal for TDM 0. As an input, this can be the DATA_A data signal for TDM 0. For configuration details, refer to the <i>MSC8126 Reference Manual</i> chapter describing TDM operation.		
GPIO27	Input/ Output	General-Purpose Input Output 27 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
DREQ1	Input	DMA Request 1 Used by an external peripheral to request DMA service.		
URXD	Input	UART Receive Data		
GPIO28	Input/ Output	General-Purpose Input Output 28 One of 32 GPIO signals used as GPIO or as one of two dedicated inputs or one of two dedicated outputs. For details, refer to the <i>MSC8126 Reference Manual</i> GPIO programming model.		
DREQ2	Input	DMA Request 2 Used by an external peripheral to request DMA service.		
UTXD	Output	UART Transmit Data		

Table 1-7. GPIO, TDM, UART, Ethernet, and Timer Signals (Continued)

Signal Name	Туре	Signal Description
ETHCRS	Input	Carrier Sense In MII mode, indicates that either the transmit or receive medium is non-idle.
ETHRXD	Input	Ethernet Receive Data In SMII mode, used for the Ethernet receive data.

1.8 EOnCE Event and JTAG Test Access Port Signals

The MSC8126 uses two sets of debugging signals for the two types of internal debugging modules: EOnCE and the JTAG TAP controller. Each internal SC140 core has an EOnce module, but they are all accessed externally by the same two signals EE0 and EE1. The MSC8126 supports the standard set of test access port (TAP) signals defined by IEEE Std 1149.1 Standard Test Access Port and Boundary-Scan Architecture specification and described in Table 1-9.

Signal Name	Туре	Signal Description
EE0	Input	EOnCE Event Bit 0 Puts the internal SC140 cores into Debug mode.
EE1	Output	EOnCE Event Bit 1 Indicates that at least one on-device SC140 core is in Debug mode.
ТСК	Input	Test Clock Synchronizes the JTAG test logic.
TDI	Input	Test Data Input A test data serial signal for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor.
TDO	Output	Test Data Output A test data serial signal for test instructions and data. TDO can be tri-stated. The signal is actively driven in the shift-IR and shift-DR controller states and changes on the falling edge of TCK.
TMS	Input	Test Mode Select Sequences the test controller state machine, is sampled on the rising edge of TCK, and has an internal pull-up resistor.
TRST	Input	Test Reset Asynchronously initializes the test controller; must be asserted during power up.

Table 1-9.	JTAG TAP Signals
------------	------------------

1.9 Reserved Signals

Table 1-10.	Reserved Signals
-------------	------------------

Signal Name	Туре	Signal Description
TEST	Input	Test For manufacturing testing. You <i>must</i> connect this signal to GND.

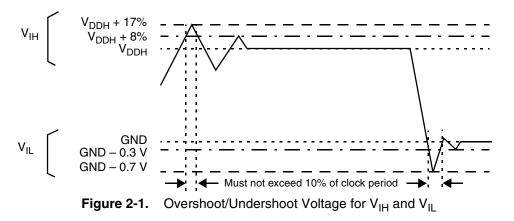

Characteristic	Symbol	Min	Typical	Max	Unit
Input high voltage ¹ , all inputs except CLKIN	V _{IH}	2.0	_	3.465	V
Input low voltage ¹	V _{IL}	GND	0	0.4	V
CLKIN input high voltage	V _{IHC}	2.4	3.0	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0	0.4	V
Input leakage current, V _{IN} = V _{DDH}	I _{IN}	-1.0	0.09	1	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDH}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, $V_{IL} = 0.4 V^2$	١ _L	-1.0	0.09	1	μA
Signal high input current, $V_{IH} = 2.0 V^2$	Ι _Η	-1.0	0.09	1	μA
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.0	3.0	—	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}		0	0.4	V
Internal supply current: Wait mode Stop mode 	I _{DDW} I _{DDS}		375 ³ 290 ³		mA mA
Typical power at 400 MHz ⁴	Р		1.15	_	W

Table 2-4. **DC Electrical Characteristics**

2. Not tested. Guaranteed by design.

Measured for 1.2 V core at 25°C junction temperature. 3.

The typical power values were measured using an EFR code with the device running at a junction temperature of 25°C. No 4. peripherals were enabled and the ICache was not enabled. The source code was optimized to use all the ALUs and AGUs and all four cores. It was created using CodeWarrior[®] 2.5. These values are provided as examples only. Power consumption is application dependent and varies widely. To assure proper board design with regard to thermal dissipation and maintaining proper operating temperatures, evaluate power consumption for your application and use the design guidelines in Chapter 4 of this document and in MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601).

2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

2.5.1 Output Buffer Impedances

Table 2-5.	Output Buffer Impedances
------------	--------------------------

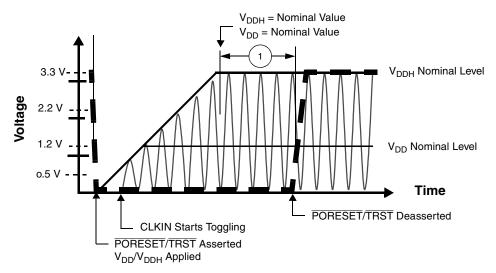
Output Buffers	Typical Impedance (Ω)	
System bus	50	
Memory controller	50	
Parallel I/O	50	
Note: These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.		

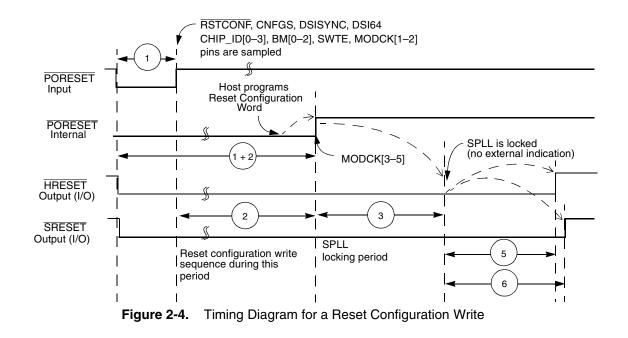
2.5.2 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.5.3** describes the clocking characteristics. **Section 2.5.4** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8126 device:

- **PORESET** and **TRST** must be asserted externally for the duration of the power-up sequence. See **Table 2-10** for timing.
- If possible, bring up the V_{DD} and V_{DDH} levels together. For designs with separate power supplies, bring up the V_{DD} levels and then the V_{DDH} levels (see **Figure 2-3**).
- CLKIN should start toggling at least 16 cycles (starting after V_{DDH} reaches its nominal level) before PORESET deassertion to guarantee correct device operation (see Figure 2-2 and Figure 2-3).
- CLKIN must not be pulled high during V_{DDH} power-up. CLKIN can toggle during this period.

The following figures show acceptable start-up sequence examples. Figure 2-2 shows a sequence in which V_{DD} and V_{DDH} are raised together. Figure 2-3 shows a sequence in which V_{DDH} is raised after V_{DD} and CLKIN begins to toggle as V_{DDH} rises.




Figure 2-2. Start-Up Sequence with V_{DD} and V_{DDH} Raised Together

2.5.4.3 Reset Timing Tables

Table 2-11 and **Figure 2-4** describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

No.	Characteristics	Expression	Min	Max	Unit
1	 Required external PORESET duration minimum CLKIN = 20 MHz CLKIN = 133 MHz (400 MHz core) CLKIN = 166 MHz (500 MHz core) 	16/CLKIN	800 120 96	800 —	ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 166 MHz	1024/CLKIN	6.17	51.2	μs
3	Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 133 MHz (RDF = 2) (400 MHz core) CLKIN = 166 MHz (RDF = 2) (500 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock- division factor)	320 96 77	320 96 77	μs μs μs
5	Delay from SPLL to HRESET deassertion • REFCLK = 40 MHz to 166 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion REFCLK = 40 MHz to 166 MHz 	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of PORESET		3	_	ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5	_	ns
Note:	Timings are not tested, but are guaranteed by design.	·			

 Table 2-11.
 Timing for a Reset Configuration Write through the DSI or System Bus

The UPM machine and GPCM machine outputs change on the internal tick determined by the memory controller configuration. The AC specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

		Value for Bus Speed in MHz			
No.	Characteristic	Ref = CI	KIN	Ref = CLKOUT	Units
		133	166	133	
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	ns
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.0	3.0	3.0	ns
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.3	3.3	3.3	ns
11c	AACK set-up time before the 50% level of the REFCLK rising edge	2.9	2.9	2.9	ns
11d	 TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.4 4.0	3.4 4.0	3.4 4.0	ns ns
12	Data bus set-up time before REFCLK rising edge in Normal mode Data-pipeline mode Non-pipeline mode 	1.8 4.0	1.7 4.0	1.8 4.0	ns ns
13	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode • Non-pipeline mode	2.0 7.3	2.0 7.3	2.0 7.3	ns ns
14	DP set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	2.0 6.1	2.0 6.1	2.0 6.1	ns ns
15a	 TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1) 	3.6 5.0	3.6 5.0	3.8 5.0	ns ns
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1)	3.5 4.4	3.5 4.4	3.5 4.4	ns ns
16 ¹	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	ns

Table 2-13. AC Timing for SIU Inputs

		Value for Bus Speed in MHz			
No.	Characteristic	Ref = CLKIN		Ref = CLKOUT	Units
		133	166	133	
30 ²	Minimum delay from the 50% level of the REFCLK for all signals	0.8	0.8	1.0	ns
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	4.9	4.9	5.8	ns
32a	Address bus max delay from the 50% level of the REFCLK rising edge • Multi-master mode (SIUBCR[EBM] = 1) • Single-master mode (SIUBCR[EBM] = 0)	5.5 4.2	5.5 3.9	6.4 5.1	ns ns
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	5.1	5.1	6.0	ns
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	5.7	5.7	6.6	ns
32d	BADDR max delay from the 50% level of the REFCLK rising edge	4.2	4.2	5.1	ns
33a	Data bus max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.9 6.1	3.7 6.1	4.8 7.0	ns ns
33b	DP max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	5.3 6.5	5.3 6.5	6.2 7.4	ns ns
34	Memory controller signals/ALE/CS[0-4] max delay from the 50% level of the REFCLK rising edge	4.2	3.9	5.1	ns
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK 4.7 4.7 5.6 rising edge Image: Constraint of the state		5.6	ns	
35b	AACK/ABB/TS/CS[5-7] max delay from the 50% level of the 4.5 5.4 REFCLK rising edge 4.5 5.4		5.4	ns	
Notes:	REFCLK rising edge				tract 0.3

Table 2-14. AC TIMING IOT SID Output	Table 2-14.	AC Timing for SIU Outputs
--------------------------------------	-------------	---------------------------

-

• To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the SIUMCR[BDD] bit. See the SIU chapter in the *MSC8122 Reference Manual* for details.

2.5.10 Ethernet Timing

2.5.10.1 Management Interface Timing

No.	Characteristics	Min	Max	Unit
801	ETHMDIO to ETHMDC rising edge set-up time			ns
802	ETHMDC rising edge to ETHMDIO hold time	10		ns

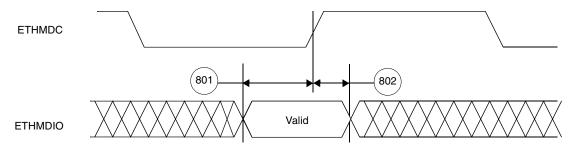


Figure 2-18. MDIO Timing Relationship to MDC

2.5.10.2 MII Mode Timing

Table 2-24.	MII Mode Signal Timing
-------------	------------------------

No.	Characteristics	Min	Max	Unit
803	ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time	3.5	—	ns
804	ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time	3.5	—	ns
805	ETHTX_CLK to ETHTX_EN, ETHTXD[0-3], ETHTX_ER output delay	1	12.6	ns

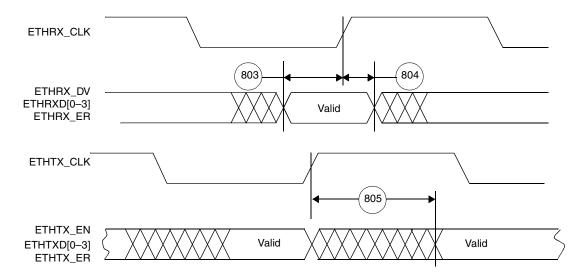
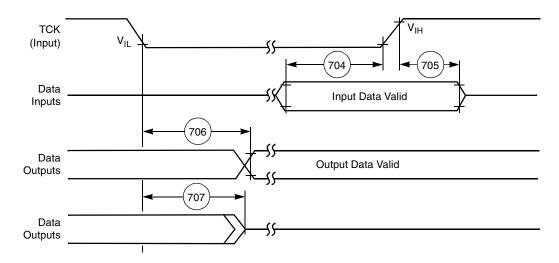
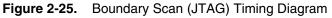




Figure 2-19. MII Mode Signal Timing

Specifications

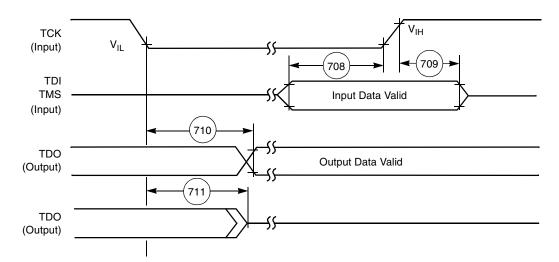
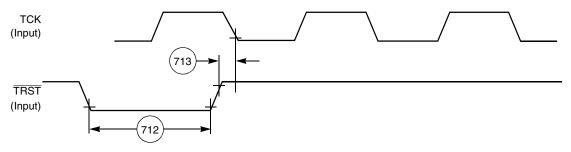



Figure 2-26. Test Access Port Timing Diagram

Signal Name	Location Designator	Signal Name	Location Designator
GND	B13	GND	L14
GND	B15	GND	L16
GND	B17	GND	L17
GND	B22	GND	M5
GND	C2	GND	M6
GND	C8	GND	M10
GND	C10	GND	M14
GND	C12	GND	M19
GND	C14	GND	N10
GND	C15	GND	N14
GND	D5	GND	P10
GND	D9	GND	P13
GND	D11	GND	P14
GND	D13	GND	P21
GND	D21	GND	R4
GND	E8	GND	T20
GND	E10	GND	V4
GND	E12	GND	V15
GND	E14	GND	W5
GND	E15	GND	W6
GND	E17	GND	W9
GND	E18	GND	W13
GND	F7	GND	W19
GND	F11	GND	W20
GND	F13	GND	Y9
GND	G20	GND	Y12
GND	J6	GND	Y15
GND	J14	GND	Y17
GND	J20	GND	AA8
GND	K10	GND	AA13
GND	K11	GND	AA16
GND	K12	GND	AB2
GND	K13	GND _{SYN}	P11
GND	K19	GPIO0	B19
GND	L9	GPIO1	C18
GND	L10	GPIO2	C17

 Table 3-1.
 MSC8126 Signal Listing By Name (Continued)

Table 3-1.	MSC8126 Signal Lis	ting By Name	(Continued)
------------	--------------------	--------------	-------------

Signal Name	Location Designator	Signal Name	Location Designator
GPIO3	C20	HA14	L3
GPIO4	D19	HA15	K2
GPIO5	C21	HA16	K4
GPIO6	C22	HA17	G6
GPI07	C19	HA18	J2
GPIO8	D22	HA19	H5
GPIO9	E19	HA20	H2
GPIO10	E21	HA21	КЗ
GPIO11	F20	HA22	F6
GPIO12	E22	HA23	G5
GPIO13	E20	HA24	G2
GPIO14	F21	HA25	G4
GPIO15	G19	HA26	J3
GPIO16	F19	HA27	G3
GPIO17	G21	HA28	H3
GPIO18	F18	HA29	F5
GPIO19	F22	HBCS	N9
GPIO20	F17	HBRST	M16
GPIO21	H19	HCID0	E7
GPIO22	G22	HCID1	C7
GPIO23	J19	HCID2	D7
GPIO24	H18	HCID3	D8
GPIO25	J21	HCLKIN	P9
GPIO26	N20	HCS	N17
GPIO27	E6	HD0	Т5
GPIO28	C6	HD1	T4
GPIO29	D17	HD2	U4
GPIO30	C16	HD3	V2
GPIO31	D16	HD4	W4
HA7	R14	HD5	W3
HA8	D8	HD6	W2
HA9	W11	HD7	Y2
HA10	W10	HD8	AB5
HA11	L4	HD9	Y5
HA12	L2	HD10	AA5
HA13	J5	HD11	AB4

Table 3-1.	MSC8126 Si	gnal Listing By	/ Name	(Continued)
------------	------------	-----------------	--------	-------------

Signal Name	Location Designator	Signal Name	Location Designator
HRESET	E5	IRQ5	L8
HRW	N15	IRQ5	T16
HTA	H14	IRQ6	C17
HWBE0	N8	IRQ6	D22
HWBE1	P8	IRQ6	R16
HWBE2	P7	IRQ7	E19
HWBE3	P6	IRQ7	G14
HWBE4	R7	IRQ7	R15
HWBE5	T7	IRQ8	E21
HWBE6	R6	IRQ9	F20
HWBE7	T6	IRQ10	E22
HWBS0	N8	IRQ11	E20
HWBS1	P8	IRQ12	F21
HWBS2	P7	IRQ13	J19
HWBS3	P6	IRQ14	H18
HWBS4	R7	IRQ15	J21
HWBS5	T7	MODCK1	V2
HWBS6	R6	MODCK2	W4
HWBS7	T6	HWBE4	R7
INT_OUT	G14	HWBE5	Т7
IRQ1	C20	HWBE6	R6
IRQ1	R10	HWBE7	Т6
IRQ1	T18	NC	E21
IRQ2	D19	NC	F21
IRQ2	K8	NMI	F4
IRQ2	R19	NMI_OUT	B6
IRQ3	C21	PBS0	G7
IRQ3	G10	PBS1	K6
IRQ3	R17	PBS2	N6
IRQ4	B19	PBS3	K5
IRQ4	C22	PBS4	R7
IRQ4	G12	PBS5	Τ7
IRQ4	T17	PBS6	R6
IRQ5	C18	PBS7	Т6
IRQ5	C19	PGPL0	J17
IRQ5	H13	PGPL1	N19

Package Description

Signal Name	Location Designator	Signal Name	Location Designator
V _{DDH}	L15	V _{DDH}	W7
V _{DDH}	L19	V _{DDH}	W8
V _{DDH}	M4	V _{DDH}	W12
V _{DDH}	M7	V _{DDH}	W15
V _{DDH}	M9	V _{DDH}	W17
V _{DDH}	M15	V _{DDH}	Y4
V _{DDH}	M17	V _{DDH}	Y10
V _{DDH}	M18	V _{DDH}	Y13
V _{DDH}	M20	V _{DDH}	Y16
V _{DDH}	N7	V _{DDH}	Y20
V _{DDH}	P20	V _{DDH}	AA9
V _{DDH}	R3	V _{DDH}	AA12
V _{DDH}	U20	V _{DDH}	AA14
V _{DDH}	V3		

Table 3-1. MSC8126 Signal Listing By Name (Continued)

Note: This table lists every signal name. Because many signals are multiplexed, an individual ball designator number may be listed several times.

Packaging

Des.	Signal Name	Des.	Signal Name
Т6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
Т8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	TT1	V7	D4
T14	D21	V8	D5
T15	D23	V9	D7
T16	IRQ5/DP5/DACK4/EXT_BG3	V10	D10
T17	IRQ4/DP4/DACK3/EXT_DBG3	V11	D12
T18	IRQ1/DP1/DACK1/EXT_BG2	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	А9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V _{DDH}
U14	D19	W8	V _{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V _{DDH}
U19	D31	W13	GND
U20	V _{DDH}	W14	HD40/D40/ETHRXD0

Table 3-2. MSC8126 Signal Listing by Ball Designator (Continued)

4.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to V_{DDH} or GND, except for the following:

- If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be disconnected.
- When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down, depending on design requirements.
- HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the DCR[DSRFA] bit is set.
- When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] and HWBS[4-7]/HDBS[4-7]/HDBE[4-7]/HDBE[4-7]/PWE[4-7]/PSDDQM[4-7]/PBS[4-7].
- When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, <u>HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3]</u> must be pulled up.
- When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.
- In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):
 - BG, DBG, and TS can be left unconnected.
 - EXT_BG[2–3], EXT_DBG[2–3], and GBL can be left unconnected if they are multiplexed to the system bus functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.
 - BR must be pulled up.
 - EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.
- If there is an external bus master (BCR[EBM] = 1):
 - BR, BG, DBG, and TS must be pulled up.
 - EXT_BR[2-3], EXT_BG[2-3], and EXT_DBG[2-3] must be pulled up if multiplexed to the system bus functionality.
- In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other modes, they must be pulled up.
- **Note:** The MSC8126 does not support DLL-enabled mode. For the following two clock schemes, ensure that the DLL is disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).
- If no system synchronization is required (for example, the design does not use SDRAM), you can use any of the available clock modes.
- In the CLKIN synchronization mode, use the following connections:
 - Connect the oscillator output through a buffer to CLKIN.
 - Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay
 path between the clock buffer to the MSC8126 and the SDRAM is equal (that is, has a skew less than 100
 ps).
 - Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.