

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

-	
Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.65V ~ 3.6V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-QFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub20f64g-b-qfp32r

2. Ordering Information

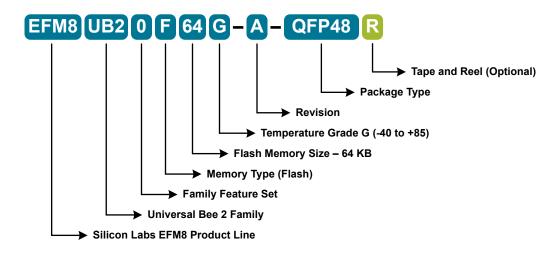


Figure 2.1. EFM8UB2 Part Numbering

All EFM8UB2 family members have the following features:

- · CIP-51 Core running up to 48 MHz
- Two Internal Oscillators (48 MHz and 80 kHz)
- · USB Full/Low speed Function Controller
- · 5 V-In, 3.3 V-Out Regulator
- · 2 SMBus/I2C Interfaces
- SPI
- · 2 UARTs
- 5-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- · 6 16-bit Timers
- · 2 Analog Comparators
- 10-bit Differential Analog-to-Digital Converter with integrated multiplexer and temperature sensor
- · Pre-loaded USB bootloader

In addition to these features, each part number in the EFM8UB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Crystal Oscillator	External Memory Inferface	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8UB20F64G-B-QFP48	64	4352	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F64G-B-QFP32	64	4352	25	20	5	4	_	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F64G-B-QFN32	64	4352	25	20	5	4	_	_	Yes	-40 to +85 °C	QFN32
EFM8UB20F32G-B-QFP48	32	2304	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F32G-B-QFP32	32	2304	25	20	5	4	_	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F32G-B-QFN32	32	2304	25	20	5	4	_	_	Yes	-40 to +85 °C	QFN32

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	_	_
Idle	Core halted All peripherals clocked and fully operational Code resumes execution on wake event	Set IDLE bit in PCON0	Any interrupt
Suspend	Core and peripheral clocks halted Code resumes execution on wake event	Switch SYSCLK to HFOSC0 Set SUSPEND bit in HFO0CN	USB0 Bus Activity
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	Set STOP bit in PCON0	Any reset source
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG01CN 2. Set STOP bit in PCON0	RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P3.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P4.0-P4.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 on some packages.

- Up to 40 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1) available on P0 pins.

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 48 MHz oscillator divided by 4, then divided by 8 (1.5 MHz).

- Provides clock to core and peripherals.
- 48 MHz internal oscillator (HFOSC0), accurate to ±1.5% over supply and temperature corners: accurate to +/- 0.25% when using USB clock recovery.
- 80 kHz low-frequency oscillator (LFOSC0).
- · External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK) for QFP48 packages.
- · External CMOS clock option (EXTCLK) for QFP32 and QFN32 packages.
- Internal oscillator has clock divider with eight settings for flexible clock scaling: 1, 2, 4, or 8.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- · 16-bit time base.
- · Programmable clock divisor and clock source selection.
- · Up to five independently-configurable channels
- 8- or 16-bit PWM modes (edge-aligned operation).
- · Frequency output mode.
- · Capture on rising, falling or any edge.
- · Compare function for arbitrary waveform generation.
- · Software timer (internal compare) mode.
- · Integrated watchdog timer.

Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- · Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- · Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- · 13-bit counter/timer mode
- · 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features:

- · Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- · 16-bit auto-reload timer mode
- · Dual 8-bit auto-reload timer mode
- USB start-of-frame or falling edge of LFOSC0 capture (Timer 2 and Timer 3)

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- · Programmable timeout interval
- · Runs from the selected PCA clock source
- · Automatically enabled after any system reset

4.1.11 5 V Voltage Regulator

Table 4.11. 5V Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range ¹	V _{REGIN}		2.7	_	5.25	V
Output Voltage on VDD ²	V _{REGOUT}	Output Current = 1 to 100 mA	3.0	3.3	3.6	V
Output Current ²	I _{REGOUT}		_	_	100	mA

- 1. Input range specified for regulation. When an external regulator is used, VREGIN should be tied to VDD.
- 2. Output current is total regulator output, including any current required by the device.

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.18 Absolute Maximum Ratings on page 23 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.18. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VREGIN	V _{REGIN}		GND-0.3	5.8	V
Voltage on I/O, RSTb, or VBUS pins	V _{IN}	V _{DD} > 2.2 V	GND-0.3	5.8	V
		V _{DD} < 2.2 V	GND-0.3	V _{DD} +3.6	V
Total Current Sunk into Supply Pin	I _{VDD}		_	500	mA
Total Current Sourced out of Ground Pin	I _{GND}		500	_	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA

Note:

4.4 Typical Performance Curves



Figure 4.2. Typical Operating Supply Current using HFOSC0

^{1.} Exposure to maximum rating conditions for extended periods may affect device reliability.

6. Pin Definitions

6.1 EFM8UB2x-QFP48 Pin Definitions

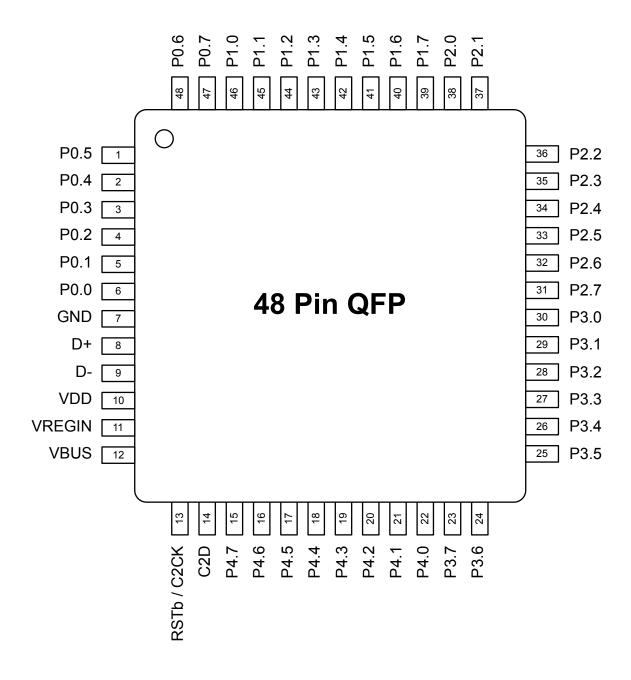


Figure 6.1. EFM8UB2x-QFP48 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
47	P0.7	Multifunction I/O	Yes	XTAL2	
				EXTCLK	
				INT0.7	
				INT1.7	
48	P0.6	Multifunction I/O	Yes	XTAL1	
				INT0.6	
				INT1.6	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
20	P1.6	Multifunction I/O	Yes		ADC0P.6
					ADC0N.6
					CMP1P.1
21	P1.5	Multifunction I/O	Yes		ADC0P.5
					ADC0N.5
					CMP0N.1
22	P1.4	Multifunction I/O	Yes		ADC0P.4
					ADC0N.4
					CMP0P.1
23	P1.3	Multifunction I/O	Yes		ADC0P.3
					ADC0N.3
					CMP1N.0
24	P1.2	Multifunction I/O	Yes		ADC0P.2
					ADC0N.2
					CMP1P.0
25	P1.1	Multifunction I/O	Yes		ADC0P.1
					ADC0N.1
					CMP0N.0
26	P1.0	Multifunction I/O	Yes		ADC0P.0
					ADC0N.0
					CMP0P.0
27	P0.7	Multifunction I/O	Yes	INT0.7	VREF
				INT1.7	
28	P0.6	Multifunction I/O	Yes	CNVSTR	
				INT0.6	
				INT1.6	
29	P0.5	Multifunction I/O	Yes	INT0.5	ADC0P.20
				INT1.5	ADC0N.20
				UART0_RX	CMP1N.4
30	P0.4	Multifunction I/O	Yes	INT0.4	ADC0P.19
				INT1.4	ADC0N.19
				UART0_TX	CMP1P.4
31	P0.3	Multifunction I/O	Yes	EXTCLK	
				INT0.3	
				INT1.3	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
32	P0.2	Multifunction I/O	Yes	INT0.2	
				INT1.2	

Note: XTAL1 and XTAL2 are not available on this package. EXTCLK is still available on P0.3.

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P2.0	Multifunction I/O	Yes		ADC0P.8
					ADC0N.8
					CMP0P.2
19	P1.7	Multifunction I/O	Yes		ADC0P.7
					ADC0N.7
					CMP1N.1
20	P1.6	Multifunction I/O	Yes		ADC0P.6
					ADC0N.6
					CMP1P.1
21	P1.5	Multifunction I/O	Yes		ADC0P.5
					ADC0N.5
					CMP0N.1
22	P1.4	Multifunction I/O	Yes		ADC0P.4
					ADC0N.4
					CMP0P.1
23	P1.3	Multifunction I/O	Yes		ADC0P.3
					ADC0N.3
					CMP1N.0
24	P1.2	Multifunction I/O	Yes		ADC0P.2
					ADC0N.2
					CMP1P.0
25	P1.1	Multifunction I/O	Yes		ADC0P.1
					ADC0N.1
					CMP0N.0
26	P1.0	Multifunction I/O	Yes		ADC0P.0
					ADC0N.0
					CMP0P.0
27	P0.7	Multifunction I/O	Yes	INT0.7	VREF
				INT1.7	
28	P0.6	Multifunction I/O	Yes	CNVSTR	
				INT0.6	
				INT1.6	
29	P0.5	Multifunction I/O	Yes	INT0.5	ADC0P.20
				INT1.5	ADC0N.20
				UART0_RX	CMP1N.4

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
30	P0.4	Multifunction I/O	Yes	INT0.4	ADC0P.19
				INT1.4	ADC0N.19
				UART0_TX	CMP1P.4
31	P0.3	Multifunction I/O	Yes	EXTCLK	
				INT0.3	
				INT1.3	
32	P0.2	Multifunction I/O	Yes	INT0.2	
				INT1.2	
Center	GND	Ground			

Note: XTAL1 and XTAL2 are not available on this package. EXTCLK is still available on P0.3.

7. QFP48 Package Specifications

7.1 QFP48 Package Dimensions

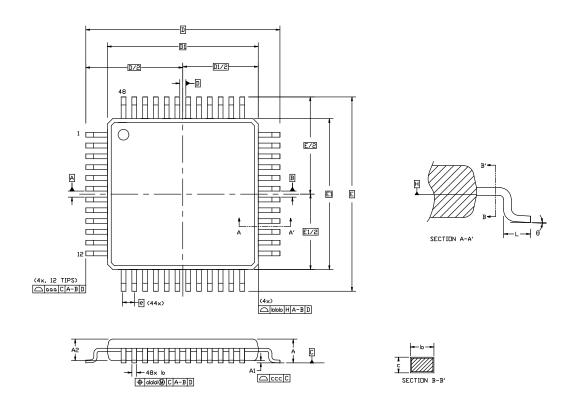


Figure 7.1. QFP48 Package Drawing

Table 7.1. QFP48 Package Dimensions

Dimension	Min	Тур	Max		
A	_	_	1.20		
A1	0.05	_	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.17 0.22 0.27			
D	9.00 BSC				
D1	7.00 BSC				
е		0.50 BSC			
E		9.00 BSC			
E1		7.00 BSC			
L	0.45 0.60 0.75				
aaa	0.20				
bbb		0.20			

Dimension	Min	Тур	Max			
ccc	0.08					
ddd	0.08					
theta	0°	3.5°	7°			

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC outline MS-026, variation ABC.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Dimension Min Max

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A No-Clean, Type-3 solder paste is recommended.
- 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7.3 QFP48 Package Marking

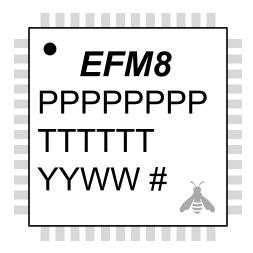


Figure 7.3. QFP48 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- · WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

8.3 QFP32 Package Marking

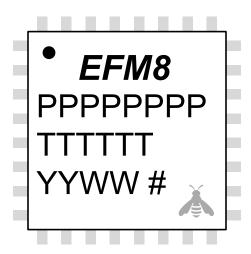


Figure 8.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Max
ddd	_	_	0.05
eee	_	_	0.08

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, and L which are toleranced per supplier designation.
- 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9.2 QFN32 PCB Land Pattern

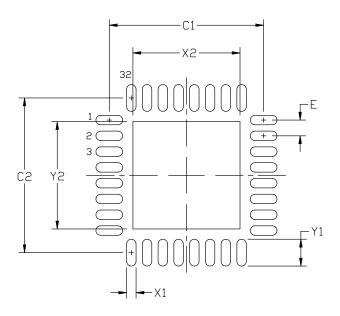


Figure 9.2. QFN32 PCB Land Pattern Drawing

Table 9.2. QFN32 PCB Land Pattern Dimensions

Dimension	Min	Max	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu m$ minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9.3 QFN32 Package Marking

Figure 9.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10. Revision History

10.1 Revision 1.3

Updated ordering part numbers to revision B.

Added Power-On Reset Threshold and Reset Delay from POR specifications to 4.1.3 Reset and Supply Monitor.

Added CRC Calculation Time specification to 4.1.4 Flash Memory.

Added VBUS Detection Input High Voltage and VBUS Detection Input Low Voltage specifications to Table 4.14 USB Transceiver on page 20.

Added specifications for 4.1.15 SMBus.

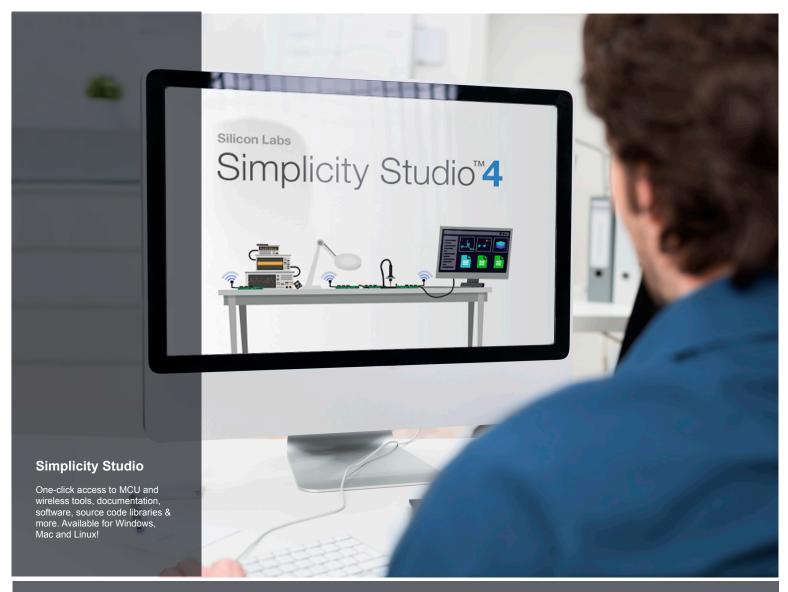
Added 5.4 Debug.

Added information about bootloader implementation and bootloader pinout to 3.10 Bootloader.

Added notes to Table 6.3 Pin Definitions for EFM8UB2x-QFN32 on page 37 and Table 6.2 Pin Definitions for EFM8UB2x-QFP32 on page 33 to clarify that XTAL1 and XTAL2 are not available on the 32-pin packages.

Updated Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 and Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 to recommend 4.7 μ F capacitors instead of 1.0 μ F capacitors.

Added text and Figure 5.3 Connection Diagram with Voltage Regulator Not Used on page 25 to demonstrate the proper connections when the regulator is not used.


Added reference to the Reference Manual in 3.1 Introduction.

10.2 Revision 1.2

Updated the VDD Ramp Time specification in Table 4.3 Reset and Supply Monitor on page 13 to a maximum of 1 ms.

10.3 Revision 1.1

Initial release.

loT Portfolio www.silabs.com/loT

SW/HW www.silabs.com/simplicity

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZRadio®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA