E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.65V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub20f32g-a-qfp32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8UB2 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 48 MHz maximum operating frequency
- Memory:
 - Up to 64 KB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- Power:
 - Internal LDO regulator for CPU core voltage
 - Internal 5-to-3.3 V LDO allows direct connection to USB supply net
 - Power-on reset circuit and brownout detectors
- I/O: Up to 40 total multifunction I/O pins:
 - Flexible peripheral crossbar for peripheral routing
 - 10 mA source, 25 mA sink allows direct drive of LEDs
- Clock Sources:
 - Internal 48 MHz precision oscillator (±1.5% accuracy without USB clock recovery, ±0.25% accuracy with USB clock recovery)
 - Internal 80 kHz low-frequency oscillator
 - · External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 5-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 6 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated transceiver, and 1 KB FIFO RAM
 - 2 x UART
 - SPI™ Master / Slave
 - 2 x SMBus™/I2C™ Master / Slave
 - External Memory Interface (EMIF)
- Analog:
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - 2 x Low-current analog comparators
- On-Chip, Non-Intrusive Debugging
 - Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded USB bootloader
- Temperature range -40 to 85 °C
- Single power supply 2.65 to 3.6 V
- QFP48, QFP32, and QFN32 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8UB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 2.65 to 3.6 V operation and is available in 32-pin QFN, 32-pin QFP, or 48-pin QFP pack-ages. All package options are lead-free and RoHS compliant.

Device Package	Pin for Bootload Mode Entry
QFN48	P3.7
QFP32	P3.0 / C2D
QFN32	P3.0 / C2D

Table 3.3. Summary of Pins for Bootload Mode Entry

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 11, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating Supply Voltage on VDD	V _{DD}		2.7 ²	3.3	3.6	V
Operating Supply Voltage on VRE- GIN	V _{REGIN}		2.7	—	5.25	V
System Clock Frequency	f _{SYSCLK}		0		48	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Note:			•	•		·

1. All voltages with respect to GND

2. The USB specification requires 3.0 V minimum supply voltage.

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current					1	
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 48 MHz ²		12	14	mA
		F _{SYSCLK} = 24 MHz ²	—	7	8	mA
		F _{SYSCLK} = 80 kHz ³	—	280	_	μA
Idle Mode—Core halted with pe-	I _{DD}	F _{SYSCLK} = 48 MHz ²	—	6.5	8	mA
		F _{SYSCLK} = 24 MHz ²	—	3.5	5	mA
		F _{SYSCLK} = 80 kHz ³		220	—	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	105	_	μA
high frequency clocks stopped, Supply monitor off. Regulators in low-power mode.		LFO Stopped		100		μA
Stop Mode—Core halted and all clocks stopped, Regulators in low-power mode, Supply monitor off.	I _{DD}		— 10		_	μA
Shutdown Mode—Core halted and all clocks stopped,Regulators Off, Supply monitor off.	I _{DD}	-		0.25	_	μA
Analog Peripheral Supply Curren	ts		1			
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 48 MHz,		900	_	μA
		T _A = 25 °C				
Low-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	—	5	_	μA
		T _A = 25 °C				
ADC0 Supply Current	I _{ADC}	Operating at 500 ksps	—	750	1000	μA
		V _{DD} = 3.0 V				
On-chip Precision Reference	I _{VREFP}			75	_	μA
Temperature Sensor	I _{TSENSE}		—	35	—	μA
Comparator 0 (CMP0, CMP1)	I _{CMP}	CPMD = 11	_	1	_	μA
		CPMD = 10	—	4	_	μA
		CPMD = 01	—	10	_	μA
		CPMD = 00	—	20	_	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	50	μA
Regulator Bias Currents	I _{VREG}	Both Regulators in Normal Mode	—	200	_	μA
		Both Regulators in Low Power Mode	_	100	_	μA
		5 V Regulator Off, Internal LDO in Low Power Mode	—	150	_	μA
USB (USB0) Full-Speed	I _{USB}	Active		8		mA

Table 4.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	N _{bits}			10	1	Bits
Throughput Rate	f _S		_	_	500	ksps
Tracking Time	t _{TRK}		300	_	_	ns
SAR Clock Frequency	f _{SAR}		_	_	8.33	MHz
Conversion Time	t _{CNV}	10-Bit Conversion,	13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}		_	30	_	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Single-Ended (AIN+ - GND)	0	_	V _{REF}	V
		Differential (AIN+ - AIN-)	-V _{REF}	_	V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	_	dB
DC Performance, VREF = 2.4 V						
Integral Nonlinearity	INL		_	±0.5	±1	LSB
Differential Nonlinearity (Guaran- teed Monotonic)	DNL		_	±0.5	±1	LSB
Offset Error	E _{OFF}		-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.005	_	LSB/°C
Slope Error	E _M		_	-0.2	±0.5	%
Dynamic Performance 10 kHz Sir	ne Wave Inpi	ut 1dB below full scale, VREF = 2.4	V			
Signal-to-Noise	SNR		55	58	_	dB
Signal-to-Noise Plus Distortion	SNDR		55	58	_	dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		-	-73	_	dB

Table 4.8. ADC

Note:

Spurious-Free Dynamic Range

1. Absolute input pin voltage is limited by the VDD and GND supply pins.

SFDR

dB

78

4.1.9 Voltage Reference

Parameter	Symbol	Symbol Test Condition		Тур	Max	Unit			
On-chip Precision Reference									
Output Voltage	V _{REFP}	T = 25 °C	2.38	2.42	2.46	V			
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin		3	_	ms			
		0.1 µF ceramic bypass on VREF pin		100	_	μs			
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to GND	_	360	_	μV / μΑ			
Short-circuit current	ISC _{VREFP}		—	—	8	mA			
Power Supply Rejection	PSRR _{VRE} FP	VRE		140	_	ppm/V			
External Reference	External Reference								
Input Current	I _{EXTREF}	Sample Rate = 500 ksps; VREF = 3.0 V		9	_	μA			

Table 4.9. Voltage Reference

4.1.10 Temperature Sensor

Table 4.10. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Offset	V _{OFF}	T _A = 0 °C	_	764	_	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C		15	_	mV
Slope	М		_	2.87	_	mV/°C
Slope Error ¹	E _M			120	_	μV/°C
Linearity			—	0.5	—	°C
Turn-on Time			_	1.8	_	μs
Note:			*	*	*	•

1. Represents one standard deviation from the mean.

4.1.12 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	_	100	_	ns
(Highest Speed)		-100 mV Differential	_	250	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential		1.05	_	μs
est Power)		-100 mV Differential		5.2	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10		16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	_	-8	_	mV
		CPHYN = 10		-16	_	mV
		CPHYN = 11		-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01		6		mV
		CPHYP = 10		12	_	mV
		CPHYP = 11		24	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01		-6	_	mV
		CPHYN = 10		-12		mV
		CPHYN = 11	_	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01		4.5		mV
		CPHYP = 10		9	_	mV
		CPHYP = 11		18	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10		-9	_	mV
		CPHYN = 11		-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	—	4	_	mV
		CPHYP = 10		8	_	mV
		CPHYP = 11		16		mV

Table 4.12. Comparators

4.1.15 SMBus

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Standard Mode (100 kHz Class)	1					
I2C Operating Frequency	f _{I2C}		0	_	70 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	70 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		9.4	_	_	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		4.7	_	_	μs
Repeated START Condition Setup Time	t _{SU:STA}		9.4		_	μs
STOP Condition Setup Time	t _{SU:STO}		9.4	—	—	μs
Data Hold Time	t _{HD:DAT}		0	_	—	μs
Data Setup Time	t _{SU:DAT}		4.7	—	—	μs
Detect Clock Low Timeout	t _{TIMEOUT}		25	_	—	ms
Clock Low Period	t _{LOW}		4.7	_	—	μs
Clock High Period	tніgн		9.4	_	50 ³	μs
Fast Mode (400 kHz Class)						
I2C Operating Frequency	f _{I2C}		0	_	256 ²	kHz
SMBus Operating Frequency	f _{SMB}		40 ¹	_	256 ²	kHz
Bus Free Time Between STOP and START Conditions	t _{BUF}		2.6		_	μs
Hold Time After (Repeated) START Condition	t _{HD:STA}		1.3	_	_	μs
Repeated START Condition Setup Time	t _{SU:STA}		2.6	_	_	μs
STOP Condition Setup Time	t _{SU:STO}		2.6	_	—	μs
Data Hold Time	t _{HD:DAT}		0	_	—	μs
Data Setup Time	t _{SU:DAT}		1.3	—	—	μs
Detect Clock Low Timeout	t _{TIMEOUT}		25		—	ms
Clock Low Period	t _{LOW}		1.3		—	μs
Clock High Period	t _{HIGH}		2.6		50 ³	μs

Table 4.15. SMBus Peripheral Timing Performance (Master Mode)

Note:

1. The minimum SMBus frequency is limited by the maximum Clock High Period requirement of the SMBus specification.

2. The maximum I2C and SMBus frequencies are limited by the minimum Clock Low Period requirements of their respective specifications.

3. SMBus has a maximum requirement of 50 µs for Clock High Period. Operating frequencies lower than 40 kHz will be longer than 50 µs. I2C can support periods longer than 50 µs.

Parameter	Symbol	Clocks
SMBus Operating Frequency	f _{SMB}	f _{CSO} / 3
Bus Free Time Between STOP and START Conditions	t _{BUF}	2 / f _{CSO}
Hold Time After (Repeated) START Condition	t _{HD:STA}	1 / f _{CSO}
Repeated START Condition Setup Time	t _{SU:STA}	2 / f _{CSO}
STOP Condition Setup Time	t _{SU:STO}	2 / f _{CSO}
Clock Low Period	t _{LOW}	1 / f _{CSO}
Clock High Period	t _{HIGH}	2 / f _{CSO}
Note: 1. f _{CSO} is the SMBus peripheral clock source overflow frequency.		

Table 4.16. SMBus Peripheral Timing Formulas (Master Mode)

Figure 4.1. SMBus Peripheral Timing Diagram (Master Mode)

4.2 Thermal Conditions

Table 4.17. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Thermal Resistance	θ _{JA} QFP48 Packages		_	60	_	°C/W		
		QFP32 Packages	_	80	_	°C/W		
		QFN32 Packages	_	28	_	°C/W		
Note:								
1. Thermal resistance assumes a	multi-layer P	CB with any exposed pad soldered to	a PCB pad					

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (bus-powered). The VBUS signal is used to detect when USB is connected to a host device.

Figure 5.1. Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered)

Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (self-powered). The VBUS signal is used to detect when USB is connected to a host device and is shown with a resistor divider. This resistor divider (or functionally-equivalent circuit) on VBUS is required to meet the absolute maximum voltage on VBUS specification for self-powered systems where VDD and VIO may be unpowered when VBUS is connected to 5 V.

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
18	P4.4	Multifunction I/O		EMIF_D4	ADC0P.13
				EMIF_AD4m	ADC0N.13
					CMP0N.3
19	P4.3	Multifunction I/O		EMIF_D3	ADC0P.12
				EMIF_AD3m	ADC0N.12
					CMP0P.3
20	P4.2	Multifunction I/O		EMIF_D2	ADC0P.33
				EMIF_AD2m	ADC0N.33
21	P4.1	Multifunction I/O		EMIF_D1	ADC0P.32
				EMIF_AD1m	ADC0N.32
22	P4.0	Multifunction I/O		EMIF_D0	ADC0P.11
				EMIF_AD0m	ADC0N.11
					CMP1N.2
23	P3.7	Multifunction I/O	Yes	EMIF_A7	ADC0P.10
				EMIF_A15m	ADC0N.10
					CMP1P.2
24	P3.6	Multifunction I/O	Yes	EMIF_A6	ADC0P.29
				EMIF_A14m	ADC0N.29
25	P3.5	Multifunction I/O	Yes	EMIF_A5	ADC0P.9
				EMIF_A13m	ADC0N.9
					CMP0N.2
26	P3.4	Multifunction I/O	Yes	EMIF_A4	ADC0P.8
				EMIF_A12m	ADC0N.8
					CMP0P.2
27	P3.3	Multifunction I/O	Yes	EMIF_A3	ADC0P.28
				EMIF_A11m	ADC0N.28
28	P3.2	Multifunction I/O	Yes	EMIF_A2	ADC0P.27
				EMIF_A10m	ADC0N.27
29	P3.1	Multifunction I/O	Yes	EMIF_A1	ADC0P.7
				EMIF_A9m	ADC0N.7
					CMP1N.1
30	P3.0	Multifunction I/O	Yes	EMIF_A0	ADC0P.6
				EMIF_A8m	ADC0N.6
					CMP1P.1
31	P2.7	Multifunction I/O	Yes	EMIF_A15	ADC0P.26
					ADC0N.26

6.2 EFM8UB2x-QFP32 Pin Definitions

Figure 6.2. EFM8UB2x-QFP32 Pinout

Table 6.2.	Pin Definitions	for EFM8UB2x-	-QFP32
------------	-----------------	---------------	--------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	INT0.1	ADC0P.18
				INT1.1	ADC0N.18
					CMP0N.4
2	P0.0	Multifunction I/O	Yes	INT0.0	ADC0P.17
				INT1.0	ADC0N.17
					CMP0P.4
3	GND	Ground			
4	D+	USB Data Positive			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
32	P0.2	Multifunction I/O	Yes	INT0.2	
				INT1.2	
Note: XTAL1 and XTAL2 are not available on this package. EXTCLK is still available on P0.3.					

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
30	P0.4	Multifunction I/O	Yes	INT0.4	ADC0P.19
				INT1.4	ADC0N.19
				UART0_TX	CMP1P.4
31	P0.3	Multifunction I/O	Yes	EXTCLK	
				INT0.3	
				INT1.3	
32	P0.2	Multifunction I/O	Yes	INT0.2	
				INT1.2	
Center	GND	Ground			
Note: XTAL1 and XTAL2 are not available on this package. EXTCLK is still available on P0.3.					

7.2 QFP48 PCB Land Pattern

Figure 7.2. QFP48 PCB Land Pattern Drawing

Table 7.2. QFP48 PCB Land Pattern Dimensions

Dimension	Min	Мах	
C1	8.30	8.40	
C2	8.30	8.40	
E	0.50 BSC		
X1	0.20	0.30	
Y1	1.40	1.50	

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах	
A	_	_	1.60	
A1	0.05	—	0.15	
A2	1.35	1.40	1.45	
b	0.30	0.37	0.45	
D	9.00 BSC			
D1	7.00 BSC			
е	0.80 BSC			
E	9.00 BSC			
E1	7.00 BSC			
L	0.45 0.60 0.75			
ааа	0.20			

9.2 QFN32 PCB Land Pattern

Figure 9.2. QFN32 PCB Land Pattern Drawing

Table 9.2.	QFN32 PCB	Land Pattern	Dimensions
------------	-----------	--------------	------------

Dimension	Min	Мах	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Figure 9.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

6.	Pin Definitions	8
	6.1 EFM8UB2x-QFP48 Pin Definitions	8
	6.2 EFM8UB2x-QFP32 Pin Definitions	3
	6.3 EFM8UB2x-QFN32 Pin Definitions	7
7.	QFP48 Package Specifications.	1
	7.1 QFP48 Package Dimensions	1
	7.2 QFP48 PCB Land Pattern	3
	7.3 QFP48 Package Marking	4
8.	QFP32 Package Specifications.	5
	8.1 QFP32 Package Dimensions	5
	8.2 QFP32 PCB Land Pattern	7
	8.3 QFP32 Package Marking	8
9.	QFN32 Package Specifications.	9
	9.1 QFN32 Package Dimensions.	9
	9.2 QFN32 PCB Land Pattern	1
	9.3 QFN32 Package Marking	2
10	. Revision History	3
	10.1 Revision 1.3	3
	10.2 Revision 1.2	3
	10.3 Revision 1.1	3
Та	ble of Contents	4

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com