

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l100rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.14.3	SysTick timer	. 27
		3.14.4	Independent watchdog (IWDG)	. 27
		3.14.5	Window watchdog (WWDG)	. 27
	3.15	Commu	nication interfaces	27
		3.15.1	I ² C bus	. 27
		3.15.2	Universal synchronous/asynchronous receiver transmitter (USART) .	. 27
		3.15.3	Serial peripheral interface (SPI)	. 28
		3.15.4	Universal serial bus (USB)	. 28
	3.16	CRC (c	yclic redundancy check) calculation unit	28
	3.17	Develop	oment support	29
		3.17.1	Serial wire JTAG debug port (SWJ-DP)	. 29
		3.17.2	Embedded Trace Macrocell™	. 29
4	Pin d	escripti	ons	30
5	Mom	orv man	ping	20
5	WEIN	лу шар	ping	33
6	Elect	rical cha	aracteristics	40
	6.1	Parame	ter conditions	40
		6.1.1	Minimum and maximum values	. 40
		6.1.2	Typical values	. 40
		6.1.3	Typical curves	. 40
		6.1.4	Loading capacitor	. 40
		6.1.5	Pin input voltage	. 40
		6.1.6	Power supply scheme	. 41
		6.1.7	Optional LCD power supply scheme	. 42
		6.1.8	Current consumption measurement	. 42
	6.2	Absolut	e maximum ratings	43
	6.3	Operati	ng conditions	44
		6.3.1	General operating conditions	. 44
		6.3.2	Embedded reset and power control block characteristics	. 45
		6.3.3	Embedded internal reference voltage	. 47
		6.3.4	Supply current characteristics	. 48
		6.3.5	Wakeup time from low-power mode	. 59
		6.3.6	External clock source characteristics	. 60
		6.3.7	Internal clock source characteristics	. 65
		6.3.8	PLL characteristics	. 68

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source**: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- **Clock-out capability (MCO: microcontroller clock output):** it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.7 Memories

The STM32L100RC device has the following features:

- 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 128 Kbytes of embedded Flash program memory
 - 4 Kbytes of data EEPROM
 - Options bytes

The options bytes are used to write-protect or read-out protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.8 DMA (direct memory access)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 32 segment terminals to drive up to 320224 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode

DocID024995 Rev 4

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L100RC device with up to 20 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 20 external channels in a group.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. See *Table 14: Embedded internal reference voltage calibration values*.

3.14 Timers and watchdogs

The ultra-low-power STM32L100RC device includes seven general-purpose timers, two basic timers, and two watchdog timers.

Table 5 compares the features of the general-purpose and basic timers.

Timer	Counter resolution Counter type		Counter type Prescaler factor request		Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 5. Timer feature comparison

3.14.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)

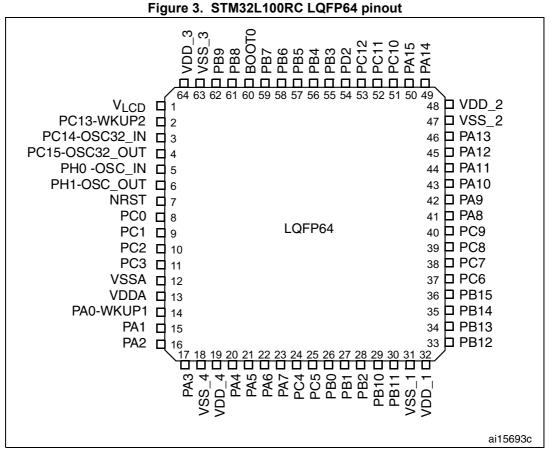
There are seven synchronizable general-purpose timers embedded in the STM32L100RC device (see *Table 5* for differences).

TIM2, TIM3, TIM4

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 all have independent DMA request generation.


These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers.

4 Pin descriptions

1. This figure shows the package top view.

Table 6. Legend/abbreviations	used in the	pinout table
-------------------------------	-------------	--------------

Name	Abbreviation	Definition
Pin name		e specified in brackets below the pin name, the pin function reset is the same as the actual pin name
	S	Supply pin
Pin type	I	Input only pin
	I/O	Input / output pin
	FT	5 V tolerant I/O
I/O structure	TC	Standard 3.3 V I/O
NO structure	В	Dedicated BOOT0 pin
	RST	Bidirectional reset pin with embedded weak pull-up resistor
Notes	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during

Pins					Pin fur	nctions
LQFP64	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function (after reset)	Alternate functions	Additional functions
17	PA3	I/O	-	PA3	TIM2_CH4/TIM9_CH2 /USART2_RX/LCD_SEG2	ADC_IN3/ COMP1_INP/OPAMP1_VOUT
18	V _{SS_4}	S	-	V _{SS_4}	-	-
19	V_{DD_4}	S	-	V _{DD_4}	-	-
20	PA4	I/O	-	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/USART2_CK	ADC_IN4/DAC_OUT1/ COMP1_INP
21	PA5	I/O	-	PA5	TIM2_CH1_ETR/SPI1_SCK	ADC_IN5/ DAC_OUT2/COMP1_INP
22	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/LCD_SEG3	ADC_IN6/COMP1_INP/ OPAMP2_VINP
23	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/LCD_SEG4	ADC_IN7/COMP1_INP /OPAMP2_VINM
24	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/COMP1_INP
25	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/COMP1_INP
26	PB0	I/O	-	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/COMP1_INP/ OPAMP2_VOUT/VREF_OUT
27	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/VREF_OUT
28	PB2	I/O	FT	PB2/BOOT1	BOOT1	COMP1_INP
29	PB10	I/O	FT	PB10	TIM2_CH3/I2C2_SCL/ USART3_TX/LCD_SEG10	-
30	PB11	I/O	FT	PB11	TIM2_CH4/I2C2_SDA/ USART3_RX/LCD_SEG11	-
31	V _{SS_1}	S	-	V _{SS_1}	-	-
32	V _{DD_1}	S	-	V _{DD_1}	-	-
33	PB12	I/O	FT	PB12	TIM10_CH1/I2C2_SMBA/ SPI2_NSS/I2S2_WS/ USART3_CK/LCD_SEG12	ADC_IN18/COMP1_INP
34	PB13	I/O	FT	PB13	TIM9_CH1/SPI2_SCK/ I2S2_CK/ USART3_CTS/ LCD_SEG13	ADC_IN19/COMP1_INP
35	PB14	I/O	FT	PB14	TIM9_CH2/SPI2_MISO/ USART3_RTS/LCD_SEG14	ADC_IN20/COMP1_INP

Table 7. STM32L100RC pin definitions (continued)

Alternate functions

Table 8. Alternate function input/output

					Digital alter	nate function	number						
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	•	AFIO11	•	AFIO14	AFIO15
Port name	Alternate function												
	SYSTEM	TIM2	TIM3/4	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3		LCD		CPRI	SYSTEM
BOOT0	BOOT0	-	-	-	-	-	-	-		-		-	EVENT OUT
NRST	NRST	-	-	-	-	-	-	-		-		-	-
PA0-WKUP1	-	TIM2_CH1_ETR	-	-	-	-	-	USART2_CTS		-		TIMx_IC1	EVENT OUT
PA1	-	TIM2_CH2	-	-	-	-	-	USART2_RTS		SEG0		TIMx_IC2	EVENT OUT
PA2	-	TIM2_CH3	-	TIM9_CH1	-	-	-	USART2_TX		SEG1		TIMx_IC3	EVENT OUT
PA3	-	TIM2_CH4	-	TIM9_CH2	-	-	-	USART2_RX		SEG2		TIMx_IC4	EVENT OUT
PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK		-		TIMx_IC1	EVENT OUT
PA5	-	TIM2_CH1_ETR	-	-	-	SPI1_SCK	-	-		-		TIMx_IC2	EVENT OUT
PA6	-	-	TIM3_CH1	TIM10_CH1	-	SPI1_MISO	-	-		SEG3		TIMx_IC3	EVENT OUT
PA7	-	-	TIM3_CH2	TIM11_CH1	-	SPI1_MOSI	-	-		SEG4		TIMx_IC4	EVENT OUT
PA8	мсо	-	-	-	-	-	-	USART1_CK		COM0		TIMx_IC1	EVENT OUT
PA9	-	-	-	-	-	-	-	USART1_TX		COM1		TIMx_IC2	EVENT OUT
PA10	-	-	-	-	-	-	-	USART1_RX		COM2		TIMx_IC3	EVENT OUT
PA11	-	-	-	-	-	SPI1_MISO	-	USART1_CTS		-		TIMx_IC4	EVENT OUT

35/104

36/104

DocID024995 Rev 4

5

					Digital alter	nate function	number				
_ /	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	AFIO14	AFIO15
Port name		I	L		Alte	rnate function	1			1 1	
	SYSTEM	TIM2	TIM3/4	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPRI	SYSTEM
PA12	-	-	-	-	-	SPI1_MOSI	-	USART1_RTS	-	TIMx_IC1	EVENT OUT
PA13	JTMS-SWDIO	-	-	-	-	-	-	-	-	TIMx_IC2	EVENT OUT
PA14	JTCK-SWCLK	-	-	-	-	-	-	-	-	TIMx_IC3	EVEN TOUT
PA15	JTDI	TIM2_CH1_ETR	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	-	SEG17	TIMx_IC4	EVEN TOUT
PB0	-	-	TIM3_CH3	-	-	-	-	-	SEG5	-	EVEN TOUT
PB1	-	-	TIM3_CH4	-	-	-	-	-	SEG6	-	EVENT OUT
PB2	BOOT1	-	-	-	-	-	-	-	-	-	EVENT OUT
PB3	JTDO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_CK	-	SEG7	-	EVENT OUT
PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	SEG8	-	EVENT OUT
PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	SEG9	-	EVENT OUT
PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	-	EVENT OUT
PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	EVENT OUT
PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	SEG16	-	EVENT OUT
PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	-	-	-	COM3	-	EVENT OUT
PB10	-	TIM2_CH3	-	-	I2C2_SCL	-	-	USART3_TX	SEG10	-	EVENT OUT

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	50	130	
			V _{CORE} =1.2 V	2 MHz	78.5	195	
			VOS[1:0] = 11	4 MHz	140	310	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	165	310	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	310	440	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	590	830	
		- /	Range 1,	8 MHz	350	550	
	Supply current in Sleep		V _{CORE} =1.8 V	16 MHz	680	990	
	mode, Flash		VOS[1:0] = 01	32 MHz	1600	2100	
L (Clean)	OFF	HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	640	890	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2200	_
		MSI clock, 65 kHz	Range 3,	65 kHz	19	60	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	33	99	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	145	210	
I _{DD} (Sleep)			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	60.5	130	- μΑ -
				2 MHz	89.5	190	
				4 MHz	150	320	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2, V _{CORE} =1.5 V	4 MHz	180	320	
		$f_{HSE} = f_{HCLK}/2$		8 MHz	320	460	
	Supply current	above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	605	840	
	in Sleep		Range 1,	8 MHz	380	540	
	mode, Flash ON		V _{CORE} =1.8 V	16 MHz	695	1000	
			VOS[1:0] = 01	32 MHz	1600	2100	
		HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	650	910	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2200	
	Supply current	MSI clock, 65 kHz	Range 3,	65 kHz	30	90	1
	in Sleep mode, Flash	MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	44	96	1
	ON	MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	155	220	1

Table 18. Current consumption in Sleep mode

1. Guaranteed by characterization results, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

- 3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode.
- 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).
- Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating.
- 6. Including supply current of internal reference voltage.

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:

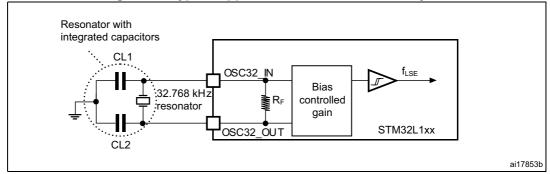
- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under the conditions summarized in *Table 12*.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-		
+	Wakeup from Low-power sleep	f _{HCLK} = 262 kHz Flash enabled	31			
^t wusleep_lp	mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	11 - 0.4 - 46 - 46 - 3.2 - 7.7 8.9 3.2 13.1 0.2 13.4 16 20 31 37 57 66 12 123 221 236 58 104		
	Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-		
		$f_{HCLK} = f_{MSI} = 4.2 \text{ MHz}$ Voltage range 1 and 2	7.7	8.9		
	PWakeup from Low-power sleep mode, $f_{HCLK} = 262 \text{ kHz}$ Flash enable f_{HCLK} = 260 Flash switchWakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1f_{HCLK} = f_{MS}PWakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1f_{HCLK} = f_{MS}PWakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1f_{HCLK} = f_{MS}PWakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1f_{HCLK} = f_{MS}PWakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1f_{HCLK} = f_{MS}FIACLK = f_{MS}f_{HCLK} = f_	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	8.2	13.1	μs	
^t WUSTOP		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4		
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20		
	OLP bit = 1 and $FVVO$ bit = 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
		f _{HCLK} = f _{MSI} = 262 kHz	57	66		
		f _{HCLK} = f _{MSI} = 131 kHz	112	123		
		f _{HCLK} = MSI = 65 kHz	221	236		
t		f _{HCLK} = MSI = 2.1 MHz	58	104		
^t wustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms	

Table 24. Low-power mode wakeup timings

1. Guaranteed by characterization, not tested in production, unless otherwise specified



- t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
- Note: For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 13). C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution: To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \leq 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6 \text{ pF}$ and $C_{\text{stray}} = 2 \text{ pF}$, then $C_{L1} = C_{L2} = 8 \text{ pF}$.

Figure 13. Typical application with a 32.768 kHz crystal

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
. (2)	MSI oscillator stabilization time	MSI range 4	-	2.5	μs
t _{STAB(MSI)} ⁽²⁾		MSI range 5	-	2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
fover(MSI)		Any range to range 6	-	6	

Table 31. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results, not tested in production.

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V	
	Programming/ erasing	Erasing	-	3.28	3.94		
t _{prog}	time for byte / word / double word / half-page	Programming	-	3.28	3.94	ms	
	Average current during the whole programming / erase operation		-	600		μA	
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA	

Table 34. Flash memory and data EEPROM characteristics

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	\	Unit			
	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	Onit	
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	10	-	-	kavalaa	
NCAC, \	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	-T _{RFT} = +85 °C	30	-	-		
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	1 _{RET} - +65 C	30	-	-	Vooro	
'RET` ´	Data retention (program memory) after 10 kcycles at T _A = 105 °C	-T _{RET} = +105 °C	10	-	-	years	
	Data retention (EEPROM data memory) after 300 kcycles at T _A = 105 °C	1 _{RET} = 1105 C	10	-	-		

1. Guaranteed by characterization results, not tested in production.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.13 I/O port characteristics

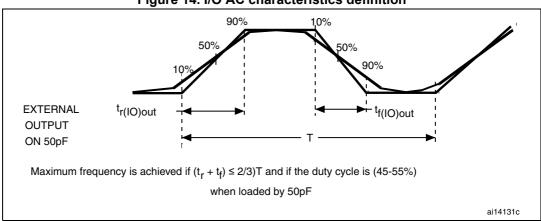
General input/output characteristics

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under the conditions summarized in *Table 12*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter Conditions Min		Тур	Max	Unit		
V _{IL}		TC and FT I/O	-	-	0.3 V _{DD} ⁽¹⁾⁽²⁾		
	Input low level voltage	BOOT0	-	-	0.14 V _{DD} ⁽²⁾		
		TC I/O	0.45 V _{DD} +0.38 ⁽²⁾	-	-		
V_{IH}	Input high level voltage	FT I/O	0.39 V _{DD} +0.59 ⁽²⁾	-	-	V	
		BOOT0	0.15 V _{DD} +0.56 ⁽²⁾	-	-		
V	I/O Schmitt trigger voltage	TC and FT I/O	-	10% V _{DD} ⁽³⁾	-		
V _{hys}	hysteresis ⁽²⁾	BOOT0	-	0.01	-		
	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} I/Os with LCD	-	-	±50		
I _{lkg}		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches	-	-	±50		
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches and LCD	-	-	±50	nA	
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with USB	-	-	±250		
		V _{SS} ≤V _{IN} ≤V _{DD} TC and FT I/Os	-	-	±50		
		FT I/O V _{DD} ≤V _{IN} ≤5V	-	-	±10	μA	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾⁽¹⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 41.	I/O sta	tic characteristics
-----------	---------	---------------------

1. Guaranteed by test in production


2. Guaranteed by design, not tested in production.

3. With a minimum of 200 mV.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 44*)

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 12*.

Symbol	Parameter	eter Conditions Min		Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	- 0.39V _{DD} +0.59		-	-	V
V _{OL(NRST)} ⁽¹⁾	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
VOL(NRST)	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 44. NRST pin characteristics

1. Guaranteed by design, not tested in production.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

6.3.16 Communications interfaces

I²C interface characteristics

The device I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 46*. Refer also to *Section 6.3.13: I/O port characteristics* for more details on the input/output ction characteristics (SDA and SCL).

Symbol	Parameter		rd mode 1)(2)	Fast mode	Unit	
		Min	Max	Min	Мах	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

Table 46. I²C characteristics

1. Guaranteed by design, not tested in production.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above $t_{SP(max)}$.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 12*.

Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter Conditions			Max ⁽²⁾	Unit
_		Master mode	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz
TC(SCK)		Slave transmitter	-	12 ⁽³⁾	
$t_{r(SCK)}^{(2)} t_{f(SCK)}^{(2)}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3	
t _{su(MI)} ⁽²⁾	- Data input setup time	Master mode	5	-	
$t_{su(SI)}^{(2)}$	- Data input setup time	Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
$t_{v(MO)}^{(2)}$	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-	
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-	

Table 48. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results, not tested in production.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

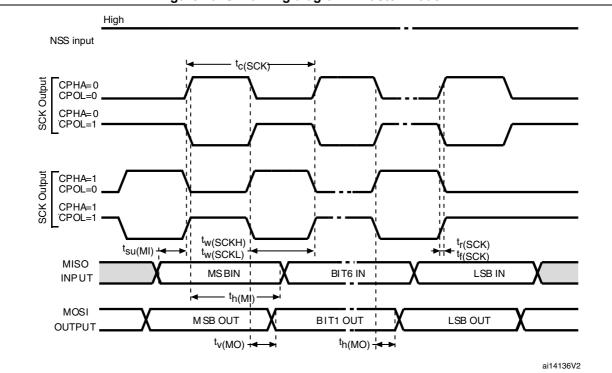


Figure 19. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

8 Ordering information scheme

Table 64. STM32L100RC ordering information scheme

Example:	STM32	L	10	00	R	С	Т	6	TR
Device family									
STM32 = ARM-based 32-bit microcontroller									
Product type									
L = Low power									
Device subfamily									
100: Device with LCD									
Pin count									
R = 64 pins									
Flash memory size									
C = 256 Kbytes of Flash memory						_			
Package									
T = LQFP									
Temperature range									
6 = Industrial temperature range, -40 to 85 °C									
7 = Industrial temperature range, -40 to 105°C									
Packing									

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

