

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

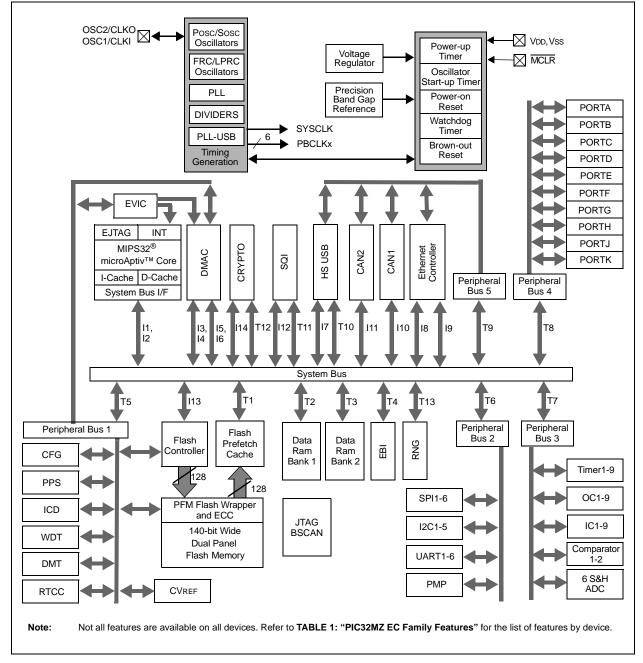
Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ecg100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents provided in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This data sheet contains device-specific information for PIC32MZ Embedded Connectivity (EC) devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ EC family of devices.

Table 1-21 through Table 1-22 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 2 through Table 5).

FIGURE 1-1: PIC32MZ EC FAMILY BLOCK DIAGRAM

TABLE 1-20: SQI1 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description	
SQICLK	57	89	A61	129	0	—	Serial Quad Interface Clock	
SQICS0	52	81	A56	118	0	—	Serial Quad Interface Chip Select 0	
SQICS1	53	82	B46	119	0		Serial Quad Interface Chip Select 1	
SQID0	58	97	B55	141	I/O	ST	Serial Quad Interface Data 0	
SQID1	61	96	A65	140	I/O	ST	Serial Quad Interface Data 1	
SQID2	62	95	B54	139	I/O	ST	Serial Quad Interface Data 2	
SQID3	63	90	B51	130	I/O	ST	Serial Quad Interface Data 3	
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power	

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

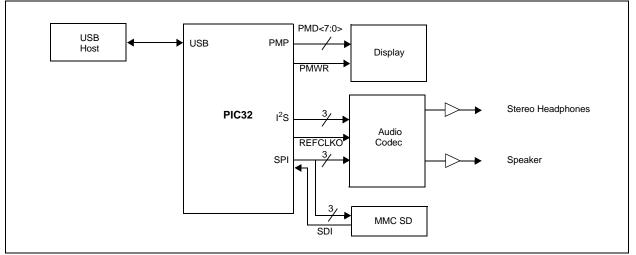
Analog = Analog input O = Output

PPS = Peripheral Pin Select

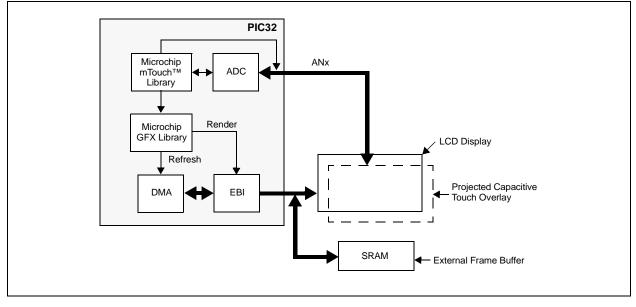
I = Input

POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS **TABLE 1-21:**

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					Power a	nd Ground	
AVdd	19	30	B16	41	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	A21	42	Р	Р	Ground reference for analog modules. This pin must be connected at all times
Vdd	8, 26, 39, 54, 60	14, 37, 46, 62, 74, 83, 93	B35, A50, A58, B53		Р	_	Positive supply for peripheral logic and I/O pins. This pin must be connected at all times.
Vss	7, 25, 35, 40, 55, 59	13, 36, 45, 53, 63, 75, 84, 92	A9, B13, B20, B29, A29, A43, A51, B48, A63	17, 32, 54, 63, 75, 89, 108, 123, 136	Ρ	ľ	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.
					Voltage	Reference	·
VREF+	16	29	A20	40	I	Analog	Analog Voltage Reference (High) Input
VREF-	15	28	B15	39	I	Analog	Analog Voltage Reference (Low) Input
•	CMOS = CI ST = Schmi	•	•	•	s	O = Outpu	Analog input P = Power ut I = Input


TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select


2.11 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-9 and Figure 2-10.

FIGURE 2-10: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

Physical Memory Map⁽¹⁾ 0x1FC74000 0x1FC70000 Sequence/Configuration Space⁽³⁾ 0x1FC6FF00 Boot Flash 2 0x1FC60000 Reserved 0x1FC54028 Serial Number⁽⁵⁾ 0x1FC54020 ADC Calibration Space⁽³⁾ 0x1FC54000 0x1FC50000 Sequence/Configuration Space⁽⁴⁾ 0x1FC4FF00 Boot Flash 1 0x1FC40000 Reserved 0x1FC34000 0x1FC30000 Unused Configuration Space(6) 0x1FC2FF00 Upper Boot Alias 0x1FC20000 Reserved 0x1FC14000 0x1FC10000 Configuration Space^(2,3) 0x1FC0FF00 Lower Boot Alias 0x1FC00000 Note 1: Memory areas are not shown to scale. Memory locations 0x1FC0FF40 2: through 0x1FC0FFFC are used to initialize Configuration registers (see Section 34.0 "Special Features"). 3: Memory locations 0x1FC54000 through 0x1FC54010 are used to initialize the ADC Calibration registers (see Section 34.0 "Special Features"). Refer to Section 4.1.1 "Boot Flash 4: Sequence and Configuration Spaces" for more information. 5: Memory locations 0x1FC54020 and 0x1FC54024 contain a unique device serial number (see Section 34.0 "Special Features"). 6: This configuration space cannot be used for executing code in the upper

FIGURE 4-5: BOOT AND ALIAS MEMORY MAP

TABLE 4-1: SFR MEMORY MAP

	Virtual Ad	dress
Peripheral	Base	Offset Start
System Bus ⁽¹⁾	0xBF8F0000	0x0000
RNG		0x6000
Crypto	7	0x5000
USB	0,405,0000	0x3000
SQI1	0xBF8E0000	0x2000
EBI	7	0x1000
Prefetch	7	0x0000
Ethernet	0.0000000	0x2000
CAN1 and CAN2	0xBF880000	0x0000
PORTA-PORTK	0xBF860000	0x0000
Comparator 1, 2		0xC000
ADC1	7	0xB000
OC1-OC9	0xBF840000	0x4000
IC1-IC9		0x2000
Timer1-Timer9	7	0x0000
PMP		0xE000
UART1-UART6	0.0000000	0x2000
SPI1-SPI6	0xBF820000	0x1000
I2C1-I2C5	7	0x0000
DMA	0.000	0x1000
Interrupt Controller	0xBF810000	0x0000
PPS		0x1400
Oscillator		0x1200
CVREF		0x0E00
RTCC	0.0000000	0x0C00
Deadman Timer	0xBF800000	0x0A00
Watchdog Timer	1	0x0800
Flash Controller	1	0x0600
Configuration	7	0x0000

Note 1: Refer to 4.2 "System Bus Arbitration" for important legal information.

boot alias.

TABLE 4-18: SYSTEM BUS TARGET 10 REGISTER MAP

ess		Ċ,									Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	A820 SBT10ELOG1	31:16	MULTI	_	_	_		CODE	<3:0>			-	_	_		_	—	_	0000
A020	SBIIICELOGI	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		-	C	MD<2:0>		0000
A824	SBT10ELOG2	31:16	_	_	—	—	—	—	—	—	_	_	_	_	-	_	—	_	0000
A0Z4	3BT IVELOG2	15:0			—	—	—	—	—	—				—		_	GROU	P<1:0>	0000
1000	SBT10ECON	31:16			—	—	—	—	—	ERRP				—		_	_	—	0000
A828	SETTUECON	15:0	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
A830	SBT10ECLRS	31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
A630	SBI IUECLKS	15:0	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CLEAR	0000
A838	SBT10ECLRM	31:16	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
A030	SETTUECLEN	15:0	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	CLEAR	0000
4.0.40		31:16								BA	SE<21:6>								xxxx
A840	SBT10REG0	15:0			BA	\SE<5:0>			PRI				SIZE<4:0:	>		—	—	_	xxxx
4.050	00740000	31:16	_		—	_	_	_	_	_	—	_	—	_	—	—	—	_	xxxx
A850	SBT10RD0	15:0	_		_	_	_	_	_	_	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
4.050		31:16		—	_	_		_	_		_	_	_	_	_	_	_	_	xxxx
A858	SBT10WR0	15:0		_	_	_	_	_	_	—					GROUP3	GROUP2	GROUP1	GROUP0	xxxx

© 2013-2016 Microchip Technology Inc.

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

		$(\mathbf{X} = 0 - 13)$						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		_	—	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	_	—	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0		_			_	_		CLEAR

REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_			_	_	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0								CLEAR

Legend:

_ogonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

© 2013-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	—	—	—	—	—	_	—			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	PWP<23:16>										
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	PWP<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				PWP<	7:0>						

REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31 **PWPULOCK:** Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				CHPIGI	N<7:0>			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	—
45-0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	CHBUSY	_	CHIPGNEN	—	CHPATLEN	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

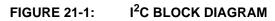
bit 31-24 CHPIGN<7:0>: Channel Register Data bits

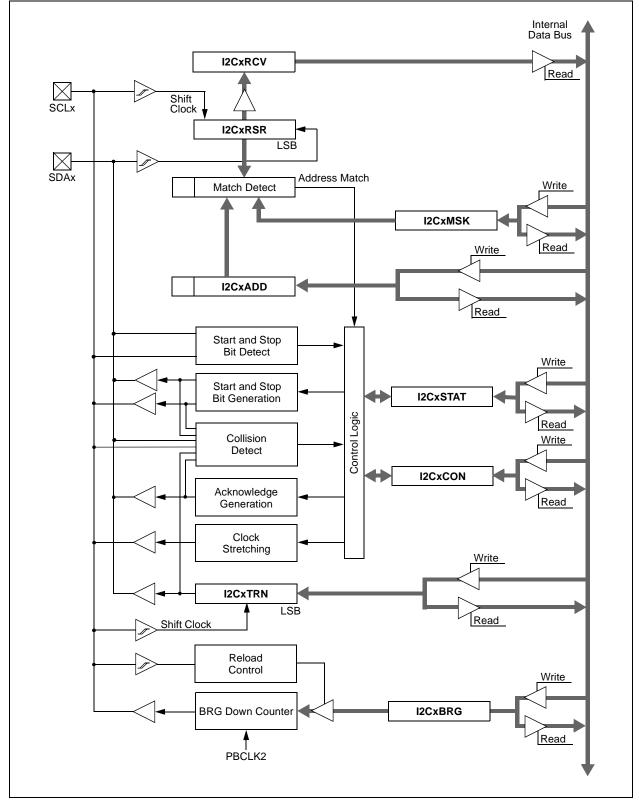
Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **CHPIGNEN:** Enable Pattern Ignore Byte bit
 - 1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled
 0 = Disable this feature
- bit 12 Unimplemented: Read as '0'
- bit 11 CHPATLEN: Pattern Length bit
 - 1 = 2 byte length
 - 0 = 1 byte length


bit 10-9 Unimplemented: Read as '0'


- bit 8 **CHCHNS:** Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)
 - CHEN: Channel Enable bit⁽²⁾
- 1 = Channel is enabled

bit 7

- 0 = Channel is disabled
- bit 6 CHAED: Channel Allow Events If Disabled bit
 - 1 = Channel start/abort events will be registered, even if the channel is disabled
 - 0 = Channel start/abort events will be ignored if the channel is disabled
- bit 5 CHCHN: Channel Chain Enable bit
 - 1 = Allow channel to be chained
 - 0 = Do not allow channel to be chained
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

PIC32MZ Embedded Connectivity (EC) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0	
31:24	—	-	_	_			_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	_	_	_	_	_	—	
45-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE<1:0>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	
7:0	WAITB	<1:0> ⁽¹⁾		WAITM	WAITE<1:0> ⁽¹⁾				

REGISTER 23-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy
- bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
 - 11 = Reserved, do not use
 - 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
 - 01 = Interrupt generated at the end of the read/write cycle
 - 00 = No Interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<15:0> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<15:0> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address

bit 10 MODE16: 8/16-bit Mode bit

- 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
- 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer

bit 9-8 MODE<1:0>: Parallel Port Mode Select bits

- 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<15:0>)⁽³⁾
- 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, and PMD<15:0>)(3)
- 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCSx, PMD<7:0>, and PMA<1:0>)
- 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCSx, and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPBCLK2; multiplexed address phase of 4 TPBCLK2
- 10 = Data wait of 3 TPBCLK2; multiplexed address phase of 3 TPBCLK2
- 01 = Data wait of 2 TPBCLK2; multiplexed address phase of 2 TPBCLK2
- 00 = Data wait of 1 TPBCLK2; multiplexed address phase of 1 TPBCLK2 (default)

Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK2 cycle for a write operation; WAITB = 1 TPBCLK2 cycle, WAITE = 0 TPBCLK2 cycles for a read operation.

- 2: Address bits 14 and 15 are is not subject to auto-increment/decrement if configured as Chip Select.
- 3: The PMD<15:8> bits are not active is the MODE16 bit = 1.

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31:24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	_	—	—
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	_	—	_	MODIE	CTMRIE	RBIE	TBIE
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	_	—	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_	_	_	MODIF	CTMRIF	RBIF	TBIF

REGISTER 29-3: CIINT: CAN INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	 IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 30	WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 29	CERRIE: CAN Bus Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 28	SERRIE: System Error Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 27	RBOVIE: Receive Buffer Overflow Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 26-20	Unimplemented: Read as '0'
bit 19	MODIE: Mode Change Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 18	CTMRIE: CAN Timestamp Timer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 17	RBIE: Receive Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 16	TBIE: Transmit Buffer Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 15	IVRIF: Invalid Message Received Interrupt Flag bit 1 = An invalid messages interrupt has occurred 0 = An invalid message interrupt has not occurred
Note 1:	This bit can only be cleared by turning the CAN module Off and On by

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24				_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16					RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8				_	_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_		RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
h:+ 0.4	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty0 = Interrupt disabled for FIFO empty
hit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
DIC 15	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty
hi+ 15 11	
	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) 1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0: (FIFO configured as a Receive Buffer)
	Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 30-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	e Bit Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—	-				-	—					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	_	_	_	_	—	—					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8	FRMTXOKCNT<15:8>												
7.0	R/W-0 R/W-0		R/W-0 R/W-0		R/W-0 R/W-0		R/W-0	R/W-0					
7:0				FRMTXOK	(CNT<7:0>								

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

31.1 Comparator Control Registers

TABLE 31-1: COMPARATOR REGISTER MAP

ess		â		Bits															ú
Virtual Address (BF84_#) Register Name ⁽¹⁾	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
C000	CM1CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
C000	CIVITCON	15:0	ON	COE	CPOL	—	_	—	—	COUT	EVPO	L<1:0>	_	CREF	—	_	CCH	<1:0>	00C3
C010	CM2CON	31:16	_	_	_	—	_	—	—	_	_	—	_	—	—	_	—	_	0000
0010	CIVIZCON	15:0	ON	COE	CPOL	—	—	—	—	COUT	EVPO	L<1:0>	—	CREF	-	—	CCH	<1:0>	00C3
0060	CMSTAT	31:16	—	_	_	—	—	—	—	_	_	—	_	—	—	_	—	_	0000
000	CMSTAT	15:0	_	_	SIDL	_	—	—	—	—	—	—	_	_	—	_	C2OUT	C10UT	0000
1																			

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	_		-	_	-		_
00.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		-	_			—
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	SIDL		_			—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
7.0		_					C2OUT	C1OUT

REGISTER 31-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-14 Unimplemented: Read as '0'

- bit 13 SIDL: Stop in IDLE Control bit
 - 1 = All Comparator modules are disabled in IDLE mode
 - 0 = All Comparator modules continue to operate in the IDLE mode

bit 12-2 Unimplemented: Read as '0'

- bit 1 C2OUT: Comparator Output bit
 - 1 = Output of Comparator 2 is a '1'
 - 0 = Output of Comparator 2 is a '0'

bit 0 C1OUT: Comparator Output bit

- 1 =Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

33.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the PIC32MZ Embedded Connectivity
	(EC) Family of devices. It is not intended
	to be a comprehensive reference source.
	To complement the information in this
	data sheet, refer to Section 10. "Power-
	Saving Features" (DS60001130), which
	is available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MZ EC devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

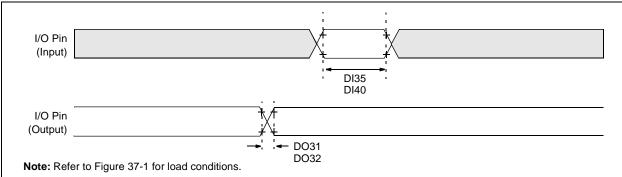
- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

TABLE 37-20: INTERNAL FRC ACCURACY

AC CHA		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Characteristics	Min. Typ. Max. Units Conditions				Conditions	
Internal	FRC Accuracy @ 8.00 MH	z ⁽¹⁾					
F20	FRC	-5	—	+5	%	$0^{\circ}C \le TA \le +85^{\circ}C$	
		-8	_	+8	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 37-21: INTERNAL LPRC ACCURACY


AC CHA	RACTERISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Characteristics	Min. Typ. Max. Units Conditions					
Internal	LPRC @ 32.768 kHz ⁽¹⁾						
F21	LPRC	-8		+8	%	$0^{\circ}C \le TA \le +85^{\circ}C$	
		-25		+25	%	$-40^{\circ}C \le TA < +85^{\circ}C$	

Note 1: Change of LPRC frequency as VDD changes.

TABLE 37-22: INTERNAL BACKUP FRC (BFRC) ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Internal BFRC Accuracy @ 8 MHz ^I							
F22	BFRC	-30	_	+30	%	—	

TABLE 37-23: I/O TIMING REQUIREMENTS

AC CHAI	RACTERIS	STICS	(unless other	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DO31	TIOR	Port Output Rise Time I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-7, RB11, RB13 RC12-RC15		_	_	9.5	ns	Cload = 50 pF		
	RC12-RC13 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11 Port Output Rise Time I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12,		6, RH8-RH13	_	_	6	ns	Cload = 20 pF		
			ns - 5 RB14, RB15	_	_	8	ns	Cload = 50 pF		
		RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7		_	_	6	ns	CLOAD = 20 pF		
	Port Output Rise Time I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14			_	_	3.5	ns	CLOAD = 50 pF		
			_	_	2	ns	CLOAD = 20 pF			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

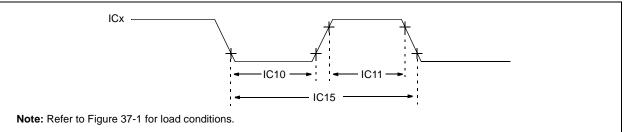

2: This parameter is characterized, but not tested in manufacturing.

TABLE 37-26: TIMER2-TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS	(unless	ard Operating Conditions: 2.3V to 3.6V s otherwise stated) ting temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Cha	racteristics ⁽¹⁾	Min.	Max.	Units	Conditions	
TB10	ТтхН	TxCK High Time	Synchronous, with prescaler	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns		ns	Must also meet parameter TB15	N = prescale value (1, 2, 4, 8, 16, 32, 64,
TB11	TTXL	TxCK Low Time	Synchronous, with prescaler	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	—	ns	Must also meet parameter TB15	256)
TB15	ΤτχΡ	TxCK Input	Synchronous, with prescaler	[(Greater of [(25 ns or 2 TPBCLK3)/N] + 30 ns		ns	VDD > 2.7V	
		Period		[(Greater of [(25 ns or 2 TPBCLK3)/N] + 50 ns	—	ns	VDD < 2.7V	
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	1	TPBCLK3		—

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 37-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 37-27: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless oth	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Charac	teristics ⁽¹⁾	Min.	Max.	Units	Con	ditions		
IC10	TccL	ICx Input	Low Time	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)		
IC11	TccH	ICx Input	: High Time	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	-	ns	Must also meet parameter IC15.			
IC15	TccP	ICx Input	Period	[(25 ns or 2 TPBCLK3) /N] + 50 ns	—	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE A-4: CPU DIFFERENCES (CONTINUED)

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature						
Core Instruction Execution							
On PIC32MX devices, the CPU can execute MIPS16e instruc- tions and uses a 16-bit instruction set, which reduces memory size.	On PIC32MZ devices, the CPU can operate a mode called microMIPS. microMIPS mode is an enhanced MIPS32® instruction set that uses both 16-bit and 32-bit opcodes. This mode of operation reduces memory size with minimum performance impact.						
MIPS16e [®]	<pre>microMIPS™ The BOOTISA (DEVCFG0<6>) Configuration bit controls the MIPS32 and microMIPS modes for boot and exception code. 1 = Boot code and Exception code is MIPS32® (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS™ (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)</pre>						

A.4 Resets

The PIC32MZ family of devices has updated the resets modules to incorporate the new handling of NMI resets from the WDT, DMT, and the FSCM. In addition, some bits have been moved, as summarized in Table A-5.

TABLE A-5: RESET DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Power	Reset
	The VREGS bit, which controls whether the internal regulator is enabled in Sleep mode, has been moved from RCON in PIC32MX5XX/6XX/7XX devices to a new PWRCON register in PIC32MZ devices.
VREGS (RCON<8>)	VREGS (PWRCON<0>)
1 = Regulator is enabled and is on during Sleep mode	1 = Voltage regulator will remain active during Sleep
0 = Regulator is disabled and is off during Sleep mode	0 = Voltage regulator will go to Stand-by mode during Sleep
Watchdog ⁻	Timer Reset
On PIC32MX devices, a WDT expiration immediately triggers a device reset.	On PIC32MZ devices, the WDT expiration now causes a NMI. The WDTO bit in RNMICON indicates that the WDT caused the NMI. A new timer, NMICNT, runs when the WDT NMI is triggered, and if it expires, the device is reset.
WDT expiration immediately causes a device reset.	WDT expiration causes a NMI, which can then trigger the device reset. WDTO (RNMICON<24>) 1 = WDT time-out has occurred and caused a NMI 0 = WDT time-out has not occurred
	NMICNT<7:0> (RNMICON<7:0>)