

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.65V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub20f64g-b-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Communications and Other Digital Peripherals

Universal Serial Bus (USB0)

The USB0 module provides Full/Low Speed function for USB peripheral implementations. The USB function controller (USB0) consists of a Serial Interface Engine (SIE), USB transceiver (including matching resistors and configurable pull-up resistors), 1 KB FIFO block, and clock recovery mechanism for crystal-less operation. No external components are required. The USB0 module is Universal Serial Bus Specification 2.0 compliant.

The USB0 module includes the following features:

- Full and Low Speed functionality.
- Implements 4 bidirectional endpoints.
- USB 2.0 compliant USB peripheral support (no host capability).
- Direct module access to 1 KB of RAM for FIFO memory.
- Clock recovery to meet USB clocking requirements with no external components.

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- Asynchronous transmissions and receptions.
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data.
- Automatic start and stop generation.
- Automatic parity generation and checking.
- Three byte FIFO on receive.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- 8-bit dedicated clock clock rate generator.
- Support for multiple masters on the same data lines.

3.10 Bootloader

All devices come pre-programmed with a USB bootloader. This bootloader resides in the last three pages of code flash, which includes the code security page; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

Figure 3.2. Flash Memory Map with Bootloader—64 KB Devices

Table 3.2.	. Summary of Pins for Bootloader Communication
------------	--

Bootloader	Pins for Bootload Communication
UART	TX – P0.4
	RX – P0.5
USB	VBUS
	D+
	D-

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 11, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

4.1.1 Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Operating Supply Voltage on VDD	V _{DD}		2.7 ²	3.3	3.6	V
Operating Supply Voltage on VRE- GIN	V _{REGIN}		2.7	—	5.25	V
System Clock Frequency	f _{SYSCLK}		0		48	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Note:			•	•		·

1. All voltages with respect to GND

2. The USB specification requires 3.0 V minimum supply voltage.

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current					1	
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 48 MHz ²		12	14	mA
		F _{SYSCLK} = 24 MHz ²	—	7	8	mA
		F _{SYSCLK} = 80 kHz ³	—	280	_	μA
Idle Mode—Core halted with pe-	I _{DD}	F _{SYSCLK} = 48 MHz ²	—	6.5	8	mA
		F _{SYSCLK} = 24 MHz ²	—	3.5	5	mA
		F _{SYSCLK} = 80 kHz ³		220	—	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	105	_	μA
high frequency clocks stopped, Supply monitor off. Regulators in low-power mode.		LFO Stopped		100		μA
Stop Mode—Core halted and all clocks stopped, Regulators in low-power mode, Supply monitor off.	I _{DD}		_	100	_	μA
Shutdown Mode—Core halted and all clocks stopped,Regulators Off, Supply monitor off.	I _{DD}		_	0.25	_	μA
Analog Peripheral Supply Curren	ts		1			
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 48 MHz,		900	_	μA
		T _A = 25 °C				
Low-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	—	5	_	μA
		T _A = 25 °C				
ADC0 Supply Current	I _{ADC}	Operating at 500 ksps	—	750	1000	μA
		V _{DD} = 3.0 V				
On-chip Precision Reference	I _{VREFP}			75	_	μA
Temperature Sensor	I _{TSENSE}		—	35	—	μA
Comparator 0 (CMP0, CMP1)	I _{CMP}	CPMD = 11	_	1	_	μA
		CPMD = 10	—	4	_	μA
		CPMD = 01	—	10	_	μA
		CPMD = 00	—	20	_	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	50	μA
Regulator Bias Currents	I _{VREG}	Both Regulators in Normal Mode	—	200	_	μA
		Both Regulators in Low Power Mode	—	100	_	μA
		5 V Regulator Off, Internal LDO in Low Power Mode	—	150	_	μA
USB (USB0) Full-Speed	I _{USB}	Active		8	_	mA

Table 4.2. Power Consumption

EFM8UB2 Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Note:						
 Note: 1. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount. 2. Includes supply current from regulators, supply monitor, and High Frequency Oscillator. 3. Includes supply current from regulators, supply monitor, and Low Frequency Oscillator. 						

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}		2.60	2.65	2.70	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	—	1.4	—	V
		Falling Voltage on VDD	0.75	_	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.7 V			1	ms
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	_	250	μs
RST Low Time to Generate Reset	t _{RSTL}		15	—	—	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	80	580	800	μs
VDD Supply Monitor Turn-On Time	t _{MON}		_	_	100	μs

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ¹	t _{WRITE}	One Byte	10	15	20	μs
Erase Time ¹	t _{ERASE}	One Page	10	15	22.5	ms
V _{DD} Voltage During Programming ²	V _{PROG}		2.7	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		10k	100k	_	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block		5.5		μs
		SYSCLK = 48 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

3. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.5 Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
High Frequency Oscillator 0 (48 MHz)									
Oscillator Frequency	fHFOSC0	Full Temperature and Supply Range	47.3	48	48.7	MHz			
Power Supply Sensitivity	PSS _{HFOS} C0	T _A = 25 °C	_	110	_	ppm/V			
Temperature Sensitivity	TS _{HFOSC0}	V _{DD} = 3.0 V		25	_	ppm/°C			
Low Frequency Oscillator (80 kHz)									
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	75	80	85	kHz			
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	—	0.05	_	%/V			
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.0 V		65		ppm/°C			

Table 4.5. Internal Oscillators

4.1.6 Crystal Oscillator

Table 4.6. Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		0.02		30	MHz

4.1.7 External Clock Input

Table 4.7. External Clock Input

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
External Input CMOS Clock	f _{CMOS}		0	_	48	MHz
Frequency (at EXTCLK pin)						

4.1.9 Voltage Reference

Parameter	Symbol	nbol Test Condition		Тур	Max	Unit	
On-chip Precision Reference	In-chip Precision Reference						
Output Voltage	V _{REFP}	/ _{REFP} T = 25 °C		2.42	2.46	V	
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	^{/REFP} 4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin		3	_	ms	
		0.1 µF ceramic bypass on VREF pin		100	_	μs	
Load Regulation	LR _{VREFP}	R _{VREFP} Load = 0 to 200 μA to GND		360	_	μV / μΑ	
Short-circuit current	ISC _{VREFP}	SC _{VREFP}		—	8	mA	
Power Supply Rejection	PSRR _{VRE} FP	PSRR _{VRE} FP		140	_	ppm/V	
External Reference							
Input Current	I _{EXTREF}	XTREF Sample Rate = 500 ksps; VREF = 3.0 V		9	_	μA	

Table 4.9. Voltage Reference

4.1.10 Temperature Sensor

Table 4.10. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Offset	V _{OFF}	T _A = 0 °C	_	764	_	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C		15	_	mV
Slope	М		_	2.87	_	mV/°C
Slope Error ¹	E _M			120	_	μV/°C
Linearity			—	0.5	—	°C
Turn-on Time			_	1.8	_	μs
Note:			*	*	*	•

1. Represents one standard deviation from the mean.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	—	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	—	mV
		CPHYN = 10	—	-8	—	mV
		CPHYN = 11	—	-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}			7.5	_	pF
Common-Mode Rejection Ratio	CMRR _{CP}			60	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		_	60	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV

4.1.13 Port I/O

Table 4.13. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Output High Voltage	V _{OH}	I _{OH} = -3 mA	V _{DD} - 0.7	—	_	V
		Ι _{ΟΗ} = -10 μΑ	V _{DD} - 0.1	_	_	V
Output Low Voltage	V _{OL}	I _{OL} = 8.5 mA	_	_	0.6	V
		I _{OL} = 10 μA	_	_	0.1	V
Input High Voltage	V _{IH}		2.0	_	_	V
Input Low Voltage	V _{IL}		_	_	0.8	V
Pin Capacitance	C _{IO}		_	7	_	pF
Weak Pull-Up Current	I _{PU}	V _{DD} = 3.6	-50	-15	_	μA
(V _{IN} = 0 V)						
Input Leakage (Pullups off or Ana- log)	I _{LK}	GND < V _{IN} < V _{DD}	-1	—	1	μA
Input Leakage Current with V _{IN} above V _{DD}	I _{LK}	$V_{DD} < V_{IN} < V_{DD}$ +2.0 V	0	5	150	μA

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (bus-powered). The VBUS signal is used to detect when USB is connected to a host device.

Figure 5.1. Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered)

Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (self-powered). The VBUS signal is used to detect when USB is connected to a host device and is shown with a resistor divider. This resistor divider (or functionally-equivalent circuit) on VBUS is required to meet the absolute maximum voltage on VBUS specification for self-powered systems where VDD and VIO may be unpowered when VBUS is connected to 5 V.

Figure 5.2. Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered)

The figure below shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal 5 V-to-3.3 V regulator is not used.

Figure 5.3. Connection Diagram with Voltage Regulator Not Used

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
18	P4.4	Multifunction I/O		EMIF_D4	ADC0P.13
				EMIF_AD4m	ADC0N.13
					CMP0N.3
19	P4.3	Multifunction I/O		EMIF_D3	ADC0P.12
				EMIF_AD3m	ADC0N.12
					CMP0P.3
20	P4.2	Multifunction I/O		EMIF_D2	ADC0P.33
				EMIF_AD2m	ADC0N.33
21	P4.1	Multifunction I/O		EMIF_D1	ADC0P.32
				EMIF_AD1m	ADC0N.32
22	P4.0	Multifunction I/O		EMIF_D0	ADC0P.11
				EMIF_AD0m	ADC0N.11
					CMP1N.2
23	P3.7	Multifunction I/O	Yes	EMIF_A7	ADC0P.10
				EMIF_A15m	ADC0N.10
					CMP1P.2
24	P3.6	Multifunction I/O	Yes	EMIF_A6	ADC0P.29
				EMIF_A14m	ADC0N.29
25	P3.5	Multifunction I/O	Yes	EMIF_A5	ADC0P.9
				EMIF_A13m	ADC0N.9
					CMP0N.2
26	P3.4	Multifunction I/O	Yes	EMIF_A4	ADC0P.8
				EMIF_A12m	ADC0N.8
					CMP0P.2
27	P3.3	Multifunction I/O	Yes	EMIF_A3	ADC0P.28
				EMIF_A11m	ADC0N.28
28	P3.2	Multifunction I/O	Yes	EMIF_A2	ADC0P.27
				EMIF_A10m	ADC0N.27
29	P3.1	Multifunction I/O	Yes	EMIF_A1	ADC0P.7
				EMIF_A9m	ADC0N.7
					CMP1N.1
30	P3.0	Multifunction I/O	Yes	EMIF_A0	ADC0P.6
				EMIF_A8m	ADC0N.6
					CMP1P.1
31	P2.7	Multifunction I/O	Yes	EMIF_A15	ADC0P.26
					ADC0N.26

Pin	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
Number	2				
5	D-	USB Data Negative			
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	VBUS	USB VBUS Sense Input		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /	Yes		ADC0P.16
	C2D	C2 Debug Data			ADC0N.16
11	P2.7	Multifunction I/O	Yes		ADC0P.15
					ADC0N.15
12	P2.6	Multifunction I/O	Yes		ADC0P.14
					ADC0N.14
13	P2.5	Multifunction I/O	Yes		ADC0P.13
					ADC0N.13
					CMP0N.3
14	P2.4	Multifunction I/O	Yes		ADC0P.12
					ADC0N.12
					CMP0P.3
15	P2.3	Multifunction I/O	Yes		ADC0P.11
					ADC0N.11
					CMP1N.2
16	P2.2	Multifunction I/O	Yes		ADC0P.10
					ADC0N.10
					CMP1P.2
17	P2.1	Multifunction I/O	Yes		ADC0P.9
					ADC0N.9
					CMP0N.2
18	P2.0	Multifunction I/O	Yes		ADC0P.8
					ADC0N.8
					CMP0P.2
19	P1.7	Multifunction I/O	Yes		ADC0P.7
					ADCON 7
					CMP1N 1

Max

Note:

Dimension

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.3 QFP48 Package Marking

Figure 7.3. QFP48 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

8. QFP32 Package Specifications

8.1 QFP32 Package Dimensions

Figure 8.1. QFP32 Package Drawing

Table 8.1. QFP32 Package Dimensions

Dimension	Min	Тур	Мах			
A	_	_	1.60			
A1	0.05	—	0.15			
A2	1.35 1.40		1.45			
b	0.30	0.37	0.45			
D	9.00 BSC					
D1	7.00 BSC					
е		0.80 BSC				
E		9.00 BSC				
E1		7.00 BSC				
L	0.45	0.45 0.60 0.75				
ааа	0.20					

Dimension	Min	Тур	Мах			
bbb	0.20					
ССС	0.10					
ddd	0.20					
theta	0°	3.5°	7°			
		·				

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation BBA.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8.3 QFP32 Package Marking

Figure 8.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах
ddd	—	—	0.05
eee	_	_	0.08

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

10. Revision History

10.1 Revision 1.3

Updated ordering part numbers to revision B.

Added Power-On Reset Threshold and Reset Delay from POR specifications to 4.1.3 Reset and Supply Monitor.

Added CRC Calculation Time specification to 4.1.4 Flash Memory.

Added VBUS Detection Input High Voltage and VBUS Detection Input Low Voltage specifications to Table 4.14 USB Transceiver on page 20.

Added specifications for 4.1.15 SMBus.

Added 5.4 Debug.

Added information about bootloader implementation and bootloader pinout to 3.10 Bootloader.

Added notes to Table 6.3 Pin Definitions for EFM8UB2x-QFN32 on page 37 and Table 6.2 Pin Definitions for EFM8UB2x-QFP32 on page 33 to clarify that XTAL1 and XTAL2 are not available on the 32-pin packages.

Updated Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 and Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 to recommend 4.7 μ F capacitors instead of 1.0 μ F capacitors.

Added text and Figure 5.3 Connection Diagram with Voltage Regulator Not Used on page 25 to demonstrate the proper connections when the regulator is not used.

Added reference to the Reference Manual in 3.1 Introduction.

10.2 Revision 1.2

Updated the VDD Ramp Time specification in Table 4.3 Reset and Supply Monitor on page 13 to a maximum of 1 ms.

10.3 Revision 1.1

Initial release.

6.	Pin Definitions	8
	6.1 EFM8UB2x-QFP48 Pin Definitions	8
	6.2 EFM8UB2x-QFP32 Pin Definitions	3
	6.3 EFM8UB2x-QFN32 Pin Definitions	7
7.	QFP48 Package Specifications.	1
	7.1 QFP48 Package Dimensions	1
	7.2 QFP48 PCB Land Pattern	3
	7.3 QFP48 Package Marking	4
8.	QFP32 Package Specifications.	5
	8.1 QFP32 Package Dimensions	5
	8.2 QFP32 PCB Land Pattern	7
	8.3 QFP32 Package Marking	8
9.	QFN32 Package Specifications.	9
	9.1 QFN32 Package Dimensions.	9
	9.2 QFN32 PCB Land Pattern	1
	9.3 QFN32 Package Marking	2
10	. Revision History	3
	10.1 Revision 1.3	3
	10.2 Revision 1.2	3
	10.3 Revision 1.1	3
Та	ble of Contents	4

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Supp

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com