

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	200KB (200K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1200t038f0200aaxuma1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1200 Data Sheet

Revision History: V1.4 2014-05

Previous V	ersion: V1.3
Page	Subjects
Page 11	ADC channels of Table 2 is updated. Table 3 is added.
Page 12	Description for Chip Identification Number of Section 1.4 is updated.
Page 10	A new variant XMC1200-T038 is included in Table 1, Table 2 and Table 4.
Page 20	The pad type is corrected for P1.6 in Table 6.
Page 32	The t_{C12} , f_{C12} , t_{C10} , f_{C10} , t_{C8} and f_{C8} parameters are updated in Table 12.
Page 35	Figure 9 is added.
Page 38	The t_{SR} and t_{TSAL} parameters are updated in Table 15.
Page 41	Parameter name for t_{PSER} is updated. The N_{WSFLASH} parameter and test condition for t_{RET} are added to Table 18.
Page 44	The min value for $V_{\rm DDPBO}$ parameter is added to Table 20. Footnote 1 is updated.
Page 46	The Δf_{LTT} parameter is added to Table 21.
Page 47	Figure 15 is added.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1200 series devices.

The document describes the characteristics of a superset of the XMC1200 series devices. For simplicity, the various device types are referred to by the collective term XMC1200 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

- Push/pull or open drain output mode
- Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1200 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1200 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1200 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1201-T038F0016	PG-TSSOP-38-9	16	16
XMC1201-T038F0032	PG-TSSOP-38-9	32	16
XMC1201-T038F0064	PG-TSSOP-38-9	64	16
XMC1201-T038F0128	PG-TSSOP-38-9	128	16
XMC1201-T038F0200	PG-TSSOP-38-9	200	16

 Table 1
 Synopsis of XMC1200 Device Types

General Device Information

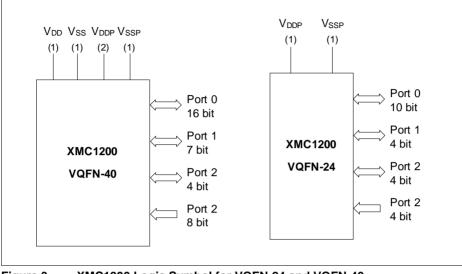
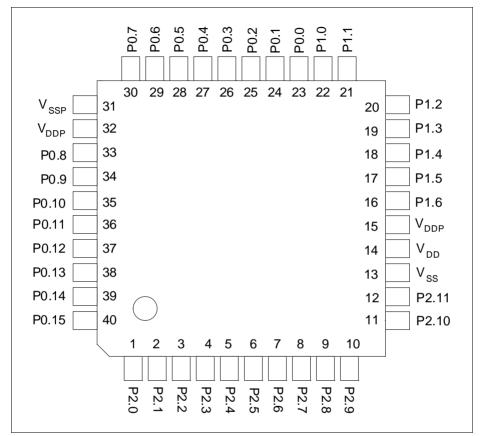



Figure 3 XMC1200 Logic Symbol for VQFN-24 and VQFN-40

XMC1200 XMC1000 Family

General Device Information

General Device Information

2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

Table 7	Port I/O	Function	Description

Function		Outputs				
	ALT1	ALTn	HWO0	HWI0	Input	Input
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA	
Pn.y	MODA.OUT				MODA.INA	MODC.INB

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol		Limit	Limit Values		Test Conditions
			Min.	in. Max.		
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	3)
Maximum current into V _{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	3)
Maximum current out of V _{SS} (TSSOP28/16, VQFN24)	I _{MVSS1}	SR	-	130	mA	3)
Maximum current out of V _{SS} (TSSOP38, VQFN40)	I _{MVSS2}	SR	-	260	mA	3)

 Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

3) Not subject to production test, verified by design/characterization.

4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending
		-	-	f _{ADC} / 54.5	-	2 samples pending
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12	
INL error	EA _{INL} CC	-	±4.0	-	LSB 12	
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00 _B (calibrated)
Gain error with internal reference	EA_{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C
		-	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C
Offset error	EA _{OFF} CC	-	±6.0	-	LSB 12	Calibrated

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

1) Not subject to production test, verified by design/characterization.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

3.2.4 Analog Comparator Characteristics

Table 14 below shows the Analog Comparator characteristics.

Table 14 Analog Comparator Characteristics (Operating Conditions apply)

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/
			Min.	Тур.	Max.	1	Test Conditions
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V	
Input Offset	V _{CMPOFF}	CC	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV
			-	+/-20	-	mV	Low power mode ²⁾ $\Delta V_{\rm CMP}$ < 200 mV
Propagation Delay ¹⁾²⁾	t _{PDELAY}	CC	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV
			-	700	-	ns	Low power mode, ΔV_{CMP} = 25 mV
Current Consumption ²⁾	I _{ACMP}	CC	_	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV
			_	66	-	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV
			-	10	-	μΑ	First active ACMP in low power mode
			-	6	-	μA	Each additional ACMP in low power mode
Input Hysteresis ²⁾	$V_{\rm HYS}$	CC	-	15	-	mV	
Filter Delay ¹⁾²⁾	t _{FDELAY}	CC	-	5	-	ns	

37

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

2) Not subject to production test, verified by design.

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per page	t _{ERASE} CC	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μS	
Wake-Up time	t _{WU} CC	-	32.2	-	μS	
Read time per word	t _a CC	-	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	$N_{\rm WSFLASH}$ CC	0	0.5	-		$f_{\rm MCLK} = 8 \rm MHz$
		0	1.4	-		$f_{\rm MCLK} = 16 \ {\rm MHz}$
		1	1.9	-		$f_{\rm MCLK} = 32 \ \rm MHz$
Erase Cycles per page	$N_{\rm ECYC}$ CC	-	-	5*10 ⁴	cycles	
Total Erase Cycles	N _{TECYC} CC	-	-	2*10 ⁶	cycles	

Table 18 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3.2 Output Rise/Fall Times

 Table 19 provides the characteristics of the output rise/fall times in the XMC1200.

 Figure 11 describes the rise time and fall time parameters.

Table 19 Output Rise/Fall Times Parameters (Operating Conditions apply)

Parameter	Symbol	Limi	t Values	Unit	Test Conditions
		Min.	Max.		
Rise/fall times on High Current Pad ¹⁾²⁾	t _{HCPR} ,	-	9	ns	50 pF @ 5 V ³⁾
	t _{HCPF}	-	12	ns	50 pF @ 3.3 V ⁴⁾
		-	25	ns	50 pF @ 1.8 V ⁵⁾
Rise/fall times on	t _R , t _F	-	12	ns	50 pF @ 5 V ⁶⁾
Standard Pad ¹⁾²⁾		-	15	ns	50 pF @ 3.3 V ⁷⁾ .
		-	31	ns	50 pF @ 1.8 V ⁸⁾ .

1) Rise/Fall time parameters are taken with 10% - 90% of supply.

2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.

3) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.150 \text{ ns/pF}$ at 5 V supply voltage.

4) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.205 ns/pF at 3.3 V supply voltage.

5) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.445 ns/pF at 1.8 V supply voltage.

6) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.225 \text{ ns/pF}$ at 5 V supply voltage.

7) Additional rise/fall time valid for C_L = 50 pF - C_L = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.

8) Additional rise/fall time valid for $C_L = 50 \text{ pF} - C_L = 100 \text{ pF} @ 0.588 \text{ ns/pF}$ at 1.8 V supply voltage.

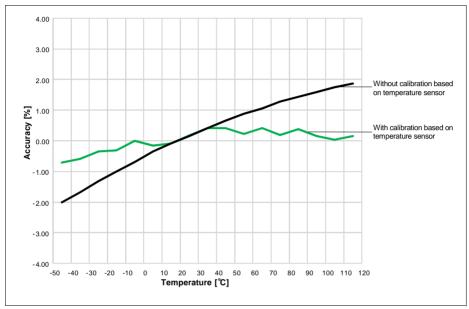


Figure 15 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 15 Typical DCO1 accuracy over temperature

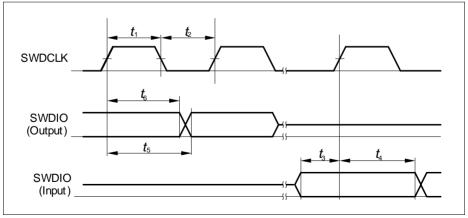
Table 22 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1200.

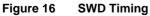
Parameter	Sym	Symbol		Limit Values			Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	$f_{\rm NOM}$	СС	32.5	32.75	33	kHz	under nominal conditions ¹⁾ after trimming
Accuracy	Δf_{LT}	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C) ²⁾
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C) ²⁾

Table 22	32 kHz DCO2 Characteristics (Operati	ng Conditions apply)
----------	--------------------------------------	----------------------

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.


3.3.5 Serial Wire Debug Port (SW-DP) Timing


The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
SWDCLK high time	t ₁ SR	50	-	500000	ns	-
SWDCLK low time	t_2 SR	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-
SWDIO output valid time	t ₅ CC	-	-	68	ns	C _L = 50 pF
after SWDCLK rising edge		_	-	62	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns	

Table 23	SWD Interface Timing	Parameters(Operating	Conditions apply)
		j i arameters(operating	j oonalions apply

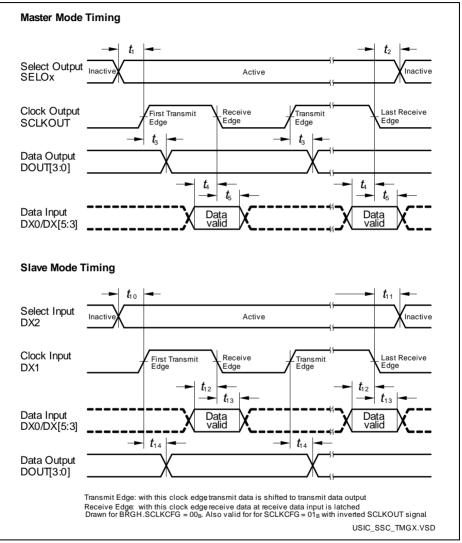
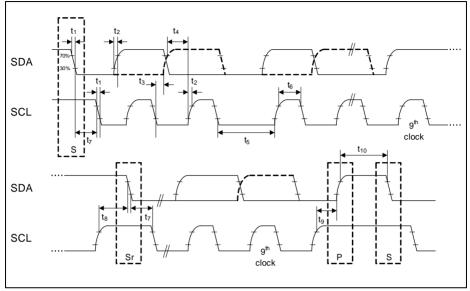



Figure 17 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Figure 18 USIC IIC Stand and Fast Mode Timing

3.3.7.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

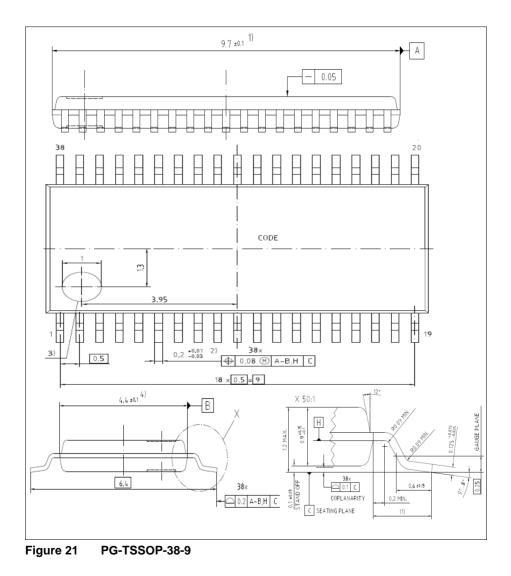
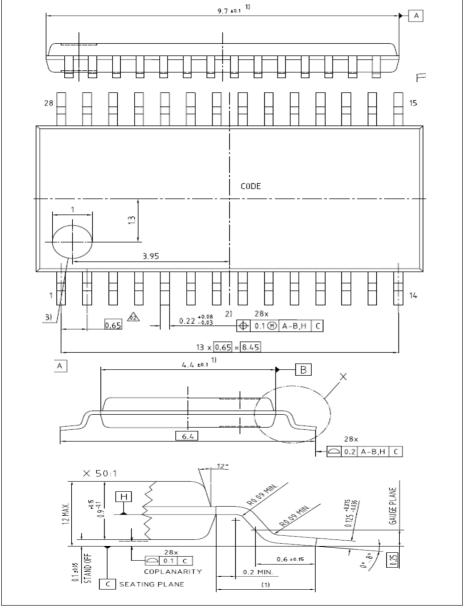

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 29 USIC IIS Master Transmitter Timing

Package and Reliability


4.2 Package Outlines

XMC1200 XMC1000 Family

Package and Reliability

60

Figure 22 PG-TSSOP-28-16

XMC1200 XMC1000 Family

Package and Reliability

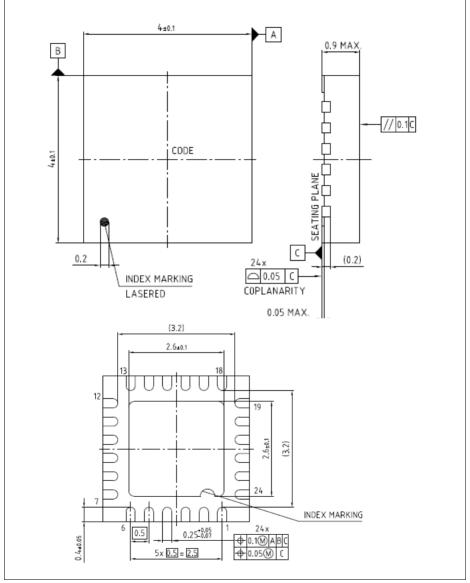


Figure 24 PG-VQFN-24-19

Quality Declaration

5 Quality Declaration

Table 32 shows the characteristics of the quality parameters in the XMC1200.

Table 32 Quality Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	$V_{\rm CDM}$ SR	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	3	-	JEDEC J-STD-020C

www.infineon.com

Published by Infineon Technologies AG