

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38-9
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1201t038f0032aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1200 Data Sheet

Revision History: V1.4 2014-05

Previous Ve	ersion: V1.3
Page	Subjects
Page 11	ADC channels of Table 2 is updated. Table 3 is added.
Page 12	Description for Chip Identification Number of Section 1.4 is updated.
Page 10	A new variant XMC1200-T038 is included in Table 1, Table 2 and Table 4.
Page 20	The pad type is corrected for P1.6 in Table 6.
Page 32	The t_{C12} , f_{C12} , t_{C10} , f_{C10} , t_{C8} and f_{C8} parameters are updated in Table 12.
Page 35	Figure 9 is added.
Page 38	The t_{SR} and t_{TSAL} parameters are updated in Table 15.
Page 41	Parameter name for $t_{\rm PSER}$ is updated. The $N_{\rm WSFLASH}$ parameter and test condition for $t_{\rm RET}$ are added to Table 18.
Page 44	The min value for $V_{\rm DDPBO}$ parameter is added to Table 20. Footnote 1 is updated.
Page 46	The Δf_{LTT} parameter is added to Table 21.
Page 47	Figure 15 is added.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM®, ARM Powered® and AMBA® are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Summary of Features

1 Summary of Features

The XMC1200 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1200 series devices are optimized for LED Lighting and Human-Machine interface (HMI) applications.

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M0 CPU
 - Most of 16-bit Thumb instruction set
 - Subset of 32-bit Thumb2 instruction set

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure 2 XMC1200 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

Figure 3 XMC1200 Logic Symbol for VQFN-24 and VQFN-40

		- J -	- T F - 6				
Function	VQFN 40	TSSOP 38	TSSOP 28	VQFN 24	TSSOP 16	Pad Type	Notes
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ORC reference voltage. VDD has to be supplied with the same voltage as VDDP
VDDP	15	10	8	10	6	Power	I/O port supply
VSSP	31	25	-	-	-	Power	I/O port ground
VDDP	32	26	-	-	-	Power	I/O port supply
VSSP	Exp. Pad			Exp. Pad		Power	Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter.

2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

Table 7	Port I/O	Function	Description

Function		Outputs		Inputs				
	ALT1	ALTn	HWO0	HWI0	Input	Input		
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA			
Pn.y	MODA.OUT				MODA.INA	MODC.INB		

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Table 8 Port I/O Functions

Function					Outputs					Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0	LEDTS0. LINE7	ERU0. GOUT0	CCU40. OUT0		USIC0_CH0. SELO0	USIC0_CH1. SELO0	LEDTS0. EXTENDED7		LEDTS0. TSIN7	LEDTS0. TSIN7	BCCU0. TRAPINB	CCU40.IN0C			USIC0_CH0. DX2A	USIC0_CH1. DX2A		
P0.1	ERU0. PDOUT1	LEDTS0. LINE6	ERU0. GOUT1	CCU40. OUT1		BCCU0. OUT8	SCU. VDROP	LEDTS0. EXTENDED6		LEDTS0. TSIN6	LEDTS0. TSIN6		CCU40.IN1C						
P0.2	ERU0. PDOUT2	LEDTS0. LINE5	ERU0. GOUT2	CCU40. OUT2		VADC0. EMUX02		LEDTS0. EXTENDED5		LEDTS0. TSIN5	LEDTS0. TSIN5		CCU40.IN2C						
P0.3	ERU0. PDOUT3	LEDTS0. LINE4	ERU0. GOUT3	CCU40. OUT3		VADC0. EMUX01		LEDTS0. EXTENDED4		LEDTS0. TSIN4	LEDTS0. TSIN4		CCU40.IN3C						
P0.4	BCCU0. OUT0	LEDTS0. LINE3	LEDTS0. COL3	CCU40. OUT1		VADC0. EMUX00	WWDT. SERVICE_O UT	LEDTS0. EXTENDED3		LEDTS0. TSIN3	LEDTS0. TSIN3								
P0.5	BCCU0. OUT1	LEDTS0. LINE2	LEDTS0. COL2	CCU40. OUT0		ACMP2. OUT		LEDTS0. EXTENDED2		LEDTS0. TSIN2	LEDTS0. TSIN2								
P0.6	BCCU0. OUT2	LEDTS0. LINE1	LEDTS0. COL1	CCU40. OUT0		USIC0_CH1. MCLKOUT	USIC0_CH1. DOUT0	LEDTS0. EXTENDED1		LEDTS0. TSIN1	LEDTS0. TSIN1		CCU40.IN0B			USIC0_CH1. DX0C			
P0.7	BCCU0. OUT3	LEDTS0. LINE0	LEDTS0. COL0	CCU40. OUT1		USIC0_CH0. SCLKOUT	USIC0_CH1. DOUT0	LEDTS0. EXTENDED0		LEDTS0. TSIN0	LEDTS0. TSIN0		CCU40.IN1B			USIC0_CH0. DX1C	USIC0_CH1. DX0D	USIC0_CH1. DX1C	
P0.8	BCCU0. OUT4	LEDTS1. LINE0	LEDTS0. COLA	CCU40. OUT2		USIC0_CH0. SCLKOUT	USIC0_CH1. SCLKOUT	LEDTS1. EXTENDED0		LEDTS1. TSIN0	LEDTS1. TSIN0		CCU40.IN2B			USIC0_CH0. DX1B	USIC0_CH1. DX1B		
P0.9	BCCU0. OUT5	LEDTS1. LINE1	LEDTS0. COL6	CCU40. OUT3		USIC0_CH0. SELO0	USIC0_CH1. SELO0	LEDTS1. EXTENDED1		LEDTS1. TSIN1	LEDTS1. TSIN1		CCU40.IN3B			USIC0_CH0. DX2B	USIC0_CH1. DX2B		
P0.10	BCCU0. OUT6	LEDTS1. LINE2	LEDTS0. COL5	ACMP0. OUT		USIC0_CH0. SELO1	USIC0_CH1. SELO1	LEDTS1. EXTENDED2		LEDTS1. TSIN2	LEDTS1. TSIN2					USIC0_CH0. DX2C	USIC0_CH1. DX2C		
P0.11	BCCU0. OUT7	LEDTS1. LINE3	LEDTS0. COL4	USIC0_CH0. MCLKOUT		USIC0_CH0. SELO2	USIC0_CH1. SELO2	LEDTS1. EXTENDED3		LEDTS1. TSIN3	LEDTS1. TSIN3					USIC0_CH0. DX2D	USIC0_CH1. DX2D		
P0.12	BCCU0. OUT6	LEDTS1. LINE4	LEDTS0. COL3	LEDTS1. COL3		USIC0_CH0. SELO3		LEDTS1. EXTENDED4		LEDTS1. TSIN4	LEDTS1. TSIN4	BCCU0. TRAPINA	CCU40.IN0A	CCU40.IN1A	CCU40.IN2A	CCU40.IN3A	USIC0_CH0. DX2E		
P0.13	WWDT. SERVICE_O UT	LEDTS1. LINE5	LEDTS0. COL2	LEDTS1. COL2		USIC0_CH0. SELO4		LEDTS1. EXTENDED5		LEDTS1. TSIN5	LEDTS1. TSIN5					USIC0_CH0. DX2F			
P0.14	BCCU0. OUT7	LEDTS1. LINE6	LEDTS0. COL1	LEDTS1. COL1		USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT	LEDTS1. EXTENDED6		LEDTS1. TSIN6	LEDTS1. TSIN6					USIC0_CH0. DX0A	USIC0_CH0. DX1A		
P0.15	BCCU0. OUT8	LEDTS1. LINE7	LEDTS0. COL0	LEDTS1. COL0		USIC0_CH0. DOUT0	USIC0_CH1. MCLKOUT	LEDTS1. EXTENDED7		LEDTS1. TSIN7	LEDTS1. TSIN7					USIC0_CH0. DX0B			
P1.0	BCCU0. OUT0	CCU40. OUT0	LEDTS0. COL0	LEDTS1. COLA		ACMP1. OUT	USIC0_CH0. DOUT0		USIC0_CH0. DOUT0		USIC0_CH0. HWIN0					USIC0_CH0. DX0C			
91.1	VADC0. EMUX00	CCU40. OUT1	LEDTS0. COL1	LEDTS1. COL0		USIC0_CH0. DOUT0	USIC0_CH1. SELO0		USIC0_CH0. DOUT1		USIC0_CH0. HWIN1					USIC0_CH0. DX0D	USIC0_CH0. DX1D	USIC0_CH1. DX2E	
P1.2	VADC0. EMUX01	CCU40. OUT2	LEDTS0. COL2	LEDTS1. COL1		ACMP2. OUT	USIC0_CH1. DOUT0		USIC0_CH0. DOUT2		USIC0_CH0. HWIN2					USIC0_CH1. DX0B			
21.3	VADC0. EMUX02	CCU40. OUT3	LEDTS0. COL3	LEDTS1. COL2		USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0		USIC0_CH0. DOUT3		USIC0_CH0. HWIN3					USIC0_CH1. DX0A	USIC0_CH1. DX1A		
P1.4	VADC0. EMUX10	USIC0_CH1. SCLKOUT	LEDTS0. COL4	LEDTS1. COL3		USIC0_CH0. SELO0	USIC0_CH1. SELO1									USIC0_CH0. DX5E	USIC0_CH1. DX5E		
P1.5	VADC0. EMUX11	USIC0_CH0. DOUT0	LEDTS0. COLA	BCCU0. OUT1		USIC0_CH0. SELO1	USIC0_CH1. SELO2									USIC0_CH1. DX5F			

Data Sheet

XMC1200 XMC1000 Family

3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1200.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1200 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	ol		Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Cond ition	
Junction temperature	TJ	SR	-40	-	115	°C	-	
Storage temperature	Ts	SR	-40	-	125	°C	-	
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-	
Voltage on any pin with respect to $V_{\rm SSP}$	V_{IN}	SR	-0.5	-	V _{DDP} + 0.5 or max. 6	V	whichever is lower	
Voltage on any analog input pin with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V _{DDP} + 0.5 or max. 6	V	-	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-	
Absolute sum of all input currents during overload condition	$\Sigma I_{\sf IN} $	SR	_	-	50	mA	-	
Analog comparator input voltage	V _{CM}	SR	-0.3	-	V _{DDP} + 0.3	V		

Table 9 Absolute Maximum Rating Parameters

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Input high voltage on port pins (Large Hysteresis)	V_{IHPL}	SR	$0.85 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ³⁾	
Input Hysteresis ¹⁾	HYS	СС	$0.08 imes V_{ m DDP}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 \times V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 \times V_{ m DDP}$	$0.65 imes V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pull-up resistor on port pins	R _{PUP}	CC	20	50	kohm	$V_{\rm IN}$ = $V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	CC	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current ²⁾	I _{OZP}	CC	-1	1	μA	$0 < V_{\rm IN} < V_{\rm DDP},$ $T_{\rm A} \le 105~{\rm ^{\circ}C}$	
Overload current on any pin	I _{OVP}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	-	

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbo	l	Limit \	/alues	Unit	Test Conditions	
			Min.	Max.			
Maximum current into V_{DDP} (TSSOP28/16, VQFN24)	I _{MVDD1}	SR	-	130	mA	3)	
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	3)	
Maximum current out of $V_{\rm SS}$ (TSSOP28/16, VQFN24)	I _{MVSS1}	SR	-	130	mA	3)	
Maximum current out of V _{SS} (TSSOP38, VQFN40)	I _{MVSS2}	SR	-	260	mA	3)	

 Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

3) Not subject to production test, verified by design/characterization.

4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

3.2.2 Analog to Digital Converters (ADC)

Table 12 shows the Analog to Digital Converter (ADC) characteristics.

Table 12	ADC Characteristics (Operating Conditions apply)
	Abo characteristics (operating conditions apply)

Parameter	Symbol		Values	3	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage range (internal reference)	$V_{\rm DD_int}{\rm SR}$	1.8	-	3.0	V	SHSCFG.AREF = 11 _B	
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B	
Supply voltage range (external reference)	$V_{\rm DD_ext}{\rm SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground (SH0-CH0, SH1-CH0)	$V_{REFGND}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Internal reference	V _{REFINT} CC	4.82	5	5.18	V	-40°C - 105°C	
voltage (full scale value)		4.9	5	5.1	V	0°C - 85°C ¹⁾	
Switched capacitance of an analog input ¹⁾	C_{AINS} CC	-	1.2	2	pF	GNCTRxz.GAINy = 00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	$C_{AINT}CC$	-	-	10	pF	1)	
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF	1)	

		•••	•					
Parameter	Symbol		Values	5	Unit	Note /		
		Min.	Тур.	Max.		Test Condition		
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending		
		-	-	f _{ADC} / 54.5	-	2 samples pending		
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12			
INL error	EA _{INL} CC	-	±4.0	-	LSB 12			
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_{B} (calibrated)		
Gain error with internal reference	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C		
		-	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C		
Offset error	EA _{OFF} CC	-	±6.0	-	LSB 12	Calibrated		

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

1) Not subject to production test, verified by design/characterization.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

45

Figure 14 Supply Threshold Parameters

3.3.4 On-Chip Oscillator Characteristics

 Table 21 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1200.

Table 21	64 MHz DCO1	Characteristics ((Operating	Conditions an	nlv)
		onaracteristics	operating	j conunitions ap	μιχ

Parameter	Symbol		Limit Values			Unit	Test Conditions	
			Min.	Тур.	Max.			
Nominal frequency	f _{nom}	CC	63.5	64	64.5	MHz	under nominal conditions ¹⁾ after trimming	
Accuracy	Δf_{LT}	СС	-1.7	-	3.4	%	with respect to $f_{NOM}(typ)$, over temperature (0 °C to 85 °C) ²⁾	
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C) ²⁾	
Accuracy with calibration based on temperature sensor	∆f _{LTT} CC	CC	-1.3	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \degree C to 105 \degree C)^{2)}$	
			-2.6	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})^{2)}$	

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.

3.3.5 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	;	Unit	Note / Test Condition
		Min.	Тур.	Max.		
SWDCLK high time	t ₁ SR	50	-	500000	ns	-
SWDCLK low time	t_2 SR	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-
SWDIO output valid time	t ₅ CC	_	-	68	ns	C _L = 50 pF
after SWDCLK rising edge		_	-	62	ns	C _L = 30 pF
SWDIO output hold time t_6 from SWDCLK rising edge		4	-	-	ns	

Table 23	SWD Interface Timing Parameters (Operating Conditions apply)
	or b interface rinning raranetere (operating contaitone apply)

3.3.6 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

	•		•		
Sample Freq.	Sampling Factor	Sample Clocks 0 _B	Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option $(0.81 \ \mu s)$ for the effective decision time is less robust.

Table 24 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

Table 28 USIC IIC Fast Mode Timing ¹⁾

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 18 USIC IIC Stand and Fast Mode Timing

3.3.7.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 29 USIC IIS Master Transmitter Timing

Package and Reliability

4.2 Package Outlines

