

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

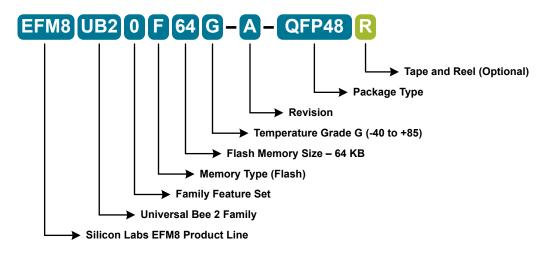
Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	48MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	40
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.65V ~ 3.6V
Data Converters	A/D 32x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8ub20f64g-b-qfp48r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List


The EFM8UB2 highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 48 MHz maximum operating frequency
- Memory:
 - Up to 64 KB flash memory, in-system re-programmable from firmware.
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- Power:
 - Internal LDO regulator for CPU core voltage
 - Internal 5-to-3.3 V LDO allows direct connection to USB supply net
 - Power-on reset circuit and brownout detectors
- I/O: Up to 40 total multifunction I/O pins:
 - Flexible peripheral crossbar for peripheral routing
 - 10 mA source, 25 mA sink allows direct drive of LEDs
- Clock Sources:
 - Internal 48 MHz precision oscillator (±1.5% accuracy without USB clock recovery, ±0.25% accuracy with USB clock recovery)
 - Internal 80 kHz low-frequency oscillator
 - · External crystal, RC, C, and CMOS clock options

- Timers/Counters and PWM:
 - 5-channel Programmable Counter Array (PCA) supporting PWM, capture/compare, and frequency output modes with watchdog timer function
 - 6 x 16-bit general-purpose timers
- Communications and Digital Peripherals:
 - Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated transceiver, and 1 KB FIFO RAM
 - 2 x UART
 - SPI™ Master / Slave
 - 2 x SMBus™/I2C™ Master / Slave
 - External Memory Interface (EMIF)
- Analog:
 - 10-Bit Analog-to-Digital Converter (ADC0)
 - 2 x Low-current analog comparators
- On-Chip, Non-Intrusive Debugging
 - Full memory and register inspection
 - Four hardware breakpoints, single-stepping
- · Pre-loaded USB bootloader
- Temperature range -40 to 85 °C
- Single power supply 2.65 to 3.6 V
- QFP48, QFP32, and QFN32 packages

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8UB2 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Each device is specified for 2.65 to 3.6 V operation and is available in 32-pin QFN, 32-pin QFP, or 48-pin QFP pack-ages. All package options are lead-free and RoHS compliant.

2. Ordering Information

Figure 2.1. EFM8UB2 Part Numbering

All EFM8UB2 family members have the following features:

- · CIP-51 Core running up to 48 MHz
- Two Internal Oscillators (48 MHz and 80 kHz)
- USB Full/Low speed Function Controller
- 5 V-In, 3.3 V-Out Regulator
- 2 SMBus/I2C Interfaces
- SPI
- 2 UARTs
- 5-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 6 16-bit Timers
- 2 Analog Comparators
- 10-bit Differential Analog-to-Digital Converter with integrated multiplexer and temperature sensor
- Pre-loaded USB bootloader

In addition to these features, each part number in the EFM8UB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Crystal Oscillator	External Memory Inferface	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8UB20F64G-B-QFP48	64	4352	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F64G-B-QFP32	64	4352	25	20	5	4	—	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F64G-B-QFN32	64	4352	25	20	5	4	_	_	Yes	-40 to +85 °C	QFN32
EFM8UB20F32G-B-QFP48	32	2304	40	32	5	5	Yes	Yes	Yes	-40 to +85 °C	QFP48
EFM8UB20F32G-B-QFP32	32	2304	25	20	5	4	_	_	Yes	-40 to +85 °C	QFP32
EFM8UB20F32G-B-QFN32	32	2304	25	20	5	4	_		Yes	-40 to +85 °C	QFN32

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted Code resumes execution on wake event 	1. Switch SYSCLK to HFOSC0 2. Set SUSPEND bit in HFO0CN	USB0 Bus Activity
Stop	 All internal power nets shut down Pins retain state Exit on any reset source 	Set STOP bit in PCON0	Any reset source
Shutdown	 All internal power nets shut down 5V regulator remains active (if enabled) Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG01CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P3.7 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P4.0-P4.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 on some packages.

- Up to 40 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1) available on P0 pins.

3.4 Clocking

The CPU core and peripheral subsystem may be clocked by both internal and external oscillator resources. By default, the system clock comes up running from the 48 MHz oscillator divided by 4, then divided by 8 (1.5 MHz).

- Provides clock to core and peripherals.
- 48 MHz internal oscillator (HFOSC0), accurate to ±1.5% over supply and temperature corners: accurate to +/- 0.25% when using USB clock recovery.
- 80 kHz low-frequency oscillator (LFOSC0).
- External RC, C, CMOS, and high-frequency crystal clock options (EXTCLK) for QFP48 packages.
- External CMOS clock option (EXTCLK) for QFP32 and QFN32 packages.
- Internal oscillator has clock divider with eight settings for flexible clock scaling: 1, 2, 4, or 8.

3.5 Counters/Timers and PWM

Programmable Counter Array (PCA0)

The programmable counter array (PCA) provides multiple channels of enhanced timer and PWM functionality while requiring less CPU intervention than standard counter/timers. The PCA consists of a dedicated 16-bit counter/timer and one 16-bit capture/compare module for each channel. The counter/timer is driven by a programmable timebase that has flexible external and internal clocking options. Each capture/compare module may be configured to operate independently in one of five modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, or Pulse-Width Modulated (PWM) Output. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the crossbar to port I/O when enabled.

- 16-bit time base.
- Programmable clock divisor and clock source selection.
- · Up to five independently-configurable channels
- · 8- or 16-bit PWM modes (edge-aligned operation).
- Frequency output mode.
- Capture on rising, falling or any edge.
- Compare function for arbitrary waveform generation.
- Software timer (internal compare) mode.
- · Integrated watchdog timer.

Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- · Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- · 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features:

- Clock sources include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- 16-bit auto-reload timer mode
- · Dual 8-bit auto-reload timer mode
- USB start-of-frame or falling edge of LFOSC0 capture (Timer 2 and Timer 3)

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- Programmable timeout interval
- Runs from the selected PCA clock source
- · Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Serial Bus (USB0)

The USB0 module provides Full/Low Speed function for USB peripheral implementations. The USB function controller (USB0) consists of a Serial Interface Engine (SIE), USB transceiver (including matching resistors and configurable pull-up resistors), 1 KB FIFO block, and clock recovery mechanism for crystal-less operation. No external components are required. The USB0 module is Universal Serial Bus Specification 2.0 compliant.

The USB0 module includes the following features:

- Full and Low Speed functionality.
- Implements 4 bidirectional endpoints.
- USB 2.0 compliant USB peripheral support (no host capability).
- Direct module access to 1 KB of RAM for FIFO memory.
- Clock recovery to meet USB clocking requirements with no external components.

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- Asynchronous transmissions and receptions.
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data.
- Automatic start and stop generation.
- Automatic parity generation and checking.
- Three byte FIFO on receive.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- 8-bit dedicated clock clock rate generator.
- Support for multiple masters on the same data lines.

EFM8UB2 Data Sheet Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Note:						
ses supply current by the speci 2. Includes supply current from re	fied amount. gulators, sup	_{DD} is specified and the mode is not m oply monitor, and High Frequency Osc oply monitor, and Low Frequency Osc	cillator.	isive, enablin	g the functio	ons increa-

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VDD Supply Monitor Threshold	V _{VDDM}		2.60	2.65	2.70	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	_	1.4	_	V
		Falling Voltage on VDD	0.75	_	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.7 V	_	_	1	ms
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	_	250	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	80	580	800	μs
VDD Supply Monitor Turn-On Time	t _{MON}		_	_	100	μs

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ¹	t _{WRITE}	One Byte	10	15	20	μs
Erase Time ¹	t _{ERASE}	One Page	10	15	22.5	ms
V _{DD} Voltage During Programming ²	V _{PROG}		2.7	_	3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		10k	100k	_	Cycles
CRC Calculation Time	t _{CRC}	One 256-Byte Block	—	5.5	_	μs
		SYSCLK = 48 MHz				

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

3. Data Retention Information is published in the Quarterly Quality and Reliability Report.

4.1.12 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	_	100	_	ns
(Highest Speed)		-100 mV Differential	_	250	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	_	1.05	_	μs
est Power)		-100 mV Differential	_	5.2	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	_	-8	_	mV
		CPHYN = 10		-16	_	mV
		CPHYN = 11		-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	_	-12	_	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01		4.5	_	mV
		CPHYP = 10		9	_	mV
		CPHYP = 11		18	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00		-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01		-4.5	_	mV
		CPHYN = 10		-9	_	mV
		CPHYN = 11		-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00		1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01		4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11		16	_	mV

Table 4.12. Comparators

4.1.14 USB Transceiver

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
VBUS Detection Input Low Voltage	V _{BUS_L}		_		1.0	V
VBUS Detection Input High Volt- age	V _{BUS_H}		3.0	_	-	V
Transmitter						1
Output High Voltage	V _{OH}	V _{DD} ≥3.0V	2.8	_	_	V
Output Low Voltage	V _{OL}	V _{DD} ≥3.0V	_		0.8	V
Output Crossover Point	V _{CRS}		1.3	_	2.0	V
Output Impedance	Z _{DRV}	Driving High	_	38	_	Ω
		Driving Low	_	38	_	
Pull-up Resistance	R _{PU}	Full Speed (D+ Pull-up)	1.425	1.5	1.575	kΩ
		Low Speed (D- Pull-up)				
Output Rise Time	T _R	Low Speed	75	_	300	ns
		Full Speed	4	—	20	ns
Output Fall Time	T _F	Low Speed	75	_	300	ns
		Full Speed	4	_	20	ns
Receiver						V
Differential Input	V _{DI}	(D+) - (D-)	0.2	—	_	V
Sensitivity						
Differential Input Common Mode Range	V _{CM}		0.8	_	2.5	V
Input Leakage Current	IL	Pullups Disabled	_	<1.0	_	μA
Refer to the USB Specification for ti	ming diagra	ms and symbol definitions.	I			

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered) on page 24 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (bus-powered). The VBUS signal is used to detect when USB is connected to a host device.

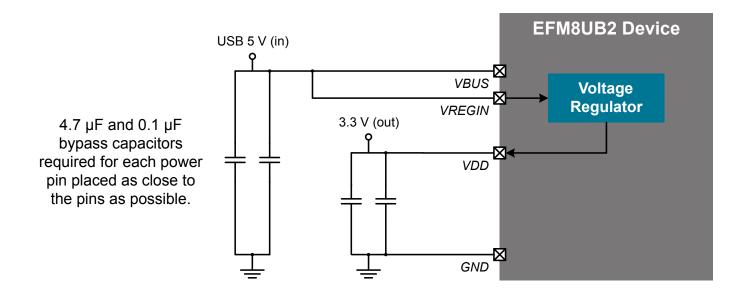


Figure 5.1. Connection Diagram with Voltage Regulator Used and USB Connected (Bus-Powered)

Figure 5.2 Connection Diagram with Voltage Regulator Used and USB Connected (Self-Powered) on page 25 shows a typical connection diagram for the power pins of the EFM8UB2 devices when the internal regulator used and USB is connected (self-powered). The VBUS signal is used to detect when USB is connected to a host device and is shown with a resistor divider. This resistor divider (or functionally-equivalent circuit) on VBUS is required to meet the absolute maximum voltage on VBUS specification for self-powered systems where VDD and VIO may be unpowered when VBUS is connected to 5 V.

5.2 USB

Figure 5.4 Connection Diagram for USB Pins on page 26 shows a typical connection diagram for the USB pins of the EFM8UB2 devices including ESD protection diodes on the USB pins.

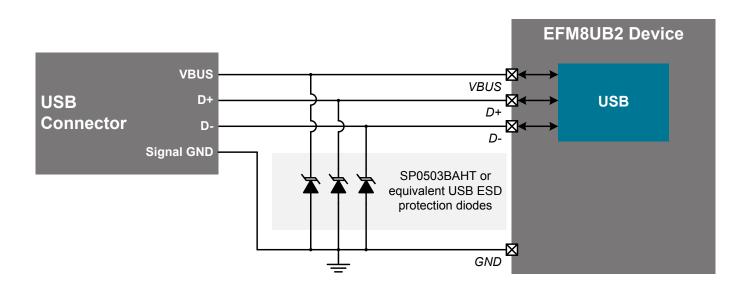


Figure 5.4. Connection Diagram for USB Pins

5.3 Voltage Reference (VREF)

Figure 5.5 Connection Diagram for Internal Voltage Reference on page 26 shows a typical connection diagram for the voltage reference (VREF) pin of the EFM8UB2 devices when using the internal voltage reference. When using an external voltage reference, consult the external reference data sheet for connection recommendations.

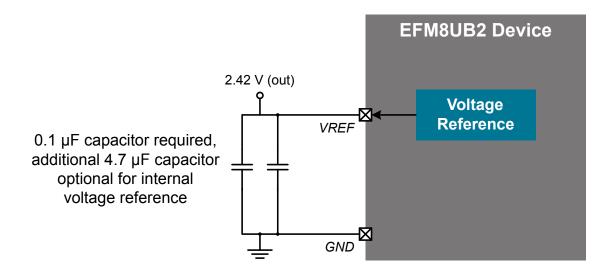


Figure 5.5. Connection Diagram for Internal Voltage Reference

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P4.4	Multifunction I/O		EMIF_D4	ADC0P.13
				EMIF_AD4m	ADC0N.13
					CMP0N.3
19	P4.3	Multifunction I/O		EMIF_D3	ADC0P.12
				EMIF_AD3m	ADC0N.12
					CMP0P.3
20	P4.2	Multifunction I/O		EMIF_D2	ADC0P.33
				EMIF_AD2m	ADC0N.33
21	P4.1	Multifunction I/O		EMIF_D1	ADC0P.32
				EMIF_AD1m	ADC0N.32
22	P4.0	Multifunction I/O		EMIF_D0	ADC0P.11
				EMIF_AD0m	ADC0N.11
					CMP1N.2
23	P3.7	Multifunction I/O	Yes	EMIF_A7	ADC0P.10
				EMIF_A15m	ADC0N.10
					CMP1P.2
24	P3.6	Multifunction I/O	Yes	EMIF_A6	ADC0P.29
				EMIF_A14m	ADC0N.29
25	P3.5	Multifunction I/O	Yes	EMIF_A5	ADC0P.9
				EMIF_A13m	ADC0N.9
					CMP0N.2
26	P3.4	Multifunction I/O	Yes	EMIF_A4	ADC0P.8
				EMIF_A12m	ADC0N.8
					CMP0P.2
27	P3.3	Multifunction I/O	Yes	EMIF_A3	ADC0P.28
				EMIF_A11m	ADC0N.28
28	P3.2	Multifunction I/O	Yes	EMIF_A2	ADC0P.27
				EMIF_A10m	ADC0N.27
29	P3.1	Multifunction I/O	Yes	EMIF_A1	ADC0P.7
				EMIF_A9m	ADC0N.7
					CMP1N.1
30	P3.0	Multifunction I/O	Yes	EMIF_A0	ADC0P.6
				EMIF_A8m	ADC0N.6
					CMP1P.1
31	P2.7	Multifunction I/O	Yes	EMIF_A15	ADC0P.26
					ADC0N.26

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
32	P2.6	Multifunction I/O	Yes	EMIF_A14	ADC0P.5
					ADC0N.5
					CMP0N.1
33	P2.5	Multifunction I/O	Yes	EMIF_A13	ADC0P.4
					ADC0N.4
					CMP0P.1
34	P2.4	Multifunction I/O	Yes	EMIF_A12	ADC0P.25
					ADC0N.25
35	P2.3	Multifunction I/O	Yes	EMIF_A11	ADC0P.3
					ADC0N.3
					CMP1N.0
36	P2.2	Multifunction I/O	Yes	EMIF_A10	ADC0P.2
					ADC0N.2
					CMP1P.0
37	P2.1	Multifunction I/O	Yes	EMIF_A9	ADC0P.1
					ADC0N.1
					CMP0N.0
38	P2.0	Multifunction I/O	Yes	EMIF_A8	ADC0P.0
					ADC0N.0
					CMP0P.0
39	P1.7	Multifunction I/O	Yes	EMIF_WRb	ADC0P.24
					ADC0N.24
40	P1.6	Multifunction I/O	Yes	EMIF_RDb	ADC0P.23
					ADC0N.23
41	P1.5	Multifunction I/O	Yes		VREF
42	P1.4	Multifunction I/O	Yes	CNVSTR	
43	P1.3	Multifunction I/O	Yes	EMIF_ALEm	ADC0P.22
					ADC0N.22
44	P1.2	Multifunction I/O	Yes		ADC0P.20
					ADC0N.20
					CMP1N.4
45	P1.1	Multifunction I/O	Yes		ADC0P.19
					ADC0N.19
					CMP1P.4
46	P1.0	Multifunction I/O	Yes		ADC0P.21
					ADC0N.21

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
47	P0.7	Multifunction I/O	Yes	XTAL2	
				EXTCLK	
				INT0.7	
				INT1.7	
48	P0.6	Multifunction I/O	Yes	XTAL1	
				INT0.6	
				INT1.6	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
5	D-	USB Data Negative			
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	VBUS	USB VBUS Sense Input		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /	Yes		ADC0P.16
	C2D	C2 Debug Data			ADC0N.16
11	P2.7	Multifunction I/O	Yes		ADC0P.15
					ADC0N.15
12	P2.6	Multifunction I/O	Yes		ADC0P.14
					ADC0N.14
13	P2.5	Multifunction I/O	Yes		ADC0P.13
					ADC0N.13
					CMP0N.3
14	P2.4	Multifunction I/O	Yes		ADC0P.12
					ADC0N.12
					CMP0P.3
15	P2.3	Multifunction I/O	Yes		ADC0P.11
					ADC0N.11
					CMP1N.2
16	P2.2	Multifunction I/O	Yes		ADC0P.10
					ADC0N.10
					CMP1P.2
17	P2.1	Multifunction I/O	Yes		ADC0P.9
					ADC0N.9
					CMP0N.2
18	P2.0	Multifunction I/O	Yes		ADC0P.8
					ADC0N.8
					CMP0P.2
19	P1.7	Multifunction I/O	Yes		ADC0P.7
					ADC0N.7
					CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
32	P0.2	Multifunction I/O	Yes	INT0.2	
Note: XTAL1 and XTAL2 are not available on this package. EXTCLK is still available on P0.3.					

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.0	Multifunction I/O	Yes	INT0.0	ADC0P.17
				INT1.0	ADC0N.17
					CMP0P.4
3	GND	Ground			
4	D+	USB Data Positive			
5	D-	USB Data Negative			
6	VDD	Supply Power Input /			
		5V Regulator Output			
7	VREGIN	5V Regulator Input			
8	VBUS	USB VBUS Sense In- put		VBUS	
9	RST /	Active-low Reset /			
	C2CK	C2 Debug Clock			
10	P3.0 /	Multifunction I/O /	Yes		ADC0P.16
	C2D	C2 Debug Data			ADC0N.16
11	P2.7	Multifunction I/O	Yes		ADC0P.15
					ADC0N.15
12	P2.6	Multifunction I/O	Yes		ADC0P.14
					ADC0N.14
13	P2.5	Multifunction I/O	Yes		ADC0P.13
					ADC0N.13
					CMP0N.3
14	P2.4	Multifunction I/O	Yes		ADC0P.12
					ADC0N.12
					CMP0P.3
15	P2.3	Multifunction I/O	Yes		ADC0P.11
					ADC0N.11
					CMP1N.2
16	P2.2	Multifunction I/O	Yes		ADC0P.10
					ADC0N.10
					CMP1P.2
17	P2.1	Multifunction I/O	Yes		ADC0P.9
					ADC0N.9
					CMP0N.2

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
30	P0.4	Multifunction I/O	Yes	INT0.4	ADC0P.19
				INT1.4	ADC0N.19
				UART0_TX	CMP1P.4
31	P0.3	Multifunction I/O	Yes	EXTCLK	
				INT0.3	
				INT1.3	
32	P0.2	Multifunction I/O	Yes	INT0.2	
				INT1.2	
Center	GND	Ground			

Dimension	Min	Тур	Мах
bbb		0.20	
ссс		0.10	
ddd		0.20	
theta	0°	3.5°	7°
Noto			

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation BBA.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

8.3 QFP32 Package Marking

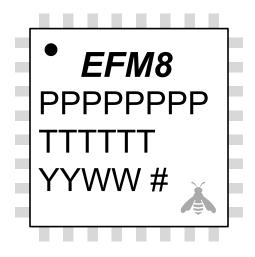


Figure 8.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9.2 QFN32 PCB Land Pattern

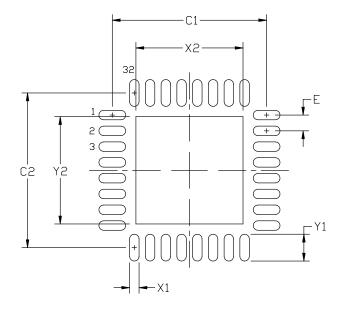


Figure 9.2. QFN32 PCB Land Pattern Drawing

Table 9.2.	QFN32 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Min	Мах	
C1	4.80	4.90	
C2	4.80	4.90	
E	0.50 BSC		
X1	0.20	0.30	
X2	3.20	3.40	
Y1	0.75	0.85	
Y2	3.20	3.40	

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.