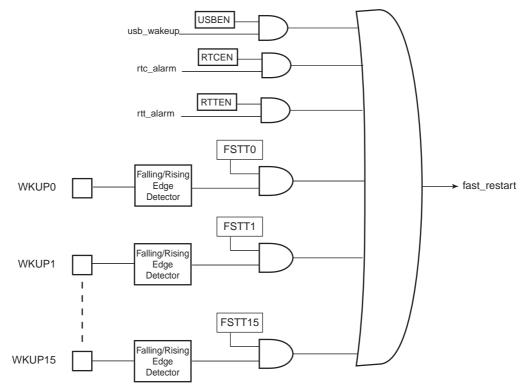


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	I ² C, MMC, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	47
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s2ba-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The processor sets EXC_RETURN bits[31:4] to 0xFFFFFFF. When this value is loaded into the PC it indicates to the processor that the exception is complete, and the processor initiates the exception return sequence.

EXC_RETURN[3:0]	Description
bXXX0	Reserved.
	Return to Handler mode.
b0001	Exception return gets state from MSP.
	Execution uses MSP after return.
b0011	Reserved.
b01X1	Reserved.
	Return to Thread mode.
b1001	Exception return gets state from MSP.
	Execution uses MSP after return.
	Return to Thread mode.
b1101	Exception return gets state from PSP.
	Execution uses PSP after return.
b1X11	Reserved.

Table 11-10. Exception return behavior

11.6 Fault handling

Faults are a subset of the exceptions, see "Exception model" on page 61. The following generate a fault:

- a bus error on:
- an instruction fetch or vector table load
- a data access
- an internally-detected error such as an undefined instruction or an attempt to change state with a BX instruction
- attempting to execute an instruction from a memory region marked as Non-Executable (XN).
- an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

11.6.1 Fault types

Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the register bit that indicates that the fault has occurred. See "Configurable Fault Status Register" on page 177 for more information about the fault status registers.

Table 11-11.	Faults
--------------	--------

Fault	Handler Bit name		Fault status register	
Bus error on a vector read	Hard fault	VECTTBL	"Hard Fault Status Register" on page	
Fault escalated to a hard fault		FORCED	183	
MPU mismatch:		-	-	
on instruction access	Memory managem	IACCVIOL (1)		
on data access		DACCVIOL	"Memory Management Fault Address	
during exception stacking	ent fault	MSTKERR	Register" on page 184	
during exception unstacking	Ţ	MUNSKERR		

TEX	С	В	S	Memory type	Shareability	Other attributes
	0	0	0	Normal	Not shareable	
			1		Shareable	
		1	x ⁽¹⁾	Reserved encodi	ng	-
b001		0	x ⁽¹⁾	Implementation d attributes.	lefined	-
	1	0		Normal	Not shareable	Outer and inner write-back. Write and
		1 Norman		Shareable	read allocate.	
	0	0	x ⁽¹⁾	Device	Not shareable	Nonshared Device.
b010		1	x ⁽¹⁾	Reserved encodi	ng	-
	1	x ⁽¹⁾	x ⁽¹⁾	Reserved encodi	ng	-
b1B B	A	A	0	Normal	Not shareable	
D			1		Shareable	

Table 11-37. TEX, C, B, and S encoding (Continued)

1. The MPU ignores the value of this bit.

Table 11-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Encoding, AA or BB	Corresponding cache policy			
00	Non-cacheable			
01	Write back, write and read allocate			
10	Write through, no write allocate			
11	Write back, no write allocate			

 Table 11-38.
 Cache policy for memory attribute encoding

Table 11-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 11-39. AP encoding

AP[2:0]	Privileged permissions	Unprivileged permissions	Description		
000	No access	No access	All accesses generate a permission fault		
001	RW	No access	Access from privileged software only		
010	RW	RO	Writes by unprivileged software generate a permission fault		
011	RW	RW	Full access		
100	Unpredictable	Unpredictable	Reserved		

Step	Handshake Sequence	MODE[3:0]	DATA[7:0]	
n	Write handshaking	ADDR0	Memory Address LSB	
n+1	Write handshaking	ADDR1	Memory Address	
n+2	Write handshaking	ADDR2	Memory Address	
n+3	Write handshaking	ADDR3	Memory Address	
n+4	Write handshaking	DATA	*Memory Address++	
n+5	Write handshaking	DATA	*Memory Address++	

Table 20-9. Write Command (Continued)

The Flash command **Write Page and Lock (WPL)** is equivalent to the Flash Write Command. However, the lock bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of the lock region using a Flash write and lock command.

The Flash command **Erase Page and Write (EWP)** is equivalent to the Flash Write Command. However, before programming the load buffer, the page is erased.

The Flash command **Erase Page and Write the Lock (EWPL)** combines EWP and WPL commands.

20.2.5.3 Flash Full Erase Command

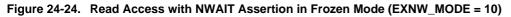
This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the erase command is aborted and no page is erased.

Step	Handshake Sequence	MODE[3:0]	DATA[15:0] or DATA[7:0]
1	Write handshaking	CMDE	EA
2	Write handshaking	DATA	0

Table 20-10. Full Erase Command

20.2.5.4 Flash Lock Commands


Lock bits can be set using WPL or EWPL commands. They can also be set by using the **Set Lock** command **(SLB)**. With this command, several lock bits can be activated. A Bit Mask is provided as argument to the command. When bit 0 of the bit mask is set, then the first lock bit is activated.

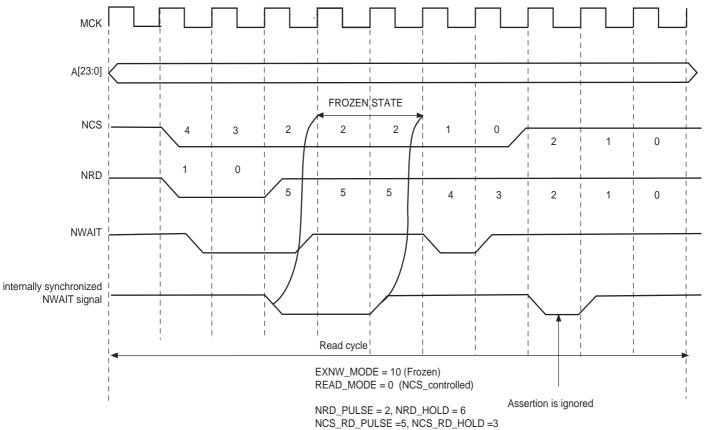

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Table 20-11. Set and Clear Lock Bit Command

Step	Handshake Sequence	MODE[3:0]	DATA[15:0] or DATA[7:0]
1	Write handshaking	CMDE	SLB or CLB
2	Write handshaking	DATA	Bit Mask

25.5.6 Receive Next Counter Register

Name:	PERIPH	PERIPH_RNCR								
Access:	Read-w	Read-write								
31	30	29	28	27	26	25	24			
-	-	_	-	-	-	-	-			
23	22	21	20	19	18	17	16			
_	-	_	-	-	-	_	—			
15	14	13	12	11	10	9	8			
			RXN	CTR						
7	6	5	4	3	2	1	0			
	RXNCTR									

• RXNCTR: Receive Next Counter

RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

Atmel

25.5.10 Transfer Status Register

Name:	PERIPH	PERIPH_PTSR								
Access:	Read-or	Read-only								
31	30	29	28	27	26	25	24			
_	-	_	-	-	—	_	-			
23	22	21	20	19	18	17	16			
_	-	_	-	-	-	_	-			
15	14	13	12	11	10	9	8			
_	_	—	—	—	—	—	TXTEN			
7	6	5	4	3	2	1	0			
-	-	_	-	-	-	-	RXTEN			

• RXTEN: Receiver Transfer Enable

0 = PDC Receiver channel requests are disabled.

1 = PDC Receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable

0 = PDC Transmitter channel requests are disabled.

1 = PDC Transmitter channel requests are enabled.

31.8.5 SPI Status Register

NI - --- -

Name:	SPI_SR						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	_	_	-
23	22	21	20	19	18	17	16
_	-	—	—	—	—	—	SPIENS
15	14	13	12	11	10	9	8
—	-	—	—	—	UNDES	TXEMPTY	NSSR
7	6	5	4	3	2	1	0
TXBUFE	RXBUFF	ENDTX	ENDRX	OVRES	MODF	TDRE	RDRF

• RDRF: Receive Data Register Full

0 = No data has been received since the last read of SPI_RDR

1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read of SPI_RDR.

• TDRE: Transmit Data Register Empty

0 = Data has been written to SPI_TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error

0 = No Mode Fault has been detected since the last read of SPI_SR.

1 = A Mode Fault occurred since the last read of the SPI_SR.

OVRES: Overrun Error Status

0 = No overrun has been detected since the last read of SPI_SR.

1 = An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.

• ENDRX: End of RX buffer

0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR⁽¹⁾ or SPI_RNCR⁽¹⁾.

1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR⁽¹⁾ or SPI_RNCR⁽¹⁾.

• ENDTX: End of TX buffer

0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR⁽¹⁾ or SPI_TNCR⁽¹⁾.

1 = The Transmit Counter Register has reached 0 since the last write in $SPI_TCR^{(1)}$ or $SPI_TNCR^{(1)}$.

RXBUFF: RX Buffer Full

 $0 = SPI_RCR^{(1)}$ or $SPI_RNCR^{(1)}$ has a value other than 0.

1 = Both SPI_RCR⁽¹⁾ and SPI_RNCR⁽¹⁾ have a value of 0.

• TXBUFE: TX Buffer Empty

 $0 = SPI_TCR^{(1)}$ or $SPI_TNCR^{(1)}$ has a value other than 0.

31.8.6 SPI Interrupt Enable Register

Access: Write-only 31 30 29 28 27 26 25 24 $ 23$ 22 21 20 19 18 17 16 $ -$	Name:	SPI_IER	Ime: SPI_IER				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Access:	Write-only	cess: Write-only				
23 22 21 20 19 18 17 16 - - - - - - - -	31	30	31 30 29	28 27	26	25	24
	_	-			-	-	-
	23	22	23 22 21	20 19	18	17	16
	_	-			-	-	-
15 14 13 12 11 10 9 8	15	14	15 14 13	12 11	10	9	8
UNDES TXEMPTY NSSR	_	-			UNDES	TXEMPTY	NSSR
7 6 5 4 3 2 1 0	7	6	7 6 5	4 3	2	1	0
TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF	TXBUFE	RXBUFF	TXBUFE RXBUFF ENDTX EN	DRX OVRES	MODF	TDRE	RDRF

0 = No effect.

- 1 = Enables the corresponding interrupt.
- RDRF: Receive Data Register Full Interrupt Enable
- TDRE: SPI Transmit Data Register Empty Interrupt Enable
- MODF: Mode Fault Error Interrupt Enable
- OVRES: Overrun Error Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- ENDTX: End of Transmit Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable
- TXBUFE: Transmit Buffer Empty Interrupt Enable
- NSSR: NSS Rising Interrupt Enable
- TXEMPTY: Transmission Registers Empty Enable
- UNDES: Underrun Error Interrupt Enable

32.11.3 TWI Slave Mode Register

Name:	TWI_SMR						
Access:	Read-write						
Reset:	0x0000000						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
_				SADR			
15	14	13	12	11	10	9	8
_	-	-	_	-	-		
7	6	5	4	3	2	1	0
-	_	_	_	_	_	_	_

• SADR: Slave Address

The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode. SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

• CTSIC: Clear to Send Input Change Flag

0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• RI: Image of RI Input

0: RI is set to 0.

1: RI is set to 1.

• DSR: Image of DSR Input

0: DSR is set to 0

1: DSR is set to 1.

• DCD: Image of DCD Input

0: DCD is set to 0.

1: DCD is set to 1.

• CTS: Image of CTS Input

0: CTS is set to 0.

1: CTS is set to 1.

• MANERR: Manchester Error

0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

34.8.16 USART Write Protect Mode Register

Name:	US_WPMR								
Access:	Read-write								
Reset:	See Table 34-16	3							
31	30	29	28	27	26	25	24		
	WPKEY								
23	22	21	20	19	18	17	16		
			WP	KEY					
15	14	13	12	11	10	9	8		
			WP	KEY					
7	6	5	4	3	2	1	0		
—	—	—	—	—	—	_	WPEN		

• WPEN: Write Protect Enable

0 = Disables the Write Protect if WPKEY corresponds to 0x555341 ("USA" in ASCII).

1 = Enables the Write Protect if WPKEY corresponds to 0x555341 ("USA" in ASCII).

Protects the registers:

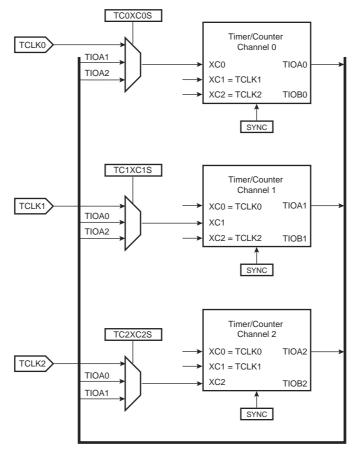
- "USART Mode Register" on page 719
- "USART Baud Rate Generator Register" on page 734
- "USART Receiver Time-out Register" on page 735
- "USART Transmitter Timeguard Register" on page 736
- "USART FI DI RATIO Register" on page 737
- "USART IrDA FILTER Register" on page 739
- "USART Manchester Configuration Register" on page 740

• WPKEY: Write Protect KEY

Should be written at value 0x555341 ("USA" in ASCII). Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

Each channel can independently select an internal or external clock source for its counter:

- Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3, TIMER_CLOCK4, TIMER_CLOCK5
- External clock signals: XC0, XC1 or XC2


This selection is made by the TCCLKS bits in the TC Channel Mode Register.

The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 35-3 "Clock Selection"

Note: In all cases, if an external clock is used, the duration of each of its levels must be longer than the master clock period. The external clock frequency must be at least 2.5 times lower than the master clock

Figure 35-2. Clock Chaining Selection

37.7.10 PWM Sync Channels Update Control Register

Name:	PWM_SCUC						
Access:	Read-write						
31	30	29	28	27	26	25	24
_	-	_	_	_	_	_	-
23	22	21	20	19	18	17	16
_	-	_	_	_	_	_	_
15	14	13	12	11	10	9	8
—	—	-	-	-	-	_	-
7	6	5	4	3	2	1	0
_	-	-	-	-	-	_	UPDULOCK

UPDULOCK: Synchronous Channels Update Unlock

0 = No effect

1 = If the UPDM field is set to "0" in "PWM Sync Channels Mode Register" on page 882, writing the UPDULOCK bit to "1" triggers the update of the period value, the duty-cycle and the dead-time values of synchronous channels at the beginning of the next PWM period. If the field UPDM is set to "1" or "2", writing the UPDULOCK bit to "1" triggers only the update of the period value and of the dead-time values of synchronous channels.

This bit is automatically reset when the update is done.

37.7.17 PWM Output Override Value Register

Name:	PWM_OOV						
Access:	Read-write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
_	-	-	-	OOVL3	OOVL2	OOVL1	OOVL0
15	14	13	12	11	10	9	8
_	_	_	_	_	_	_	_
7	6	5	4	3	2	1	0
-	-	_	-	OOVH3	OOVH2	OOVH1	OOVH0

OOVHx: Output Override Value for PWMH output of the channel x

0 = Override value is 0 for PWMH output of channel x.

1 = Override value is 1 for PWMH output of channel x.

OOVLx: Output Override Value for PWML output of the channel x

0 =Override value is 0 for PWML output of channel x.

1 =Override value is 1 for PWML output of channel x.

37.7.34 PWM Comparison x Mode Register

Name: Access:	PWM_CMPxM Read-write						
31	30	29	28	27	26	25	24
_	-	-	—	_	_	—	-
23	22	21	20	19	18	17	16
CUPRCNT			CUPR				
15	14	13	12	11	10	9	8
	CPR	CNT		CPR			
7	6	5	4	3	2	1	0
	C	TR		-	-	-	CEN

• CEN: Comparison x Enable

0 = The comparison x is disabled and can not match.

1 = The comparison x is enabled and can match.

• CTR: Comparison x Trigger

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined by CTR.

• CPR: Comparison x Period

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed periodically once every CPR+1 periods of the channel 0 counter.

CPRCNT: Comparison x Period Counter

Reports the value of the comparison x period counter. Note: The field CPRCNT is read-only

CUPR: Comparison x Update Period

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to CUPR+1 periods of the channel 0 counter.

CUPRCNT: Comparison x Update Period Counter

Reports the value of the comparison x update period counter. Note: The field CUPRCNT is read-only

39.7.7 ACC Analog Control Register

Name:	ACC_A	CR					
Access:	Read-w	rite					
31	30	29	28	27	26	25	24
_	_	_	-	-	-	-	-
23	22	21	20	19	18	17	16
_	_	_	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	_	-	-	-	-	-
7	6	5	4	3	2	1	0
_	_	_	-	-	HY	′SΤ	ISEL

This register can only be written if the WPEN bit is cleared in ACC Write Protect Mode Register.

• ISEL: Current SELection

Refer to the product Electrical Characteristics.

0 (LOPW) = low power option.

1 (HISP) = high speed option.

• HYST: HYSTeresis selection

0 to 3: Refer to the product Electrical Characteristics.

41.7 Digital-to-Analog Converter (DACC) User Interface

Offset	Register	Name	Access	Reset
0x00	Control Register	DACC_CR	Write-only	_
0x04	Mode Register	DACC_MR	Read-write	0x00000000
0x08	Reserved	-	_	_
0x0C	Reserved	-	_	_
0x10	Channel Enable Register	DACC_CHER	Write-only	_
0x14	Channel Disable Register	DACC_CHDR	Write-only	_
0x18	Channel Status Register	DACC_CHSR	Read-only	0x00000000
0x1C	Reserved	-	-	_
0x20	Conversion Data Register	DACC_CDR	Write-only	0x00000000
0x24	Interrupt Enable Register	DACC_IER	Write-only	_
0x28	Interrupt Disable Register	DACC_IDR	Write-only	_
0x2C	Interrupt Mask Register	DACC_IMR	Read-only	0x00000000
0x30	Interrupt Status Register	DACC_ISR	Read-only	0x00000000
0x94	Analog Current Register	DACC_ACR	Read-write	0x00000000
0xE4	Write Protect Mode register	DACC_WPMR	Read-write	0x00000000
0xE8	Write Protect Status register	DACC_WPSR	Read-only	0x00000000
0xEC - 0xFC	Reserved	-	-	_

Table 41-3. Register Mapping

Table 42-2.	DC Characteristics	(Continued)
-------------	--------------------	-------------

Symbol	Parameter	Conditions	Min	Тур	Max	Units
D	Dull un Desister	PA0-PA31, PB0-PB14, PC0-PC31	50	100	175	kΩ
R _{PULLUP}	Pull-up Resistor	NRST	50 100 175 50 100 175 50 100 175 0-PB9, 50 100 175 14.25 20 24.8 10 20	kΩ		
		PA0-PA13, PA15-PA28, PA30-PA31, PB0-PB9, PB10-PB11, PB12-PB14, PC0-PC31	50	100	175	
R _{PULLDOWN}	Pull-down Resistor		14.25	20	24.8	kΩ
		TST, JTAGSEL	10		20	
D	On-die Series Termination	PA4-PA31, PB0-PB9, PB12-PB14,PC0-PC31		36		
R _{ODT}	Resistor	PA0-PA3		25 20 24.8 0 20	Ω	
Notes: 1.	PA[4-13], PA[15-28], PB[0-14	I], PC[0-31]		•		•

Refer to Section 5.2.2 "VDDIO Versus VDDIN"

Table 42-3. 1.8V Voltage Regulator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DDIN}	DC Input Voltage Range	(4) (5)	1.8	3.3	3.6	V
V _{DDOUT}	DC Output Voltage	Normal Mode Standby Mode		1.8 0		V
	Output Voltage Accuracy	I _{Load} = 0.5mA to 150 mA	-3		3	%
I _{LOAD}	Maximum DC Output Current	$V_{DDIN} > 2V$ $V_{DDIN} \le 2V$			80 40	mA
I _{LOAD-START}	Maximum Peak Current during startup	See Note ⁽³⁾ .			400	mA
V _{DROPOUT}	Dropout Voltage	$V_{\text{DDIN}} = 1.8 \text{V}, \text{ I}_{\text{Load}} = 60 \text{ mA}$			150	mV
V _{LINE}	Line Regulation	V _{DDIN} from 2.7V to 3.6V; I _{Load} MAX		20	50	
V _{LINE-TR}	Transient Line regulation	V_{DDIN} from 2.7V to 3.6V; t_r = t_f = 5µs; I_{Load} Max CD_{OUT} = 4.7µF		50	100	mV
V _{LOAD}	Load Regulation	$V_{DDIN} \ge 2.2V;$ $I_{Load} = 10\% \text{ to } 90\% \text{ MAX}$ $V_{DDIN} \ge 2.2V;$		20	50	mV
V _{LOAD-TR}	Transient Load Regulation	$I_{Load} = 10\%$ to 90% MAX $t_r = t_f = 5 \ \mu s$ $CD_{OUT} = 4.7 \ \mu F$		50	100	
Ι _Q	Quiescent Current	Normal Mode; @ I _{Load} = 0 mA @ I _{Load} = 80 mA Standby Mode;		7 700	10 1200 1	μΑ
CD _{IN}	Input Decoupling Capacitor	See Note ⁽¹⁾		10		μF

42.4.4 32.768 kHz Crystal Characteristics

 Table 42-25.
 Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor (R _S)	Crystal @ 32.768 kHz		50	100	kΩ
C _m	Motional capacitance	Crystal @ 32.768 kHz	0.6		3	fF
C _{SHUNT}	Shunt capacitance	Crystal @ 32.768 kHz	0.6		2	pF

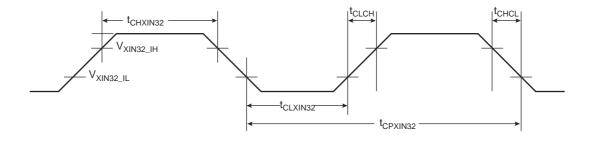

42.4.5 32.768 kHz XIN32 Clock Input Characteristics in Bypass Mode

Table 42-26.	XIN32 Clock Electrical Characteristics (In Bypass Mode)
--------------	---

Symbol	Parameter	Conditions	Min	Max	Units
1/(t _{CPXIN32})	XIN32 Clock Frequency	(1)		44	kHz
t _{CPXIN32}	XIN32 Clock Period	(1)	22		μs
t _{CHXIN32}	XIN32 Clock High Half-period	(1)	11		μs
t _{CLXIN32}	XIN32 Clock Low Half-period	(1)	11		μs
t _{CLCH}	Rise Time		400		ns
t _{CHCL}	Fall Time		400		ns
C _i	XIN32 Input Capacitance			6	pF
R _{IN}	XIN32 Pull-down Resistor		3	5	MΩ
V _{XIN32_IL}	V _{XIN32} Input Low-level Voltage		-0.3	0.3 x V _{DDIO}	V
V _{XIN32_IH}	V _{XIN32} Input High-level Voltage		0.7 x V _{DDIO}	V _{DDIO} +0.3	V

Note: 1. These characteristics apply only when the 32.768 kHz crystal Oscillator is in bypass mode (i.e., when OSCBYPASS: = 1 in SUPC_MR and XTALSEL = 1 in the SUPC_CR registers.

Figure 42-12. XIN32 Clock Timing

