

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status Active	5
Core Processor ARM	® Cortex®-M3
Core Size 32-Bi	t Single-Core
Speed 32MH	lz
Connectivity I ² C, S	PI, UART/USART, USB
Peripherals Brown	n-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O 51	
Program Memory Size 256K	B (256K x 8)
Program Memory Type FLASI	-
EEPROM Size 4K x 3	8
RAM Size 16K ×	: 8
Voltage - Supply (Vcc/Vdd) 1.8V	~ 3.6V
Data Converters A/D 2	0x12b; D/A 2x12b
Oscillator Type Interr	nal
Operating Temperature -40°C	C ~ 85°C (TA)
Mounting Type Surfa	ce Mount
Package / Case 64-LC	λεδ
Supplier Device Package 64-LC	QFP (10x10)
Purchase URL https	://www.e-xfl.com/product-detail/stmicroelectronics/stm32l100rct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

STM32L100RC

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your old applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy.

To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture:

- Same power supply range from 1.65 V to 3.6 V
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultrasafe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 2 to 512 Kbytes

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **System clock source**: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- **Clock-out capability (MCO: microcontroller clock output):** it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

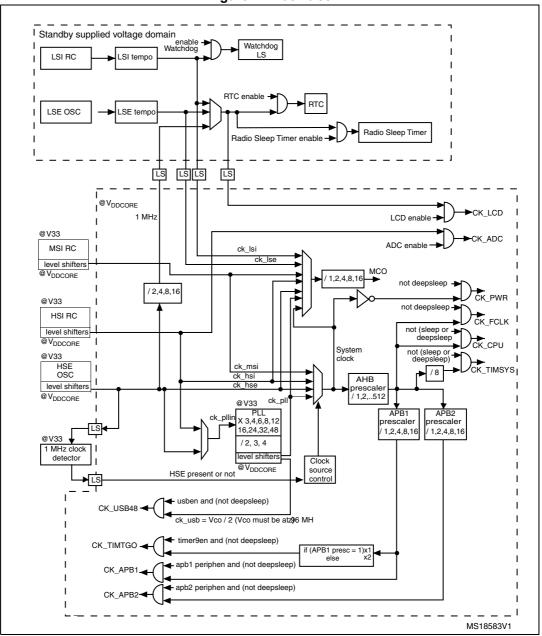


Figure 2. Clock tree

1. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either 24 MHz or 32 MHz.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels, independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Eight DAC trigger inputs are used in the STM32L100RC device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.12 Ultra-low-power comparators and reference voltage

The STM32L100RC device embeds two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with fixed threshold
- One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or a sub-multiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

3.13 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

DocID024995 Rev 4

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.14.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.15 Communication interfaces

3.15.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.15.2 Universal synchronous/asynchronous receiver transmitter (USART)

The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant.

All USART interfaces can be served by the DMA controller.

Pins					Pin fur	nctions
LQFP64	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function (after reset)	Alternate functions	Additional functions
17	PA3	I/O	-	PA3	TIM2_CH4/TIM9_CH2 /USART2_RX/LCD_SEG2	ADC_IN3/ COMP1_INP/OPAMP1_VOUT
18	V _{SS_4}	S	-	V _{SS_4}	-	-
19	V_{DD_4}	S	-	V _{DD_4}	-	-
20	PA4	I/O	-	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/USART2_CK	ADC_IN4/DAC_OUT1/ COMP1_INP
21	PA5	I/O	-	PA5	TIM2_CH1_ETR/SPI1_SCK	ADC_IN5/ DAC_OUT2/COMP1_INP
22	PA6	I/O	FT	PA6	TIM3_CH1/TIM10_CH1/ SPI1_MISO/LCD_SEG3	ADC_IN6/COMP1_INP/ OPAMP2_VINP
23	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/LCD_SEG4	ADC_IN7/COMP1_INP /OPAMP2_VINM
24	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/COMP1_INP
25	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/COMP1_INP
26	PB0	I/O	-	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/COMP1_INP/ OPAMP2_VOUT/VREF_OUT
27	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/VREF_OUT
28	PB2	I/O	FT	PB2/BOOT1	BOOT1	COMP1_INP
29	PB10	I/O	FT	PB10	TIM2_CH3/I2C2_SCL/ USART3_TX/LCD_SEG10	-
30	PB11	I/O	FT	PB11	TIM2_CH4/I2C2_SDA/ USART3_RX/LCD_SEG11	-
31	V _{SS_1}	S	-	V _{SS_1}	-	-
32	V _{DD_1}	S	-	V _{DD_1}	-	-
33	PB12	I/O	FT	PB12	TIM10_CH1/I2C2_SMBA/ SPI2_NSS/I2S2_WS/ USART3_CK/LCD_SEG12	ADC_IN18/COMP1_INP
34	PB13	I/O	FT	PB13	TIM9_CH1/SPI2_SCK/ I2S2_CK/ USART3_CTS/ LCD_SEG13	ADC_IN19/COMP1_INP
35	PB14	I/O	FT	PB14	TIM9_CH2/SPI2_MISO/ USART3_RTS/LCD_SEG14	ADC_IN20/COMP1_INP

Table 7. STM32L100RC pin definitions (continued)

Pins					ORC pin definitions (continu Pin fun	•
LQFP64	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function (after reset)	Alternate functions	Additional functions
36	PB15	I/O	FT	PB15	TIM11_CH1/SPI2_MOSI/ I2S2_SD/LCD_SEG15	ADC_IN21/COMP1_INP/ RTC_REFIN
37	PC6	I/O	FT	PC6	TIM3_CH1/I2S2_MCK/ LCD_SEG24	-
38	PC7	I/O	FT	PC7	TIM3_CH2/I2S3_MCK/ LCD_SEG25	-
39	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
40	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-
41	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-
42	PA9	I/O	FT	PA9	USART1_TX/LCD_COM1	-
43	PA10	I/O	FT	PA10	USART1_RX/LCD_COM2	-
44	PA11	I/O	FT	PA11	USART1_CTS/SPI1_MISO	USB_DM
45	PA12	I/O	FT	PA12	USART1_RTS/SPI1_MOSI	USB_DP
46	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-
47	V _{SS_2}	S		V _{SS_2}	-	-
48	V _{DD_2}	S		V _{DD_2}	-	-
49	PA14	I/O	FT	JTCK- SWCLK	JTCK-SWCLK	-
50	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/SPI1_NSS/ SPI3_NSS/ I2S3_WS/LCD_SEG17/JTDI	-
51	PC10	I/O	FT	PC10	SPI3_SCK/I2S3_CK/ USART3_TX/LCD_SEG28/ LCD_SEG40/LCD_COM4	-
52	PC11	I/O	FT	PC11	SPI3_MISO/USART3_RX/ LCD_SEG29 /LCD_SEG41/LCD_COM5	-
53	PC12	I/O	FT	PC12	SPI3_MOSI/I2S3_SD/ USART3_CK/LCD_SEG30/ LCD_SEG42/LCD_COM6	-
54	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31/ LCD_SEG43/LCD_COM7	-

Table 7. STM32L100RC pin definitions (continued)

Alternate functions

Table 8. Alternate function input/output

					Digital alter	nate function	number									
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	•	AFIO11	•	AFIO14	AFIO15			
Port name		Alternate function														
	SYSTEM	TIM2	TIM3/4	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3		LCD		CPRI	SYSTEM			
BOOT0	BOOT0	-	-	-	-	-	-	-		-		-	EVENT OUT			
NRST	NRST	-	-	-	-	-	-	-		-		-	-			
PA0-WKUP1	-	TIM2_CH1_ETR	-	-	-	-	-	USART2_CTS		-		TIMx_IC1	EVENT OUT			
PA1	-	TIM2_CH2	-	-	-	-	-	USART2_RTS		SEG0		TIMx_IC2	EVENT OUT			
PA2	-	TIM2_CH3	-	TIM9_CH1	-	-	-	USART2_TX		SEG1		TIMx_IC3	EVENT OUT			
PA3	-	TIM2_CH4	-	TIM9_CH2	-	-	-	USART2_RX		SEG2		TIMx_IC4	EVENT OUT			
PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS I2S3_WS	USART2_CK		-		TIMx_IC1	EVENT OUT			
PA5	-	TIM2_CH1_ETR	-	-	-	SPI1_SCK	-	-		-		TIMx_IC2	EVENT OUT			
PA6	-	-	TIM3_CH1	TIM10_CH1	-	SPI1_MISO	-	-		SEG3		TIMx_IC3	EVENT OUT			
PA7	-	-	TIM3_CH2	TIM11_CH1	-	SPI1_MOSI	-	-		SEG4		TIMx_IC4	EVENT OUT			
PA8	мсо	-	-	-	-	-	-	USART1_CK		COM0		TIMx_IC1	EVENT OUT			
PA9	-	-	-	-	-	-	-	USART1_TX		COM1		TIMx_IC2	EVENT OUT			
PA10	-	-	-	-	-	-	-	USART1_RX		COM2		TIMx_IC3	EVENT OUT			
PA11	-	-	-	-	-	SPI1_MISO	-	USART1_CTS		-		TIMx_IC4	EVENT OUT			

35/104

5 Memory mapping

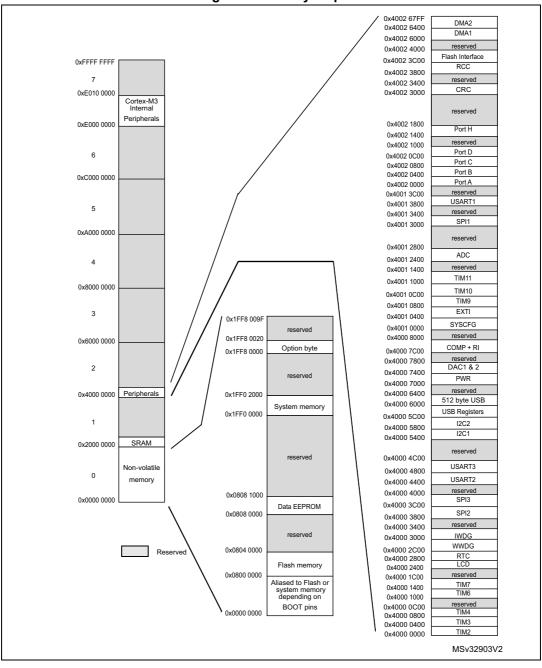


Figure 4. Memory map

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	50	130	
			V _{CORE} =1.2 V	2 MHz	78.5	195	
			VOS[1:0] = 11	4 MHz	140	310	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	165	310	
in Sle		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	310	440	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	590	830	
		- /	Range 1,	8 MHz	350	550	
	Supply current		V _{CORE} =1.8 V	16 MHz	680	990	
	mode, Flash		VOS[1:0] = 01	32 MHz	1600	2100	
	OFF	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	640	890	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2200	
		MSI clock, 65 kHz	Range 3,	65 kHz	19	60	1
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	33	99	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	145	210	μA
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11 Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	1 MHz	60.5	130	
				2 MHz	89.5	190	
				4 MHz	150	320	
		f _{HSE} = f _{HCLK} up to 16 MHz included,		4 MHz	180	320	
		$f_{HSE} = f_{HCLK}/2$		8 MHz	320	460	
	Supply current	above 16 MHz (PLL ON) ⁽²⁾		16 MHz	605	840	
	in Sleep		Range 1,	8 MHz	380	540	
	mode, Flash ON		V _{CORE} =1.8 V	16 MHz	695	1000	
			VOS[1:0] = 01	32 MHz	1600	2100	
		HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	650	910	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2200	
	Supply current	MSI clock, 65 kHz	Range 3,	65 kHz	30	90	1
	in Sleep mode, Flash	MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	44	96	1
	ON	MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	155	220	1

Table 18. Current consumption in Sleep mode

1. Guaranteed by characterization results, not tested in production, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

6.3.7 Internal clock source characteristics

The parameters given in *Table 29* are derived from tests performed under the conditions summarized in *Table 12*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
		V_{DDA} = 3.0 V, T_{A} = 0 to 55 °C	-1.5	-	1.5	%
	Accuracy of the	V _{DDA} = 3.0 V, T _A = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾	factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	1 ⁽³⁾ 1.5 2 2 2 2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

Table 29.	HSI oscillator	characteristics

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 30. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 105^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design, not tested in production.

Symbol	Parameter	Condition	Тур	Мах	Unit	
		MSI range 0	-	40		
		MSI range 1	-	20		
		MSI range 2	-	10		
		MSI range 3	-	4		
+ (2)	MSI oscillator stabilization time	MSI range 4	-	2.5	μs	
t _{STAB(MSI)} ⁽²⁾		MSI range 5	-	2		
		MSI range 6, Voltage range 1 and 2	-	2		
		MSI range 3, Voltage range 3	-	3		
f	MSI oscillator frequency overshoot	Any range to range 5	-	4	MH-	
fover(MSI)		Any range to range 6	-	6	MHz	

Table 31. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results, not tested in production.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under the conditions summarized in *Table 12*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC and FT I/O	-	-	0.3 V _{DD} ⁽¹⁾⁽²⁾	
V _{IL}	Input low level voltage	BOOT0	-	-	0.14 V _{DD} ⁽²⁾	
		TC I/O	0.45 V _{DD} +0.38 ⁽²⁾	-	-	
V_{IH}	Input high level voltage	FT I/O	0.39 V _{DD} +0.59 ⁽²⁾	-	-	V
		BOOT0	0.15 V _{DD} +0.56 ⁽²⁾	-	-	
V	I/O Schmitt trigger voltage	TC and FT I/O	-	10% V _{DD} ⁽³⁾	-	
V _{hys}	hysteresis ⁽²⁾	BOOT0	-	0.01	-	
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with LCD	-	-	±50	
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches	-	-	±50	
l _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches and LCD	-	-	±50	nA
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with USB	-	-	±250	
		V _{SS} ≤V _{IN} ≤V _{DD} TC and FT I/Os	-	-	±50	
		FT I/O V _{DD} ≤V _{IN} ≤5V	-	-	±10	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾⁽¹⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 41.	I/O s	tatic	characteristics
-----------	-------	-------	-----------------

1. Guaranteed by test in production

2. Guaranteed by design, not tested in production.

3. With a minimum of 200 mV.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 42*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 10*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 10*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under the conditions summarized in *Table 12*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	
V _{OH} ⁽²⁾⁽³⁾		2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽³⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 3.6 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$2.7 V < V_{DD} < 3.6 V$	V _{DD} -1.3	-	

Table 42. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 10* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 10 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results, not tested in production.

Driver characteristics ⁽¹⁾						
Symbol	Parameter	Conditions	Min	Max	Unit	
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%	
V _{CRS}	Output signal crossover voltage		1.3	2.0	V	

Table 51. USB: full speed electrical characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

I2S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main Clock Output		256 x 8K	256xFs ⁽¹⁾	MHz
4		Master data: 32 bits	-	64xFs	N 41 1-
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	MHz
D _{CK}	I2S clock frequency duty cycle	Slave receiver, 48KHz	30	70	%
t _{r(CK)}	I2S clock rise time	Capacitive load CL=30pF		8	
t _{f(CK)}	I2S clock fall time		-	8	
t _{v(WS)}	WS valid time	Master mode	4	24	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	15	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	8	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	9	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	ns
t _{h(SD_SR)}		Slave receiver	4	-	
$t_{v(SD_ST)}$	Data output valid time	Slave transmitter (after enable edge)	-	64	
$t_{h(SD_ST)}$	Data output hold time	Slave transmitter (after enable edge)	22	-	
$t_{v(SD_MT)}$	Data output valid time	Master transmitter (after enable edge)	-	12	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	8	-	

Table 52. I2S characteristics

1. The maximum for 256xFs is 8 MHz

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the

ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

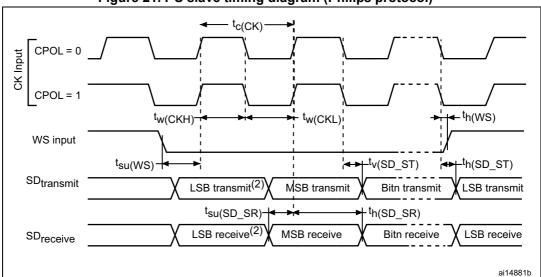
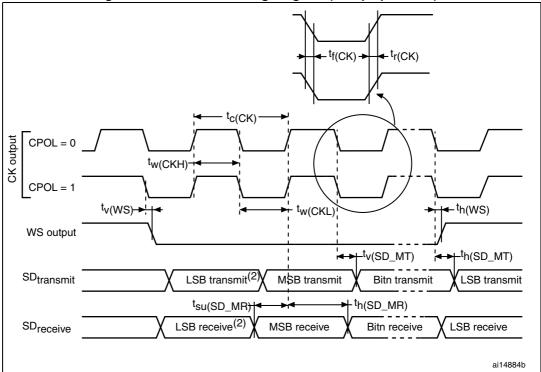



Figure 21. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD}.$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 22. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 54* are guaranteed by design.

Symbol	Parameter	Conditions			Min	Max	Unit		
					V _{REF+} = V _{DDA}		16		
			2.4 V ≤V _{DDA} ≤3.6 V	V _{REF+} < V _{DDA} V _{REF+} > 2.4 V		8			
f _{ADC} ADC clock frequency	Voltage range 1 & 2		V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V	0.480	4	MHz			
					191101 0111	$V_{\text{REF+}} = V_{\text{DDA}}$		8	
			1.8 V ≤V _{DDA} ≤2.4 V	V _{REF+} < V _{DDA}		4			
			Voltage range 3			4			

Table	53. A	DC	clock	frequency	
			0.00.		

Table 54. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V_{DDA}	Power supply	-	1.8	-	3.6		
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾	-	V _{DDA}	V	
V_{REF-}	Negative reference voltage	-	-	V _{SSA}	-		
I _{VDDA}	Current on the V _{DDA} input pin	-	-	1000	1450		
ı (2)	Current on the V input nin	Peak	-	400	700	μA	
$I_{VREF}^{(2)}$ Current on the V _{REF} input pin		Average		400	450		
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V _{REF+}	V	
	12 hit compling rate	Direct channels	-	-	1	Mana	
	12-bit sampling rate	Multiplexed channels	-	-	0.76	Msps	
	10 hit compliant rate	Direct channels	-	-	1.07	Mana	
	10-bit sampling rate	Multiplexed channels	-	-	0.8	Msps	
f _S	0 kit eenerling gete	Direct channels	-	-	1.23		
	8-bit sampling rate	Multiplexed channels	-	-	0.89	Msps	
	6 hit compling rate	Direct channels	-	-	1.45	1	
	6-bit sampling rate	Multiplexed channels	-	-	1	Msps	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-	
		Multiplexed channels 2.4 V ⊴V _{DDA} ≤3.6 V	0.56	-	-	
$t_{S}^{(5)}$	Sampling time	Direct channels 1.8 V ⊴V _{DDA} ⊴2.4 V	0.56	-	-	μs
		Multiplexed channels 1.8 V ⊴V _{DDA} ⊴2.4 V	1	-	-	
		-	4	-	384	1/f _{ADC}
		f _{ADC} = 16 MHz	1	-	24.75	μs
t _{CONV}	Total conversion time (including sampling time)	-	4 to 384 (sampling phase) +12 (successive approximation)			1/f _{ADC}
C	Internal sample and hold	Direct channels	-	- 16	-	рF
C _{ADC}	capacitor	pacitor Multiplexed channels -	-		-	Ч
£	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}
f _{TRIG}	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}
4	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}
f _{TRIG}	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}
R _{AIN} ⁽⁶⁾	Signal source impedance		-	-	50	kΩ
	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns
	latency	-	3.5	-	4.5	1/f _{ADC}
4	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns
t _{latr}	latency	-	2.5	-	3.5	1/f _{ADC}
t _{STAB}	Power-up time	-	-	-	3.5	μs

Table 54. ADC characteristics (continued)

1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through VREF is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μA), only during sampling time + 2 first conversion pulses

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

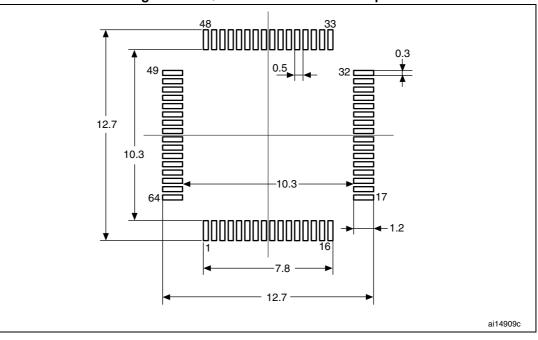
5. Minimum sampling time is reached for an external input impedance limited to a value as defined in *Table 56: Maximum source impedance RAIN max*

6. External impedance has another high value limitation when using short sampling time as defined in *Table 56: Maximum source impedance RAIN max*

Symbol	I Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
PSRR	Power supply	Normal mode	DC	-	-85	-	dB	
PSRR	rejection ratio	Low-power mode		-	-90	-	aв	
		Normal mode	V >24V	400	1000	3000		
	Denducidate	Low-power mode	– V _{DD} >2.4 V	150	300	800	6117	
GBW	Bandwidth	Normal mode	V2 4 V	200	500	2200	kHZ	
		Low-power mode	– V _{DD} <2.4 V	70	150	800		
SR Slew rate		Normal mode	V_{DD} >2.4 V (between 0.1 V and V_{DD} -0.1 V)	-	700	-		
	Slew rate	Low-power mode	V _{DD} >2.4 V	-	100	-	V/ms	
		Normal mode	V 2 4 V	-	300	-		
		Low-power mode	mode V _{DD} <2.4 V		50	-		
AO (Open loop gain	Normal mode		55	100	-	- dB	
		Low-power mode		65	110	-		
Р	Desistive lead	Normal mode	V ~2 4 V	4	-	-	kΩ	
R _L	Resistive load	Low-power mode	– V _{DD} <2.4 V	20	-	-		
CL	Capacitive load		-	-	-	50	pF	
VOH _{SAT}	High saturation	Normal mode		V _{DD} - 100	-	-		
0,11	voltage	Low-power mode	I _{LOAD} = max or	V _{DD} -50	-	-	mV	
VO	Low saturation	Normal mode	$-R_{L} = min$	-	-	100		
VOL _{SAT}	voltage	Low-power mode		-	-	50		
φm	Phase margin		-	-	60	-	0	
GM	Gain margin		-	-	-12	-	dB	
t _{OFFTRIM}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	1	-	ms	
+	Wakoup timo	Normal mode	$C_L \leq 50 \text{ pf},$ $R_L \geq 4 \text{ k}\Omega$	-	10	-	116	
^t WAKEUP	Wakeup time	Low-power mode	C _L ≤50 pf, R _L ≥ 20 kΩ	-	30	-	μs	

Table 58. Operational amplifier characteristics (continued)

Operating conditions are limited to junction temperature (0 °C to 105 °C) when V_{DD} is below 2 V. Otherwise to the full ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).


2. Guaranteed by characterization results, not tested in production.

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D3	-	7.500	-	-	0.2953	-
Е	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.000	10.200	0.3858	0.3937	0.4016
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031
К	0.0	3.5	7.0	0.0	3.5	7.0

Table 62 I OFP64	10 x 10 mm 64-nin low-pro	ofile quad flat package mechanical data
		me quaa nat paenage meenamear aata

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 28. LQFP64 Recommended footprint

1. Dimensions are in millimeters.

