

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1202t016x0032aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2014-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC1200 XMC1000 Family

Table of Contents

5	Quality Declaration		64
---	----------------------------	--	----

Summary of Features

Table 1Synopsis of XMC1200 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1200-T038F0200	PG-TSSOP-38-9	200	16
XMC1202-T028X0016	PG-TSSOP-28-16	16	16
XMC1202-T028X0032	PG-TSSOP-28-16	32	16
XMC1202-T016X0016	PG-TSSOP-16-8	16	16
XMC1202-T016X0032	PG-TSSOP-16-8	32	16
XMC1202-Q024X0016	PG-VQFN-24-19	16	16
XMC1202-Q024X0032	PG-VQFN-24-19	32	16
XMC1201-Q040F0016	PG-VQFN-40-13	16	16
XMC1201-Q040F0032	PG-VQFN-40-13	32	16
XMC1201-Q040F0064	PG-VQFN-40-13	64	16
XMC1201-Q040F0128	PG-VQFN-40-13	128	16
XMC1201-Q040F0200	PG-VQFN-40-13	200	16
XMC1202-Q040X0016	PG-VQFN-40-13	16	16
XMC1202-Q040X0032	PG-VQFN-40-13	32	16

1.3 Device Type Features

The following table lists the available features per device type.

Table 2 Features of XMC1200 Device Types¹⁾

Derivative	ADC channel	ACMP	BCCU	LEDTS
XMC1200-T038	16	3	1	2
XMC1201-T038	16	-	-	2
XMC1202-T028	14	3	1	-
XMC1202-T016	11	2	1	-
XMC1202-Q024	13	3	1	-
XMC1201-Q040	16	-	-	2
XMC1202-Q040	16	3	1	-

1) Features that are not included in this table are available in all the derivatives

General Device Information

Figure 3 XMC1200 Logic Symbol for VQFN-24 and VQFN-40

XMC1200 XMC1000 Family

General Device Information

Figure 5

XMC1200 PG-TSSOP-28 Pin Configuration (top view)

Figure 6 XMC1200 PG-TSSOP-16 Pin Configuration (top view)

XMC1200 XMC1000 Family

General Device Information

General Device Information

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 5 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT (standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

E		TOOOD	TOOOD		TOOOD	De el Trans	Nata
Function	VQFN	1550P	1550P	VQFN	1550P	Pad Type	Notes
	40	38	28	24	16		
P0.0	23	17	13	15	7	STD_INOUT	
P0.1	24	18	-	-	-	STD_INOUT	
P0.2	25	19	-	-	-	STD_INOUT	
P0.3	26	20	-	-	-	STD_INOUT	
P0.4	27	21	14	-	-	STD_INOUT	
P0.5	28	22	15	16	8	STD_INOUT	
P0.6	29	23	16	17	9	STD_INOUT	
P0.7	30	24	17	18	10	STD_INOUT	
P0.8	33	27	18	19	11	STD_INOUT	
P0.9	34	28	19	20	12	STD_INOUT	
P0.10	35	29	20	-	-	STD_INOUT	
P0.11	36	30	-	-	-	STD_INOUT	
P0.12	37	31	21	21	-	STD_INOUT	

Table 6 Package Pin Mapping

Table 8Port I/O Functions (cont'd)

Function	n Outputs					Inputs													
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ншоо	HWO1	ншю	HWI1	Input	Input	Input	Input	Input	Input	Input	Input
P1.6	VADC0. EMUX12	USIC0_CH1. DOUT0	LEDTS0. COL5	USIC0_CH0. SCLKOUT		USIC0_CH0. SELO2	USIC0_CH1. SELO3							USIC0_CH0. DX5F					
P2.0	ERU0. PDOUT3	CCU40. OUT0	ERU0. GOUT3	LEDTS1. COL5		USIC0_CH0. DOUT0	USIC0_CH0. SCLKOUT						VADC0. G0CH5		ERU0.0B0	USIC0_CH0. DX0E	USIC0_CH0. DX1E	USIC0_CH1. DX2F	
P2.1	ERU0. PDOUT2	CCU40. OUT1	ERU0. GOUT2	LEDTS1. COL6		USIC0_CH0. DOUT0	USIC0_CH1. SCLKOUT					ACMP2.INP	VADC0. G0CH6		ERU0.1B0	USIC0_CH0. DX0F	USIC0_CH1. DX3A	USIC0_CH1. DX4A	
P2.2												ACMP2.INN	VADC0. G0CH7		ERU0.0B1	USIC0_CH0. DX3A	USIC0_CH0. DX4A	USIC0_CH1. DX5A	ORC0.AIN
P2.3													VADC0. G1CH5		ERU0.1B1	USIC0_CH0. DX5B	USIC0_CH1. DX3C	USIC0_CH1. DX4C	ORC1.AIN
P2.4													VADC0. G1CH6		ERU0.0A1	USIC0_CH0. DX3B	USIC0_CH0. DX4B	USIC0_CH1. DX5B	ORC2.AIN
P2.5													VADC0. G1CH7		ERU0.1A1	USIC0_CH0. DX5D	USIC0_CH1. DX3E	USIC0_CH1. DX4E	ORC3.AIN
P2.6												ACMP1.INN	VADC0. G0CH0		ERU0.2A1	USIC0_CH0. DX3E	USIC0_CH0. DX4E	USIC0_CH1. DX5D	ORC4.AIN
P2.7												ACMP1.INP	VADC0. G1CH1		ERU0.3A1	USIC0_CH0. DX5C	USIC0_CH1. DX3D	USIC0_CH1. DX4D	ORC5.AIN
P2.8												ACMP0.INN	VADC0. G0CH1	VADC0. G1CH0	ERU0.3B1	USIC0_CH0. DX3D	USIC0_CH0. DX4D	USIC0_CH1. DX5C	ORC6.AIN
P2.9												ACMP0.INP	VADC0. G0CH2	VADC0. G1CH4	ERU0.3B0	USIC0_CH0. DX5A	USIC0_CH1. DX3B	USIC0_CH1. DX4B	ORC7.AIN
P2.10	ERU0. PDOUT1	CCU40. OUT2	ERU0. GOUT1	LEDTS1. COL4		ACMP0. OUT	USIC0_CH1. DOUT0						VADC0. G0CH3	VADC0. G1CH2	ERU0.2B0	USIC0_CH0. DX3C	USIC0_CH0. DX4C	USIC0_CH1. DX0F	
P2.11	ERU0. PDOUT0	CCU40. OUT3	ERU0. GOUT0	LEDTS1. COL3		USIC0_CH1. SCLKOUT	USIC0_CH1. DOUT0					ACMP.REF	VADC0. G0CH4	VADC0. G1CH3	ERU0.2B1	USIC0_CH1. DX0E	USIC0_CH1. DX1E		

Infineon

3.2.2 Analog to Digital Converters (ADC)

Table 12 shows the Analog to Digital Converter (ADC) characteristics.

Table 12	ADC Characteristics (Operating Conditions apply)
	Abo characteristics (operating conditions apply)

Parameter	Symbol		Values	3	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage range (internal reference)	$V_{\rm DD_int}{\rm SR}$	1.8	-	3.0	V	SHSCFG.AREF = 11 _B	
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B	
Supply voltage range (external reference)	$V_{\rm DD_ext}{\rm SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground (SH0-CH0, SH1-CH0)	$V_{REFGND}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Internal reference	$V_{REFINT}CC$	4.82	5	5.18	V	-40°C - 105°C	
voltage (full scale value)		4.9	5	5.1	V	0°C - 85°C ¹⁾	
Switched capacitance of an analog input ¹⁾	C_{AINS} CC	-	1.2	2	pF	GNCTRxz.GAINy = 00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	$C_{AINT}CC$	-	-	10	pF	1)	
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF	1)	

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

45

Figure 14 Supply Threshold Parameters

3.3.4 On-Chip Oscillator Characteristics

 Table 21 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1200.

Table 21	64 MHz DCO1	Characteristics ((Operating	Conditions an	nlv)
		onaracteristics	operating	j conunitions ap	μιχ

Parameter	Symbol		Lin	nit Val	ues	Unit	Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	f _{nom}	CC	63.5	64	64.5	MHz	under nominal conditions ¹⁾ after trimming
Accuracy	Δf_{LT}	CC	-1.7	_	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C) ²⁾
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C) ²⁾
Accuracy with calibration based on temperature sensor	$\Delta f_{\rm LTT}$	CC	-1.3	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \degree C to 105 \degree C)^{2)}$
			-2.6	_	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})^{2)}$

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.

3.3.5 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	;	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
SWDCLK high time	t ₁ SR	50	-	500000	ns	-	
SWDCLK low time	t_2 SR	50	-	500000	ns	-	
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-	
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-	
SWDIO output valid time	t ₅ CC	_	-	68	ns	C _L = 50 pF	
after SWDCLK rising edge		_	-	62	ns	C _L = 30 pF	
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns		

Table 23	SWD Interface Timing Parameters (Operating Conditions apply)
	or b interface rinning raranetere (operating contaitone apply)

3.3.7 Peripheral Timings

3.3.7.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 25 USIC SSC Master Mode Timing

Parameter	Symbol		,	Values	5	Unit	Note / Test Condition
			Min.	Тур.	Max.		
Slave select output SELO active to first SCLKOUT transmit edge	<i>t</i> ₁	CC	80	_	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	<i>t</i> ₂	CC	0	-	-	ns	
Data output DOUT[3:0] valid time	<i>t</i> ₃	СС	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	<i>t</i> ₄	SR	80	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	<i>t</i> ₅	SR	0	_	_	ns	

Table 26 USIC SSC Slave Mode Timing

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	10	_	_	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	10	_	-	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

.....

Electrical Parameter

l able 26	USIC SSC Slave Mode Timing (cont'd)					
Parameter		Symbol	Values	ι		

- -

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	10	_	_	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	10	-	-	ns	
Data output DOUT[3:0] valid time	t ₁₄	СС	-	-	80	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 17 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Table 28 USIC IIC Fast Mode Timing ¹⁾

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 18 USIC IIC Stand and Fast Mode Timing

3.3.7.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₁ CC	2/f _{MCLK}	-	-	ns	$V_{\text{DDP}} \ge 3 \text{ V}$
		4/f _{MCLK}	-	-	ns	$V_{ m DDP}$ < 3 V
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Table 29 USIC IIS Master Transmitter Timing

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

4.2 Package Outlines

XMC1200 XMC1000 Family

Package and Reliability

Figure 23 PG-TSSOP-16-8