

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                           |
|----------------------------|------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                                    |
| Core Size                  | 32-Bit Single-Core                                                                 |
| Speed                      | 32MHz                                                                              |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, I <sup>2</sup> S, POR, PWM, WDT                            |
| Number of I/O              | 20                                                                                 |
| Program Memory Size        | 64KB (64K x 8)                                                                     |
| Program Memory Type        | FLASH                                                                              |
| EEPROM Size                | -                                                                                  |
| RAM Size                   | 16K x 8                                                                            |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                        |
| Data Converters            | A/D 14x12b                                                                         |
| Oscillator Type            | Internal                                                                           |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                      |
| Package / Case             | 28-TSSOP (0.173", 4.40mm Width)                                                    |
| Supplier Device Package    | PG-TSSOP-28-16                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/xmc1202t028x0064aaxuma1 |

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# XMC1200

Microcontroller Series for Industrial Applications

XMC1000 Family

ARM<sup>®</sup> Cortex<sup>™</sup>-M0 32-bit processor core

Data Sheet V1.4 2014-05

## Microcontrollers



#### **Summary of Features**

## 1 Summary of Features

The XMC1200 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1200 series devices are optimized for LED Lighting and Human-Machine interface (HMI) applications.





#### CPU Subsystem

- CPU Core
  - High Performance 32-bit ARM Cortex-M0 CPU
  - Most of 16-bit Thumb instruction set
  - Subset of 32-bit Thumb2 instruction set



#### Summary of Features

- High code density with 32-bit performance
- Single cycle 32-bit hardware multiplier
- System timer (SysTick) for Operating System support
- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- Event Request Unit (ERU) for programmable processing of external and internal service requests

#### **On-Chip Memories**

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

#### **Communication Peripherals**

- Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

#### **Analog Frontend Peripherals**

- A/D Converters, up to 12 channels, includes 2 sample and hold stages and a fast 12bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

#### **Industrial Control Peripherals**

- Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

#### System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG), provides random data with fast generation times

#### Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode



#### **Summary of Features**

#### Table 1Synopsis of XMC1200 Device Types (cont'd)

| Derivative        | Package        | Flash<br>Kbytes | SRAM<br>Kbytes |
|-------------------|----------------|-----------------|----------------|
| XMC1200-T038F0200 | PG-TSSOP-38-9  | 200             | 16             |
| XMC1202-T028X0016 | PG-TSSOP-28-16 | 16              | 16             |
| XMC1202-T028X0032 | PG-TSSOP-28-16 | 32              | 16             |
| XMC1202-T016X0016 | PG-TSSOP-16-8  | 16              | 16             |
| XMC1202-T016X0032 | PG-TSSOP-16-8  | 32              | 16             |
| XMC1202-Q024X0016 | PG-VQFN-24-19  | 16              | 16             |
| XMC1202-Q024X0032 | PG-VQFN-24-19  | 32              | 16             |
| XMC1201-Q040F0016 | PG-VQFN-40-13  | 16              | 16             |
| XMC1201-Q040F0032 | PG-VQFN-40-13  | 32              | 16             |
| XMC1201-Q040F0064 | PG-VQFN-40-13  | 64              | 16             |
| XMC1201-Q040F0128 | PG-VQFN-40-13  | 128             | 16             |
| XMC1201-Q040F0200 | PG-VQFN-40-13  | 200             | 16             |
| XMC1202-Q040X0016 | PG-VQFN-40-13  | 16              | 16             |
| XMC1202-Q040X0032 | PG-VQFN-40-13  | 32              | 16             |

## 1.3 Device Type Features

The following table lists the available features per device type.

## Table 2 Features of XMC1200 Device Types<sup>1)</sup>

| Derivative   | ADC channel | ACMP | BCCU | LEDTS |
|--------------|-------------|------|------|-------|
| XMC1200-T038 | 16          | 3    | 1    | 2     |
| XMC1201-T038 | 16          | -    | -    | 2     |
| XMC1202-T028 | 14          | 3    | 1    | -     |
| XMC1202-T016 | 11          | 2    | 1    | -     |
| XMC1202-Q024 | 13          | 3    | 1    | -     |
| XMC1201-Q040 | 16          | -    | -    | 2     |
| XMC1202-Q040 | 16          | 3    | 1    | -     |

1) Features that are not included in this table are available in all the derivatives



#### **General Device Information**

## 2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.



Figure 4 XMC1200 PG-TSSOP-38 Pin Configuration (top view)



## XMC1200 XMC1000 Family

#### **General Device Information**



Figure 5

XMC1200 PG-TSSOP-28 Pin Configuration (top view)



Figure 6 XMC1200 PG-TSSOP-16 Pin Configuration (top view)



#### **General Device Information**

## 2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

| Table 7 | Port I/O | Function | Description |
|---------|----------|----------|-------------|
|         |          |          |             |

| Function |          | Outputs  |          | Inputs   |          |          |  |  |  |
|----------|----------|----------|----------|----------|----------|----------|--|--|--|
|          | ALT1     | ALTn     | HWO0     | HWI0     | Input    | Input    |  |  |  |
| P0.0     |          | MODA.OUT | MODB.OUT | MODB.INA | MODC.INA |          |  |  |  |
| Pn.y     | MODA.OUT |          |          |          | MODA.INA | MODC.INB |  |  |  |

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn\_IN.y, Pn\_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn\_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn\_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

## Table 8 Port I/O Functions

| Function |                          |                       |                 |                       | Outputs |                       |                          |                      |                     |                  | Inputs              |                   |            |            |            |                    |                    |                    |       |
|----------|--------------------------|-----------------------|-----------------|-----------------------|---------|-----------------------|--------------------------|----------------------|---------------------|------------------|---------------------|-------------------|------------|------------|------------|--------------------|--------------------|--------------------|-------|
|          | ALT1                     | ALT2                  | ALT3            | ALT4                  | ALT5    | ALT6                  | ALT7                     | HWO0                 | HWO1                | HWIO             | HWI1                | Input             | Input      | Input      | Input      | Input              | Input              | Input              | Input |
| P0.0     | ERU0.<br>PDOUT0          | LEDTS0.<br>LINE7      | ERU0.<br>GOUT0  | CCU40.<br>OUT0        |         | USIC0_CH0.<br>SELO0   | USIC0_CH1.<br>SELO0      | LEDTS0.<br>EXTENDED7 |                     | LEDTS0.<br>TSIN7 | LEDTS0.<br>TSIN7    | BCCU0.<br>TRAPINB | CCU40.IN0C |            |            | USIC0_CH0.<br>DX2A | USIC0_CH1.<br>DX2A |                    |       |
| P0.1     | ERU0.<br>PDOUT1          | LEDTS0.<br>LINE6      | ERU0.<br>GOUT1  | CCU40.<br>OUT1        |         | BCCU0.<br>OUT8        | SCU.<br>VDROP            | LEDTS0.<br>EXTENDED6 |                     | LEDTS0.<br>TSIN6 | LEDTS0.<br>TSIN6    |                   | CCU40.IN1C |            |            |                    |                    |                    |       |
| P0.2     | ERU0.<br>PDOUT2          | LEDTS0.<br>LINE5      | ERU0.<br>GOUT2  | CCU40.<br>OUT2        |         | VADC0.<br>EMUX02      |                          | LEDTS0.<br>EXTENDED5 |                     | LEDTS0.<br>TSIN5 | LEDTS0.<br>TSIN5    |                   | CCU40.IN2C |            |            |                    |                    |                    |       |
| P0.3     | ERU0.<br>PDOUT3          | LEDTS0.<br>LINE4      | ERU0.<br>GOUT3  | CCU40.<br>OUT3        |         | VADC0.<br>EMUX01      |                          | LEDTS0.<br>EXTENDED4 |                     | LEDTS0.<br>TSIN4 | LEDTS0.<br>TSIN4    |                   | CCU40.IN3C |            |            |                    |                    |                    |       |
| P0.4     | BCCU0.<br>OUT0           | LEDTS0.<br>LINE3      | LEDTS0.<br>COL3 | CCU40.<br>OUT1        |         | VADC0.<br>EMUX00      | WWDT.<br>SERVICE_O<br>UT | LEDTS0.<br>EXTENDED3 |                     | LEDTS0.<br>TSIN3 | LEDTS0.<br>TSIN3    |                   |            |            |            |                    |                    |                    |       |
| P0.5     | BCCU0.<br>OUT1           | LEDTS0.<br>LINE2      | LEDTS0.<br>COL2 | CCU40.<br>OUT0        |         | ACMP2. OUT            |                          | LEDTS0.<br>EXTENDED2 |                     | LEDTS0.<br>TSIN2 | LEDTS0.<br>TSIN2    |                   |            |            |            |                    |                    |                    |       |
| P0.6     | BCCU0.<br>OUT2           | LEDTS0.<br>LINE1      | LEDTS0.<br>COL1 | CCU40.<br>OUT0        |         | USIC0_CH1.<br>MCLKOUT | USIC0_CH1.<br>DOUT0      | LEDTS0.<br>EXTENDED1 |                     | LEDTS0.<br>TSIN1 | LEDTS0.<br>TSIN1    |                   | CCU40.IN0B |            |            | USIC0_CH1.<br>DX0C |                    |                    |       |
| P0.7     | BCCU0.<br>OUT3           | LEDTS0.<br>LINE0      | LEDTS0.<br>COL0 | CCU40.<br>OUT1        |         | USIC0_CH0.<br>SCLKOUT | USIC0_CH1.<br>DOUT0      | LEDTS0.<br>EXTENDED0 |                     | LEDTS0.<br>TSIN0 | LEDTS0.<br>TSIN0    |                   | CCU40.IN1B |            |            | USIC0_CH0.<br>DX1C | USIC0_CH1.<br>DX0D | USIC0_CH1.<br>DX1C |       |
| P0.8     | BCCU0.<br>OUT4           | LEDTS1.<br>LINE0      | LEDTS0.<br>COLA | CCU40.<br>OUT2        |         | USIC0_CH0.<br>SCLKOUT | USIC0_CH1.<br>SCLKOUT    | LEDTS1.<br>EXTENDED0 |                     | LEDTS1.<br>TSIN0 | LEDTS1.<br>TSIN0    |                   | CCU40.IN2B |            |            | USIC0_CH0.<br>DX1B | USIC0_CH1.<br>DX1B |                    |       |
| P0.9     | BCCU0.<br>OUT5           | LEDTS1.<br>LINE1      | LEDTS0.<br>COL6 | CCU40.<br>OUT3        |         | USIC0_CH0.<br>SELO0   | USIC0_CH1.<br>SELO0      | LEDTS1.<br>EXTENDED1 |                     | LEDTS1.<br>TSIN1 | LEDTS1.<br>TSIN1    |                   | CCU40.IN3B |            |            | USIC0_CH0.<br>DX2B | USIC0_CH1.<br>DX2B |                    |       |
| P0.10    | BCCU0.<br>OUT6           | LEDTS1.<br>LINE2      | LEDTS0.<br>COL5 | ACMP0. OUT            |         | USIC0_CH0.<br>SELO1   | USIC0_CH1.<br>SELO1      | LEDTS1.<br>EXTENDED2 |                     | LEDTS1.<br>TSIN2 | LEDTS1.<br>TSIN2    |                   |            |            |            | USIC0_CH0.<br>DX2C | USIC0_CH1.<br>DX2C |                    |       |
| P0.11    | BCCU0.<br>OUT7           | LEDTS1.<br>LINE3      | LEDTS0.<br>COL4 | USIC0_CH0.<br>MCLKOUT |         | USIC0_CH0.<br>SELO2   | USIC0_CH1.<br>SELO2      | LEDTS1.<br>EXTENDED3 |                     | LEDTS1.<br>TSIN3 | LEDTS1.<br>TSIN3    |                   |            |            |            | USIC0_CH0.<br>DX2D | USIC0_CH1.<br>DX2D |                    |       |
| P0.12    | BCCU0.<br>OUT6           | LEDTS1.<br>LINE4      | LEDTS0.<br>COL3 | LEDTS1.<br>COL3       |         | USIC0_CH0.<br>SELO3   |                          | LEDTS1.<br>EXTENDED4 |                     | LEDTS1.<br>TSIN4 | LEDTS1.<br>TSIN4    | BCCU0.<br>TRAPINA | CCU40.IN0A | CCU40.IN1A | CCU40.IN2A | CCU40.IN3A         | USIC0_CH0.<br>DX2E |                    |       |
| P0.13    | WWDT.<br>SERVICE_O<br>UT | LEDTS1.<br>LINE5      | LEDTS0.<br>COL2 | LEDTS1.<br>COL2       |         | USIC0_CH0.<br>SELO4   |                          | LEDTS1.<br>EXTENDED5 |                     | LEDTS1.<br>TSIN5 | LEDTS1.<br>TSIN5    |                   |            |            |            | USIC0_CH0.<br>DX2F |                    |                    |       |
| P0.14    | BCCU0.<br>OUT7           | LEDTS1.<br>LINE6      | LEDTS0.<br>COL1 | LEDTS1.<br>COL1       |         | USIC0_CH0.<br>DOUT0   | USIC0_CH0.<br>SCLKOUT    | LEDTS1.<br>EXTENDED6 |                     | LEDTS1.<br>TSIN6 | LEDTS1.<br>TSIN6    |                   |            |            |            | USIC0_CH0.<br>DX0A | USIC0_CH0.<br>DX1A |                    |       |
| P0.15    | BCCU0.<br>OUT8           | LEDTS1.<br>LINE7      | LEDTS0.<br>COL0 | LEDTS1.<br>COL0       |         | USIC0_CH0.<br>DOUT0   | USIC0_CH1.<br>MCLKOUT    | LEDTS1.<br>EXTENDED7 |                     | LEDTS1.<br>TSIN7 | LEDTS1.<br>TSIN7    |                   |            |            |            | USIC0_CH0.<br>DX0B |                    |                    |       |
| P1.0     | BCCU0.<br>OUT0           | CCU40.<br>OUT0        | LEDTS0.<br>COL0 | LEDTS1.<br>COLA       |         | ACMP1. OUT            | USIC0_CH0.<br>DOUT0      |                      | USIC0_CH0.<br>DOUT0 |                  | USIC0_CH0.<br>HWIN0 |                   |            |            |            | USIC0_CH0.<br>DX0C |                    |                    |       |
| 91.1     | VADC0.<br>EMUX00         | CCU40.<br>OUT1        | LEDTS0.<br>COL1 | LEDTS1.<br>COL0       |         | USIC0_CH0.<br>DOUT0   | USIC0_CH1.<br>SELO0      |                      | USIC0_CH0.<br>DOUT1 |                  | USIC0_CH0.<br>HWIN1 |                   |            |            |            | USIC0_CH0.<br>DX0D | USIC0_CH0.<br>DX1D | USIC0_CH1.<br>DX2E |       |
| P1.2     | VADC0.<br>EMUX01         | CCU40.<br>OUT2        | LEDTS0.<br>COL2 | LEDTS1.<br>COL1       |         | ACMP2. OUT            | USIC0_CH1.<br>DOUT0      |                      | USIC0_CH0.<br>DOUT2 |                  | USIC0_CH0.<br>HWIN2 |                   |            |            |            | USIC0_CH1.<br>DX0B |                    |                    |       |
| 21.3     | VADC0.<br>EMUX02         | CCU40.<br>OUT3        | LEDTS0.<br>COL3 | LEDTS1.<br>COL2       |         | USIC0_CH1.<br>SCLKOUT | USIC0_CH1.<br>DOUT0      |                      | USIC0_CH0.<br>DOUT3 |                  | USIC0_CH0.<br>HWIN3 |                   |            |            |            | USIC0_CH1.<br>DX0A | USIC0_CH1.<br>DX1A |                    |       |
| P1.4     | VADC0.<br>EMUX10         | USIC0_CH1.<br>SCLKOUT | LEDTS0.<br>COL4 | LEDTS1.<br>COL3       |         | USIC0_CH0.<br>SELO0   | USIC0_CH1.<br>SELO1      |                      |                     |                  |                     |                   |            |            |            | USIC0_CH0.<br>DX5E | USIC0_CH1.<br>DX5E |                    |       |
| P1.5     | VADC0.<br>EMUX11         | USIC0_CH0.<br>DOUT0   | LEDTS0.<br>COLA | BCCU0.<br>OUT1        |         | USIC0_CH0.<br>SELO1   | USIC0_CH1.<br>SELO2      |                      |                     |                  |                     |                   |            |            |            | USIC0_CH1.<br>DX5F |                    |                    |       |



Data Sheet

XMC1200 XMC1000 Family



## 3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMC1200.

## 3.1 General Parameters

#### 3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1200 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

• CC

Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMC1200 and must be regarded for a system design.

SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC1200 is designed in.



| Parameter                                        | Symbol                     |      | Value | s                          | Unit                           | Note /                                                                          |
|--------------------------------------------------|----------------------------|------|-------|----------------------------|--------------------------------|---------------------------------------------------------------------------------|
|                                                  |                            | Min. | Тур.  | Max.                       |                                | Test Condition                                                                  |
| Gain settings                                    | $G_{\sf IN}{\sf CC}$       |      | 1     |                            | -                              | GNCTRxz.GAINy<br>= 00 <sub>B</sub> (unity gain)                                 |
|                                                  |                            |      | 3     |                            | -                              | $GNCTRxz.GAINy = 01_B (gain g1)$                                                |
|                                                  |                            |      | 6     |                            | -                              | GNCTRxz.GAINy<br>= 10 <sub>B</sub> (gain g2)                                    |
|                                                  |                            |      | 12    |                            | -                              | GNCTRxz.GAINy<br>= 11 <sub>B</sub> (gain g3)                                    |
| Sample Time                                      | t <sub>sample</sub> CC     | 3    | -     | -                          | 1 /<br><i>f</i> <sub>ADC</sub> | $V_{\rm DDP}$ = 5.0 V                                                           |
|                                                  |                            | 3    | -     | -                          | 1 /<br>f <sub>ADC</sub>        | $V_{\rm DDP}$ = 3.3 V                                                           |
|                                                  |                            | 30   | -     | -                          | 1 /<br><i>f</i> <sub>ADC</sub> | $V_{\rm DDP}$ = 1.8 V                                                           |
| Sigma delta loop hold time                       | t <sub>SD_hold</sub> CC    | 20   | _     | -                          | μS                             | Residual charge<br>stored in an active<br>sigma delta loop<br>remains available |
| Conversion time in fast compare mode             | t <sub>CF</sub> CC         |      | 9     |                            | 1 /<br>f <sub>ADC</sub>        | 2)                                                                              |
| Conversion time<br>in 12-bit mode                | <i>t</i> <sub>C12</sub> CC |      | 20    |                            | 1 /<br>f <sub>ADC</sub>        | 2)                                                                              |
| Maximum sample rate in 12-bit mode <sup>3)</sup> | $f_{\rm C12}{ m CC}$       | -    | -     | f <sub>ADC</sub> /<br>42.5 | -                              | 1 sample<br>pending                                                             |
|                                                  |                            | -    | -     | f <sub>ADC</sub> /<br>62.5 | -                              | 2 samples<br>pending                                                            |
| Conversion time<br>in 10-bit mode                | <i>t</i> <sub>C10</sub> CC |      | 18    |                            | 1 /<br>f <sub>ADC</sub>        | 2)                                                                              |
| Maximum sample rate in 10-bit mode <sup>3)</sup> | <i>f</i> <sub>C10</sub> CC | -    | -     | f <sub>ADC</sub> /<br>40.5 | -                              | 1 sample<br>pending                                                             |
|                                                  |                            | -    | -     | f <sub>ADC</sub> /<br>58.5 | -                              | 2 samples<br>pending                                                            |
| Conversion time<br>in 8-bit mode                 | t <sub>C8</sub> CC         |      | 16    |                            | 1 /<br>f <sub>ADC</sub>        | 2)                                                                              |

#### Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)



|                                                 |                           | · ·  |        |                            |           |                                                                 |  |
|-------------------------------------------------|---------------------------|------|--------|----------------------------|-----------|-----------------------------------------------------------------|--|
| Parameter                                       | Symbol                    |      | Values | 5                          | Unit      | Note /                                                          |  |
|                                                 |                           | Min. | Тур.   | Max.                       |           | Test Condition                                                  |  |
| Maximum sample rate in 8-bit mode <sup>3)</sup> | <i>f</i> <sub>C8</sub> CC | -    | -      | f <sub>ADC</sub> /<br>38.5 | -         | 1 sample<br>pending                                             |  |
|                                                 |                           | -    | -      | f <sub>ADC</sub> /<br>54.5 | -         | 2 samples<br>pending                                            |  |
| DNL error                                       | EA <sub>DNL</sub> CC      | -    | ±2.0   | -                          | LSB<br>12 |                                                                 |  |
| INL error                                       | EA <sub>INL</sub> CC      | -    | ±4.0   | -                          | LSB<br>12 |                                                                 |  |
| Gain error with external reference              | EA <sub>GAIN</sub> CC     | -    | ±0.5   | -                          | %         | SHSCFG.AREF = $00_{B}$ (calibrated)                             |  |
| Gain error with internal reference              | EA <sub>GAIN</sub> CC     | -    | ±3.6   | -                          | %         | SHSCFG.AREF =<br>1X <sub>B</sub> (calibrated),<br>-40°C - 105°C |  |
|                                                 |                           | -    | ±2.0   | -                          | %         | SHSCFG.AREF =<br>1X <sub>B</sub> (calibrated),<br>0°C - 85°C    |  |
| Offset error                                    | EA <sub>OFF</sub> CC      | -    | ±6.0   | -                          | LSB<br>12 | Calibrated                                                      |  |

#### Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

1) Not subject to production test, verified by design/characterization.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).



#### 3.3 AC Parameters

## 3.3.1 Testing Waveforms



Figure 11 Rise/Fall Time Parameters



Figure 12 Testing Waveform, Output Delay



Figure 13 Testing Waveform, Output High Impedance



## 3.3.5 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

| Parameter                                         | Symbol            |      | Values | ;      | Unit | Note /                 |  |
|---------------------------------------------------|-------------------|------|--------|--------|------|------------------------|--|
|                                                   |                   | Min. | Тур.   | Max.   |      | Test Condition         |  |
| SWDCLK high time                                  | t <sub>1</sub> SR | 50   | -      | 500000 | ns   | -                      |  |
| SWDCLK low time                                   | $t_2$ SR          | 50   | -      | 500000 | ns   | -                      |  |
| SWDIO input setup to SWDCLK rising edge           | t <sub>3</sub> SR | 10   | -      | -      | ns   | -                      |  |
| SWDIO input hold<br>after SWDCLK rising edge      | t <sub>4</sub> SR | 10   | -      | -      | ns   | -                      |  |
| SWDIO output valid time                           | t <sub>5</sub> CC | _    | -      | 68     | ns   | C <sub>L</sub> = 50 pF |  |
| after SWDCLK rising edge                          |                   | _    | -      | 62     | ns   | C <sub>L</sub> = 30 pF |  |
| SWDIO output hold time<br>from SWDCLK rising edge | t <sub>6</sub> CC | 4    | -      | -      | ns   |                        |  |

| Table 23 | SWD Interface Timing Parameters (Operating Conditions apply)   |
|----------|----------------------------------------------------------------|
|          | or b interface rinning raranetere (operating contaitone apply) |







## 3.3.6 SPD Timing Requirements

The optimum SPD decision time between  $0_B$  and  $1_B$  is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

|                 | •                  |                                 | •                               |                                             |                                                                                           |
|-----------------|--------------------|---------------------------------|---------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|
| Sample<br>Freq. | Sampling<br>Factor | Sample<br>Clocks 0 <sub>B</sub> | Sample<br>Clocks 1 <sub>B</sub> | Effective<br>Decision<br>Time <sup>1)</sup> | Remark                                                                                    |
| 8 MHz           | 4                  | 1 to 5                          | 6 to 12                         | 0.69 µs                                     | The other closest option $(0.81 \ \mu s)$ for the effective decision time is less robust. |

#### Table 24 Optimum Number of Sample Clocks for SPD

1) Nominal sample frequency period multiplied with  $0.5 + (max. number of 0_B sample clocks)$ 

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)



## 3.3.7 Peripheral Timings

## 3.3.7.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.* 

#### Table 25 USIC SSC Master Mode Timing

| Parameter                                                               | Symbol                |    | ,    | Values | 5    | Unit | Note /         |
|-------------------------------------------------------------------------|-----------------------|----|------|--------|------|------|----------------|
|                                                                         |                       |    | Min. | Тур.   | Max. |      | Test Condition |
| Slave select output SELO<br>active to first SCLKOUT<br>transmit edge    | <i>t</i> <sub>1</sub> | CC | 80   | _      | -    | ns   |                |
| Slave select output SELO<br>inactive after last<br>SCLKOUT receive edge | <i>t</i> <sub>2</sub> | CC | 0    | -      | -    | ns   |                |
| Data output DOUT[3:0] valid time                                        | <i>t</i> <sub>3</sub> | СС | -10  | -      | 10   | ns   |                |
| Receive data input<br>DX0/DX[5:3] setup time to<br>SCLKOUT receive edge | <i>t</i> <sub>4</sub> | SR | 80   | -      | -    | ns   |                |
| Data input DX0/DX[5:3]<br>hold time from SCLKOUT<br>receive edge        | <i>t</i> <sub>5</sub> | SR | 0    | _      | _    | ns   |                |

#### Table 26 USIC SSC Slave Mode Timing

| Parameter                                                                         | Symbol                    | Values |      |      | Unit | Note /         |
|-----------------------------------------------------------------------------------|---------------------------|--------|------|------|------|----------------|
|                                                                                   |                           | Min.   | Тур. | Max. |      | Test Condition |
| Select input DX2 setup to first clock input DX1 transmit edge <sup>1)</sup>       | <i>t</i> <sub>10</sub> SR | 10     | _    | _    | ns   |                |
| Select input DX2 hold after<br>last clock input DX1 receive<br>edge <sup>1)</sup> | <i>t</i> <sub>11</sub> SR | 10     | _    | -    | ns   |                |

Note: These parameters are not subject to production test, but verified by design and/or characterization.



.....

#### **Electrical Parameter**

| l able 26 | USIC SSC Slave Mode Timing (cont'd) |        |        |   |  |  |  |
|-----------|-------------------------------------|--------|--------|---|--|--|--|
| Parameter |                                     | Symbol | Values | ι |  |  |  |

- -

| Parameter                                                                                 |                 | nbol | Values |      |      | Unit | Note /         |
|-------------------------------------------------------------------------------------------|-----------------|------|--------|------|------|------|----------------|
|                                                                                           |                 |      | Min.   | Тур. | Max. |      | Test Condition |
| Receive data input<br>DX0/DX[5:3] setup time to<br>shift clock receive edge <sup>1)</sup> | t <sub>12</sub> | SR   | 10     | _    | _    | ns   |                |
| Data input DX0/DX[5:3] hold<br>time from clock input DX1<br>receive edge <sup>1)</sup>    | t <sub>13</sub> | SR   | 10     | -    | -    | ns   |                |
| Data output DOUT[3:0] valid time                                                          | t <sub>14</sub> | СС   | -      | -    | 80   | ns   |                |

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).





Figure 17 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.



#### Package and Reliability

## 4 Package and Reliability

The XMC1200 is a member of the XMC1000 Derivatives of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

## 4.1 Package Parameters

Table 31 provides the thermal characteristics of the packages used in XMC1200.

| Parameter                              | Symbol             | Lim  | it Values     | Unit | Package Types                |  |
|----------------------------------------|--------------------|------|---------------|------|------------------------------|--|
|                                        |                    | Min. | Max.          |      |                              |  |
| Exposed Die Pad<br>Dimensions          | $E x \times E y$   | -    | 2.7 × 2.7     | mm   | PG-VQFN-24-19                |  |
|                                        | CC                 | -    | 3.7 	imes 3.7 | mm   | PG-VQFN-40-13                |  |
| Thermal resistance<br>Junction-Ambient | $R_{\Theta JA}$ CC | -    | 104.6         | K/W  | PG-TSSOP-16-8 <sup>1)</sup>  |  |
|                                        |                    | -    | 83.2          | K/W  | PG-TSSOP-28-16 <sup>1)</sup> |  |
|                                        |                    | -    | 70.3          | K/W  | PG-TSSOP-38-9 <sup>1)</sup>  |  |
|                                        |                    | -    | 46.0          | K/W  | PG-VQFN-24-19 <sup>1)</sup>  |  |
|                                        |                    | -    | 38.4          | K/W  | PG-VQFN-40-131)              |  |

 Table 31
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground  $V_{SSP}$ , independent of EMC and thermal requirements.

## 4.1.1 Thermal Considerations

When operating the XMC1200 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance  $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

57



## XMC1200 XMC1000 Family

#### Package and Reliability



Figure 23 PG-TSSOP-16-8



## XMC1200 XMC1000 Family

#### Package and Reliability



Figure 24 PG-VQFN-24-19