
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

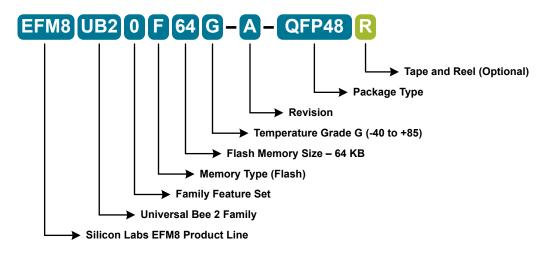
Details

Detuils	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.65V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub20f32g-b-qfp32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List


The EFM8UB2 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 48 MHz maximum operating frequency
- Memory:
 - Up to 64 KB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- Power:
 - Internal LDO regulator for CPU core voltage
 - Internal 5-to-3.3 V LDO allows direct connection to USB supply net
 - Power-on reset circuit and brownout detectors
- I/O: Up to 40 total multifunction I/O pins:
 - Flexible peripheral crossbar for peripheral routing
 - 10 mA source, 25 mA sink allows direct drive of LEDs
- Clock Sources:
 - Internal 48 MHz precision oscillator (±1.5% accuracy without USB clock recovery, ±0.25% accuracy with USB clock recovery)
 - Internal 80 kHz low-frequency oscillator
 - · External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 5-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 6 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated transceiver, and 1 KB FIFO RAM
 - 2 x UART
 - SPI™ Master / Slave
 - 2 x SMBus™/I2C™ Master / Slave
 - External Memory Interface (EMIF)
- Analog:
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - 2 x Low-current analog comparators
- On-Chip, Non-Intrusive Debugging
 - Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded USB bootloader
- Temperature range -40 to 85 °C
- Single power supply 2.65 to 3.6 V
- QFP48, QFP32, and QFN32 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8UB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 2.65 to 3.6 V operation and is available in 32-pin QFN, 32-pin QFP, or 48-pin QFP pack-ages. All package options are lead-free and RoHS compliant.

2. Ordering Information

Figure 2.1. EFM8UB2 Part Numbering

All EFM8UB2 family members have the following features:

- · CIP-51 Core running up to 48 MHz
- Two Internal Oscillators (48 MHz and 80 kHz)
- USB Full/Low speed Function Controller
- 5 V-In, 3.3 V-Out Regulator
- 2 SMBus/I2C Interfaces
- SPI
- 2 UARTs
- 5-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 6 16-bit Timers
- 2 Analog Comparators
- 10-bit Differential Analog-to-Digital Converter with integrated multiplexer and temperature sensor
- Pre-loaded USB bootloader

In addition to these features, each part number in the EFM8UB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Crystal Oscillator	External Memory Inferface	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8UB20F64G-B-QFP48	64	4352	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F64G-B-QFP32	64	4352	25	20	5	4	—	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F64G-B-QFN32	64	4352	25	20	5	4	_	_	Yes	-40 to +85 °C	QFN32
EFM8UB20F32G-B-QFP48	32	2304	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F32G-B-QFP32	32	2304	25	20	5	4	_	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F32G-B-QFN32	32	2304	25	20	5	4	_		Yes	-40 to +85 °C	QFN32

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted Code resumes execution on wake event 	1. Switch SYSCLK to HFOSC0 2. Set SUSPEND bit in HFO0CN	USB0 Bus Activity
Stop	 All internal power nets shut down Pins retain state Exit on any reset source 	Set STOP bit in PCON0	Any reset source
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG01CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P3.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P4.0-P4.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 on some packages.

- Up to 40 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1) available on P0 pins.

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 48 MHz oscillator divided by 4, then divided by 8 (1.5 MHz).

- Provides clock to core and peripherals.
- 48 MHz internal oscillator (HFOSC0), accurate to ±1.5% over supply and temperature corners: accurate to +/- 0.25% when using USB clock recovery.
- 80 kHz low-frequency oscillator (LFOSC0).
- External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK) for QFP48 packages.
- External CMOS clock option (EXTCLK) for QFP32 and QFN32 packages.
- Internal oscillator has clock divider with eight settings for flexible clock scaling: 1, 2, 4, or 8.

3.10 Bootloader

All devices come pre-programmed with a USB bootloader. This bootloader resides in the last three pages of code flash, which includes the code security page; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

Figure 3.2. Flash Memory Map with Bootloader—64 KB Devices

Bootloader	Pins for Bootload Communication
UART	TX – P0.4
	RX – P0.5
USB	VBUS
	D+
	D-

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 11, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		2.7 ²	3.3	3.6	V
Operating Supply Voltage on VRE- GIN	V _{REGIN}		2.7	_	5.25	V
System Clock Frequency	f _{SYSCLK}		0	_	48	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Note:	1	1	1		1	L

1. All voltages with respect to GND

2. The USB specification requires 3.0 V minimum supply voltage.

EFM8UB2 Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
ses supply current by the speci 2. Includes supply current from re	fied amount. gulators, sup	_{DD} is specified and the mode is not m oply monitor, and High Frequency Osc oply monitor, and Low Frequency Osc	cillator.	isive, enablin	g the functio	ons increa-

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}		2.60	2.65	2.70	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	_	1.4	_	V
		Falling Voltage on VDD	0.75	_	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.7 V	_	_	1	ms
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	_	250	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	80	580	800	μs
VDD Supply Monitor Turn-On Time	t _{MON}		_	_	100	μs

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ¹	t _{WRITE}	One Byte	10	15	20	μs
Erase Time ¹	t _{ERASE}	One Page	10	15	22.5	ms
V _{DD} Voltage During Programming ²	V _{PROG}		2.7	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		10k	100k	_	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block	—	5.5	_	μs
		SYSCLK = 48 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

3. Data Retention Information is published in the Quarterly Quality and Reliability Report.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	N _{bits}			10		Bits
Throughput Rate	f _S		_	_	500	ksps
Tracking Time	t _{TRK}		300	—	—	ns
SAR Clock Frequency	f _{SAR}		_	_	8.33	MHz
Conversion Time	t _{CNV}	10-Bit Conversion,	13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}		_	30	—	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Single-Ended (AIN+ - GND)	0	_	V _{REF}	V
		Differential (AIN+ - AIN-)	-V _{REF}	_	V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	_	dB
DC Performance, VREF = 2.4 V						
Integral Nonlinearity	INL		_	±0.5	±1	LSB
Differential Nonlinearity (Guaran- teed Monotonic)	DNL		_	±0.5	±1	LSB
Offset Error	E _{OFF}		-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.005	—	LSB/°C
Slope Error	E _M		_	-0.2	±0.5	%
Dynamic Performance 10 kHz Sir	ne Wave Inp	ut 1dB below full scale, VREF = 2.4	v			
Signal-to-Noise	SNR		55	58	_	dB
Signal-to-Noise Plus Distortion	SNDR		55	58		dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		_	-73	_	dB

Table 4.8. ADC

Note:

Spurious-Free Dynamic Range

1. Absolute input pin voltage is limited by the VDD and GND supply pins.

SFDR

dB

78

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P4.4	Multifunction I/O		EMIF_D4	ADC0P.13
				EMIF_AD4m	ADC0N.13
					CMP0N.3
19	P4.3	Multifunction I/O		EMIF_D3	ADC0P.12
				EMIF_AD3m	ADC0N.12
					CMP0P.3
20	P4.2	Multifunction I/O		EMIF_D2	ADC0P.33
				EMIF_AD2m	ADC0N.33
21	P4.1	Multifunction I/O		EMIF_D1	ADC0P.32
				EMIF_AD1m	ADC0N.32
22	P4.0	Multifunction I/O		EMIF_D0	ADC0P.11
				EMIF_AD0m	ADC0N.11
					CMP1N.2
23	P3.7	Multifunction I/O	Yes	EMIF_A7	ADC0P.10
				EMIF_A15m	ADC0N.10
					CMP1P.2
24	P3.6	Multifunction I/O	Yes	EMIF_A6	ADC0P.29
				EMIF_A14m	ADC0N.29
25	P3.5	Multifunction I/O	Yes	EMIF_A5	ADC0P.9
				EMIF_A13m	ADC0N.9
					CMP0N.2
26	P3.4	Multifunction I/O	Yes	EMIF_A4	ADC0P.8
				EMIF_A12m	ADC0N.8
					CMP0P.2
27	P3.3	Multifunction I/O	Yes	EMIF_A3	ADC0P.28
				EMIF_A11m	ADC0N.28
28	P3.2	Multifunction I/O	Yes	EMIF_A2	ADC0P.27
				EMIF_A10m	ADC0N.27
29	P3.1	Multifunction I/O	Yes	EMIF_A1	ADC0P.7
				EMIF_A9m	ADC0N.7
					CMP1N.1
30	P3.0	Multifunction I/O	Yes	EMIF_A0	ADC0P.6
				EMIF_A8m	ADC0N.6
					CMP1P.1
31	P2.7	Multifunction I/O	Yes	EMIF_A15	ADC0P.26
					ADC0N.26

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
47	P0.7	Multifunction I/O	Yes	XTAL2	
				EXTCLK	
				INT0.7	
				INT1.7	
48	P0.6	Multifunction I/O	Yes	XTAL1	
				INT0.6	
				INT1.6	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
5	D-	USB Data Negative			
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	VBUS	USB VBUS Sense Input		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /	Yes		ADC0P.16
	C2D	C2 Debug Data			ADC0N.16
11	P2.7	Multifunction I/O	Yes		ADC0P.15
					ADC0N.15
12	P2.6	Multifunction I/O	Yes		ADC0P.14
					ADC0N.14
13	P2.5	Multifunction I/O	Yes		ADC0P.13
					ADC0N.13
					CMP0N.3
14	P2.4	Multifunction I/O	Yes		ADC0P.12
					ADC0N.12
					CMP0P.3
15	P2.3	Multifunction I/O	Yes		ADC0P.11
					ADC0N.11
					CMP1N.2
16	P2.2	Multifunction I/O	Yes		ADC0P.10
					ADC0N.10
					CMP1P.2
17	P2.1	Multifunction I/O	Yes		ADC0P.9
					ADC0N.9
					CMP0N.2
18	P2.0	Multifunction I/O	Yes		ADC0P.8
					ADC0N.8
					CMP0P.2
19	P1.7	Multifunction I/O	Yes		ADC0P.7
					ADC0N.7
					CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Yes	INT0.0	ADC0P.17
				INT1.0	ADC0N.17
					CMP0P.4
3	GND	Ground			
4	D+	USB Data Positive			
5	D-	USB Data Negative			
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	VBUS	USB VBUS Sense In- put		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /	Yes		ADC0P.16
	C2D	C2 Debug Data			ADC0N.16
11	P2.7	Multifunction I/O	Yes		ADC0P.15
					ADC0N.15
12	P2.6	Multifunction I/O	Yes		ADC0P.14
					ADC0N.14
13	P2.5	Multifunction I/O	Yes		ADC0P.13
					ADC0N.13
					CMP0N.3
14	P2.4	Multifunction I/O	Yes		ADC0P.12
					ADC0N.12
					CMP0P.3
15	P2.3	Multifunction I/O	Yes		ADC0P.11
					ADC0N.11
					CMP1N.2
16	P2.2	Multifunction I/O	Yes		ADC0P.10
					ADC0N.10
					CMP1P.2
17	P2.1	Multifunction I/O	Yes		ADC0P.9
					ADC0N.9
					CMP0N.2

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P2.0	Multifunction I/O	Yes		ADC0P.8
					ADC0N.8
					CMP0P.2
19	P1.7	Multifunction I/O	Yes		ADC0P.7
					ADC0N.7
					CMP1N.1
20	P1.6	Multifunction I/O	Yes		ADC0P.6
					ADC0N.6
					CMP1P.1
21	P1.5	Multifunction I/O	Yes		ADC0P.5
					ADC0N.5
					CMP0N.1
22	P1.4	Multifunction I/O	Yes		ADC0P.4
					ADC0N.4
					CMP0P.1
23	P1.3	Multifunction I/O	Yes		ADC0P.3
					ADC0N.3
					CMP1N.0
24	P1.2	Multifunction I/O	Yes		ADC0P.2
					ADC0N.2
					CMP1P.0
25	P1.1	Multifunction I/O	Yes		ADC0P.1
					ADC0N.1
					CMP0N.0
26	P1.0	Multifunction I/O	Yes		ADC0P.0
					ADC0N.0
					CMP0P.0
27	P0.7	Multifunction I/O	Yes	INT0.7	VREF
				INT1.7	
28	P0.6	Multifunction I/O	Yes	CNVSTR	
				INT0.6	
				INT1.6	
29	P0.5	Multifunction I/O	Yes	INT0.5	ADC0P.20
				INT1.5	ADC0N.20
				UART0_RX	CMP1N.4

7. QFP48 Package Specifications

7.1 QFP48 Package Dimensions

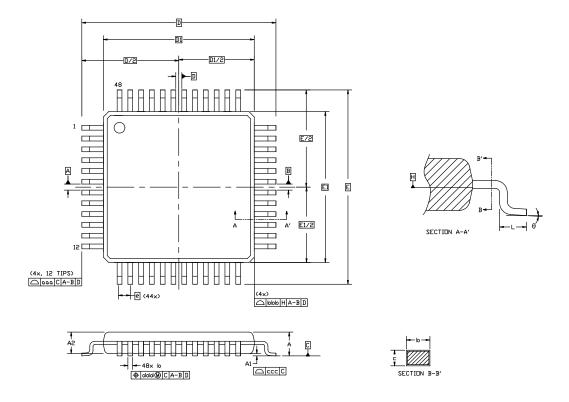


Figure 7.1. QFP48 Package Drawing

Table 7.1. QFP48 Package Dimensions

Dimension	Min	Тур	Мах
A	—	—	1.20
A1	0.05	—	0.15
A2	0.95	1.00	1.05
b	0.17	0.22	0.27
D	9.00 BSC		
D1	7.00 BSC		
е	0.50 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.45 0.60 0.75		
ааа	0.20		
bbb	0.20		

Dimension	Min	Тур	Мах
ссс	0.08		
ddd	0.08		
theta	0°	3.5°	7°

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation ABC.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

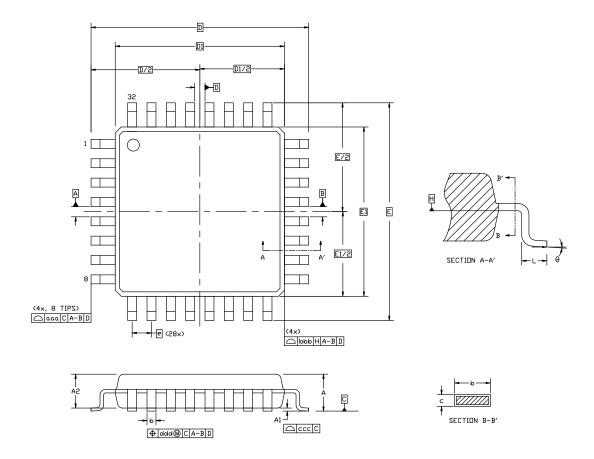


Figure 8.1. QFP32 Package Drawing

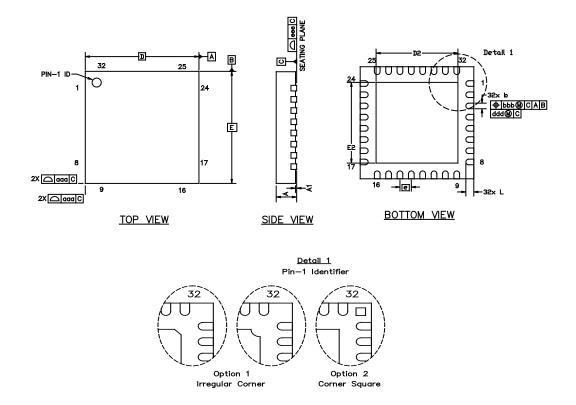
Table 8.1. QFP32 Package Dimensions

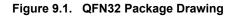
Dimension	Min	Тур	Мах
A	_	—	1.60
A1	0.05	_	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
D	9.00 BSC		
D1	7.00 BSC		
е	0.80 BSC		
E	9.00 BSC		
E1	7.00 BSC		
L	0.45 0.60 0.75		
ааа	0.20		

Dimension	Min	Тур	Мах
bbb	0.20		
ссс	0.10		
ddd		0.20	
theta	0°	3.5°	7°
Noto			

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.


2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.


3. This drawing conforms to JEDEC outline MS-026, variation BBA.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9. QFN32 Package Specifications

9.1 QFN32 Package Dimensions

Table 9.1. QFN32 Package Dimensions

Dimension	Min	Тур	Мах
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	5.00 BSC		
D2	3.20	3.30	3.40
е	0.50 BSC		
E	5.00 BSC		
E2	3.20	3.30	3.40
L	0.35	0.40	0.45
ааа	—	—	0.10
bbb		_	0.10

Dimension	Min	Тур	Мах
ddd	—	—	0.05
eee	_		0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9.2 QFN32 PCB Land Pattern

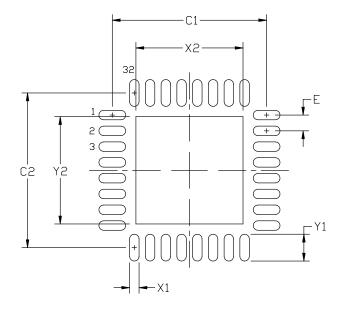


Figure 9.2. QFN32 PCB Land Pattern Drawing

Table 9.2.	QFN32 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Min	Мах	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

10. Revision History

10.1 Revision 1.3

Updated ordering part numbers to revision B.

Added Power-On Reset Threshold and Reset Delay from POR specifications to 4.1.3 Reset and Supply Monitor.

Added CRC Calculation Time specification to 4.1.4 Flash Memory.

Added VBUS Detection Input High Voltage and VBUS Detection Input Low Voltage specifications to Table 4.14 USB Transceiver on page 20.

Added specifications for 4.1.15 SMBus.

Added 5.4 Debug.

Added information about bootloader implementation and bootloader pinout to 3.10 Bootloader.

Added notes to Table 6.3 Pin Definitions for EFM8UB2x-QFN32 on page 37 and Table 6.2 Pin Definitions for EFM8UB2x-QFP32 on page 33 to clarify that XTAL1 and XTAL2 are not available on the 32-pin packages.

Updated Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 and Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 to recommend 4.7 μ F capacitors instead of 1.0 μ F capacitors.

Added text and Figure 5.3 Connection Diagram with Voltage Regulator Not Used on page 25 to demonstrate the proper connections when the regulator is not used.

Added reference to the Reference Manual in 3.1 Introduction.

10.2 Revision 1.2

Updated the VDD Ramp Time specification in Table 4.3 Reset and Supply Monitor on page 13 to a maximum of 1 ms.

10.3 Revision 1.1

Initial release.