

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ecg144t-i-ph

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-20: SQI1 PINOUT I/O DESCRIPTIONS

		Pin Nu	mber						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description		
SQICLK	57	89	A61	129	0	—	Serial Quad Interface Clock		
SQICS0	52	81	A56	118	0	—	Serial Quad Interface Chip Select 0		
SQICS1	53	82	B46	119	0		Serial Quad Interface Chip Select 1		
SQID0	58	97	B55	141	I/O	ST	Serial Quad Interface Data 0		
SQID1	61	96	A65	140	I/O	ST	Serial Quad Interface Data 1		
SQID2	62	95	B54	139	I/O	ST	Serial Quad Interface Data 2		
SQID3	63	90	B51	130	I/O	ST	Serial Quad Interface Data 3		
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power		

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

PPS = Peripheral Pin Select

I = Input

POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS **TABLE 1-21:**

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
					Power a	nd Ground	
AVdd	19	30	B16	41	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	A21	42	Р	Р	Ground reference for analog modules. This pin must be connected at all times
Vdd	8, 26, 39, 54, 60	14, 37, 46, 62, 74, 83, 93	B35, A50, A58, B53		Р	_	Positive supply for peripheral logic and I/O pins. This pin must be connected at all times.
Vss	7, 25, 35, 40, 55, 59	13, 36, 45, 53, 63, 75, 84, 92	A9, B13, B20, B29, A29, A43, A51, B48, A63	17, 32, 54, 63, 75, 89, 108, 123, 136	Ρ	ľ	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.
					Voltage	Reference	·
VREF+	16	29	A20	40	I	Analog	Analog Voltage Reference (High) Input
VREF-	15	28	B15	39	I	Analog	Analog Voltage Reference (Low) Input
•	CMOS = CI ST = Schmi	•	•	•	s	O = Outpu	Analog input P = Power ut I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

3.2 Architecture Overview

The MIPS32 microAptiv Microprocessor core in PIC32MZ EC family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- Memory Management Unit (MMU)
- Instruction/Data cache controllers
- Power Management
- Instructions and data caches
- microMIPS support
- Enhanced JTAG (EJTAG) controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- · Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bitper-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

	DE UNIT LATENCIES AND REFEA	I KAILS	
Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

TABLE 3-1: MIPS32 microAptiv MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

ss										Bi	its								
Virtual Address (BFC4_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
FF40	ABF1DEVCFG3	31:0			1			1					1					1	xx
FF44	ABF1DEVCFG2	31:0																	xx
FF48	ABF1DEVCFG1	31:0																	xx
FF4C	ABF1DEVCFG0	31:0																	x
FF50	ABF1DEVCP3	31:0																	
FF54	ABF1DEVCP2	31:0		Note: See Table 34-2 for the bit descriptions.															
FF58	ABF1DEVCP1	31:0							Note. Se			it description	5115.						x
FF5C	ABF1DEVCP0	31:0																	x
FF60	ABF1DEVSIGN3	31:0																	x
FF64	ABF1DEVSIGN2	31:0																	x
FF68	ABF1DEVSIGN1	31:0																	x
FF6C	ABF1DEVSIGN0	31:0																	xx
FF70	ABF1SEQ3	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	xz
1170	ADI IGLQ3	15:0	_		_			_		_			_	_		_	_	_	x
FF74	ABF1SEQ2	31:16	-	_	-	—	—		-	—	_	_		-	_	—	—	-	x
FF/4	ADFISEQ2	15:0	_	—	—			—	—	-	—	—	—	—	—	_	_	—	xx
	10510501	31:16	_		_	_	_	_		_	_	_	_	_	_	_	_	_	XX
FF/8	ABF1SEQ1	15:0	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	XX
	10510500	31:16		CSEQ<15:0> xxx															
FF/C	ABF1SEQ0	15:0								TSEQ	<15:0>								xx
FFC0	BF1DEVCFG3	31:0																	x
	BF1DEVCFG2	31:0																	xx
FFC8	BF1DEVCFG1	31:0																	x
	BF1DEVCFG0	31:0																	x
FFD0	BF1DEVCP3	31:0																	xx
FFD4	BF1DEVCP2	31:0							Nata: Ca	a Tabla 24	1 for the h	it descriptio							x
FFD8	BF1DEVCP1	31:0							Note: Se	e Table 34	- i loi the b	it description	JNS.						x
FFDC	BF1DEVCP0	31:0																	x
FFE0	BF1DEVSIGN3	31:0																	x
FFE4	BF1DEVSIGN2	31:0																	x
FFE8	BF1DEVSIGN1	31:0																	x
FFEC	BF1DEVSIGN0	31:0																	x
	BF1SEQ3	31:16	-	_		—	—	-	_	—	_	_	-	-	_	—	—		x
FFF0	BF ISEQ3	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	xz
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	x
FFF4	BF1SEQ2	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	x
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	x>
FFF8	BF1SEQ1	15:0	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	—	XX
	DE40500	31:16								CSEQ	<15:0>								xx
FFFC	BF1SEQ0	15:0		TSEQ<15:0>															
Legen	d - v - unknow		on Reset	— = Rese	rved read	as '1' Res	et values a	re shown ir	hexadeci										<u> </u>

PIC32MZ Embedded

Connectivity

(EC) Family

TABLE 4-2: BOOT FLASH 1 SEQUENCE AND CONFIGURATION WORDS SUMMARY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	NVMDATA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMDATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMDATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMD	ATA<7:0>						

REGISTER 5-4: NVMDATAX: FLASH DATA REGISTER (x = 0-3)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Data bits

Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	NVMSRCADDR<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMSRCADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMSRCADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	NVMSRCADDR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] microAptiv[™] MICROPROCESSOR CORE EXCEPTION TYPES

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	—	—	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	_	_	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	—	DSS	—	
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	—	DINT	_	_
NMI	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	—	—	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	—	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software inter- rupt signal.	See Table 7-2.	IPL<2:0>	—	0x00	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL	—	0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	_	DIB	_	_
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	—	0x17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	—	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	_	—	0x02	_
		EBASE+0x180 if Status.EXL == 1	—	—	0x02	_general_exception_handler
TLBL Execute Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	—	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL	—	0x06	_general_exception_handler

PIC32MZ Embedded Connectivity **E**C Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24	—	—	—	_	_	FRCDIV<2:0>			
00.46	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	DRMEN	SOSCRDY	—	_	_	—	—	—	
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15:8	—		COSC<2:0>		_	NOSC<2:0>			
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y	
7:0	CLKLOCK	ULOCK	SLOCK	SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Co	onfiguration bits on POR	HS = Hardware Set
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2
- 000 = FRC divided by 1 (default setting)
- bit 23 DRMEN: Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO (DEVCFG1<7>) bit. When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_	-	—	—
22.46	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-						—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_				TUN<	5:0> ⁽¹⁾		

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note:	Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced
	PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess										Bit	s								
VII LUAI AULIESS (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	DCH1SSIZ	31:16	_		—			_		—		—	_	_	_		_		00
170	DCITI3312	15:0								CHSSIZ	<15:0>								00
180	DCH1DSIZ	31:16	_	_	—	_	—	_	—	_	_	—	—	—	—	—	—	—	0
100	DCITIDOIZ	15:0								CHDSIZ	<15:0>	-	-	-			-		0
100	DCH1SPTR	31:16	—	—	—	_	—	_	—	—	—				_	—	—	—	0
190		15:0								CHSPTR	<15:0>								0
140	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0
/ 10		15:0								CHDPTR	<15:0>								(
B0	DCH1CSIZ	31:16	_		—	_		_	_	_	—	—	_	—	—	—	—	—	(
50		15:0								CHCSIZ	<15:0>								(
CO	DCH1CPTR	31:16	_		—	_		_	_	_	—	—	_	—	—	—	—	—	(
		15:0								CHCPTR	<15:0>								(
D0	DCH1DAT	31:16	—	_	—	_	—	_	—	—	—	—	—	—	—	—	—	—	(
		15:0								CHPDAT	<15:0>						-		(
IE0	DCH2CON	31:16				CHPIG					-	—	—	—	—	—	—	—	(
		15:0	CHBUSY	—	CHPIGNEN	—	CHPATLEN	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	21<1:0>	(
IF0	DCH2ECON	31:16	—	—	—	—	—	—	—	—		-	-	CHAIR					(
		15:0				CHSIR	Q<7:0>				CFORCE		PATEN	SIRQEN	AIRQEN	—	-	—	I
200	DCH2INT	31:16	—		—	_	—	_	—	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	(
		15:0	—	_	—	_	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	_
210	DCH2SSA	31:16								CHSSA	<31:0>								(
-		15:0																	(
220	DCH2DSA	31:16								CHDSA-	<31:0>								(
		15:0																	(
230	DCH2SSIZ	31:16	—	_	—	_	_	_	_	-	-	—	_	—	—	_	—	_	(
		15:0								CHSSIZ	<15:0>						r		(
240	DCH2DSIZ	31:16	—	_	—	_	_	_	_		-	_	_	_	_	_	—	_	(
		15:0 31:16	_							CHDSIZ	<15:0>					_			0
250	DCH2SPTR		_	_	_	_		_				_	_	_	_	_	_	_	0
		15:0 31:16					_			CHSPTR	<10:0>		_	_	_	_			0
260	DCH2DPTR		—		—	_				CHDPTR						_	—	—	0
		15:0									<10:0>								0
270	DCH2CSIZ	31:16	_	_	_	_	_	_	_			_		_	_		_	—	C
		15:0					s '0'. Reset v			CHCSIZ	<15:0>								0

PIC32MZ Embedded Connectivity (EC) Family

All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTE	R 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs 0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred) 0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	 1 = A channel address error has been detected Either the source or the destination address is invalid. 0 = No interrupt is pending

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0		
31:24		VPLEN<7:0>								
00.40	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0		
23:16		WTCO	N<3:0>			WTID	<3:0>	R/W-0		
15.0	R-1	R-0	R-0	R-0	R-1	R-1	R-0	R-0		
15:8		DMACHANS<3:0> RAMBITS<3:0>								
7.0	R-0	R-1	R-1	R-1	R-0	R-1	R-1	R-1		
7:0		RXENDF	PTS<3:0>		TXENDPTS<3:0>					

REGISTER 11-16: USBINFO: USB INFORMATION REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 VPLEN<7:0>: VBUS pulsing charge length bits

Sets the duration of the VBUS pulsing charge in units of 546.1 $\mu s.$ (The default setting corresponds to 32.77 ms.)

- bit 23-20 WTCON<3:0>: Connect/Disconnect filter control bits Sets the wait to be applied to allow for the connect/disconnect filter in units of 533.3 ns. The default setting corresponds to 2.667 μs.
- bit 19-6 WTID<3:0>: ID delay valid control bits

Sets the delay to be applied from IDPULLUP being asserted to IDDIG being considered valid in units of 4.369ms. The default setting corresponds to 52.43ms.

bit 15-12 DMACHANS<3:0>: DMA Channels bits

These read-only bits provide the number of DMA channels in the USB module. For the PIC32MZ EC family, this number is 8.

bit 11-8 **RAMBITS<3:0>:** RAM address bus width bits

These read-only bits provide the width of the RAM address bus. For the PIC32MZ EC family, this number is 12.

bit 7-4 RXENDPTS<3:0>: Included RX Endpoints bits

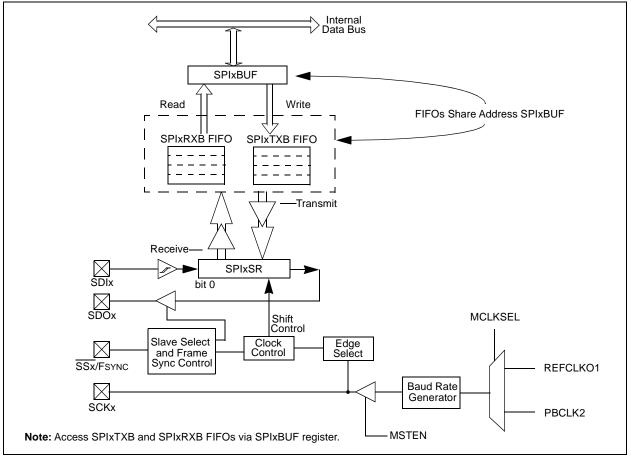
This read-only register gives the number of RX endpoints in the design. For the PIC32MZ EC family, this number is 7.

bit 3-0 TXENDPTS<3:0>: Included TX Endpoints bits

These read-only bits provide the number of TX endpoints in the design. For the PIC32MZ EC family, this number is 7.

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).


The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are some of the key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs
 - based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-iustified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	_	—	—	—
	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS
15:8	—	—	_	—		PKT COMPIF	BD DONEIF	CON THRIF
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS
7:0	CON EMPTYIF	CON FULLIF	RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Legend:	HS = Hardware Set			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-11	Unimplemented: Read as '0'
bit 10	PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Status bit
	1 = DMA BD packet is complete
	0 = DMA BD packet is in progress
bit 9	BDDONEIF: DMA Buffer Descriptor Done Interrupt Status bit
	1 = DMA BD process is done
	0 = DMA BD process is in progress
bit 8	CONTHRIF: Control Buffer Threshold Interrupt Status bit
	1 = The control buffer has more than THRES words of space available
	0 = The control buffer has less than THRES words of space available
bit 7	CONEMPTYIF: Control Buffer Empty Interrupt Status bit
	1 = Control buffer is empty
	0 = Control buffer is not empty
bit 6	CONFULLIF: Control Buffer Full Interrupt Status bit
	1 = Control buffer is full
	0 = Control buffer is not full
bit 5	RXTHRIF: Receive Buffer Threshold Interrupt Status bit ⁽¹⁾
	1 = Receive buffer has more than RXINTTHR words of space available
	0 = Receive buffer has less than RXINTTHR words of space available
bit 4	RXFULLIF: Receive Buffer Full Interrupt Status bit
	1 = Receive buffer is full
	0 = Receive buffer is not full
bit 3	RXEMPTYIF: Receive Buffer Empty Interrupt Status bit
	1 = Receive buffer is empty
	0 = Receive buffer is not empty
bit 2	TXTHRIF: Transmit Buffer Interrupt Status bit

- bit 2 **TXTHRIF:** Transmit Buffer Interrupt Status bit
 - 1 = Transmit buffer has more than TXINTTHR words of space available
 - 0 = Transmit buffer has less than TXINTTHR words of space available
- Note 1: In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

REGISTER 20-20: SQI1BDRXDSTAT: SQI BUFFER DESCRIPTOR DMA RECEIVE STATUS REGISTER

	1	LOISTEN								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0		
31:24	—	_	_		RXSTATE<3:0>					
00.40	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x		
23:16	—	—	_		RXBUFCNT<4:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	_	_	_	_	—	—	—	—		
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
7:0				RXCURBUF	LEN<7:0>					

Leg	genc	1:			

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **RXSTATE<3:0>:** Current DMA Receive State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **RXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits These bits provide information on the internal FIFO space.

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXCURBUFLEN<7:0>:** Current DMA Receive Buffer Length Status bits These bits provide the length of the current DMA receive buffer.

r					1			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	—	—	—
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	SCKREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

REGISTER 21-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 Unimplemented: Read as '0'

bit 22	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Stop condition
	0 = Stop detection interrupts are disabled
bit 21	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Start or Restart conditions
	0 = Start detection interrupts are disabled
bit 20	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)
	 1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0 0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19	SDAHT: SDA Hold Time Selection bit
	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
	0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)
	1 = Enable slave bus collision interrupts
	0 = Slave bus collision interrupts are disabled
bit 18	AHEN: Address Hold Enable bit (Slave mode only)
	1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared and the SCL will be held low.
	0 = Address holding is disabled
bit 16	DHEN: Data Hold Enable bit (I ² C Slave mode only)
	 1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
	0 = Data holding is disabled
bit 15	ON: I ² C Enable bit
	 1 = Enables the I²C module and configures the SDA and SCL pins as serial port pins 0 = Disables the I²C module; all I²C pins are controlled by PORT functions
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode

31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CSADDR<15:8>										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CSADDR<7:0>										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—			_			_	—			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—		-	_	-	-	—	—			
	R/W-0 R/W-0 U-0 —	R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 — —	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 — — —	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSADDI R/W-0 R/W-0 R/W-0 CSADDI U-0 U-0 U-0 U-0 — — — —	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 — — — — —	R/W-0 R/W-0 <th< td=""><td>R/W-0 R/W-0 <th< td=""></th<></td></th<>	R/W-0 R/W-0 <th< td=""></th<>			

REGISTER 24-1: EBICSx: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)

- bit 7 **AUTOFC:** Automatic Flow Control bit
 - 1 = Automatic Flow Control enabled
 - 0 = Automatic Flow Control disabled

Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 6-5 Unimplemented: Read as '0'

bit 4 MANFC: Manual Flow Control bit

- 1 = Manual Flow Control is enabled
- 0 = Manual Flow Control is disabled

Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.

Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz.

When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 3-1 Unimplemented: Read as '0'

bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit

The BUFCDEC bit is a write-1 bit that reads as '0'. When written with a '1', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a '0' will have no effect.

This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

34.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. (DS60001124) and Section 33. "Programming **Diagnostics**" and (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ EC devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])
- Internal temperature sensor

34.1 Configuration Bits

PIC32MZ EC devices contain two Boot Flash memories (Boot Flash 1 and Boot Flash 2), each with an associated configuration space. These configuration spaces can be programmed to contain various device configurations. Configuration space that is aliased by the Lower Boot Alias memory region is used to provide values for Configuration registers listed below. See **4.1.1 "Boot Flash Sequence and Configuration Spaces"** for more information.

- DEVSIGN0/ADEVSIGN0: Device Signature Word 0 Register
- DEVCP0/ADEVCP0: Device Code-Protect 0
 Register
- DEVCFG0/ADEVCFG0: Device Configuration Word 0
- DEVCFG1/ADEVCFG1: Device Configuration
 Word 1
- DEVCFG2/ADEVCFG2: Device Configuration Word 2
- DEVCFG3/ADEVCFG3: Device Configuration Word 3

The following run-time programmable Configuration registers provide additional configuration control:

- CFGCON: Configuration Control Register
- CFGEBIA: External Bus Interface Address Pin Configuration Register
- CFGEBIC: External Bus Interface Control Pin Configuration Register
- CFGPG: Permission Group Configuration Register

In addition, the DEVID register (see Register 34-11) provides device and revision information, the DEVADC1 through DEVADC5 registers (see Register 34-12) provide ADC module calibration data, and the DEVSN0 and DEVSN1 registers contain a unique serial number of the device (see Register 34-13).

Note: Do not use word program operation (NVMOP<3:0> = 0001) when programming the device words that are described in this section.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Reserved
 - 101 = LPRC
 - 100 **= S**OSC
 - 011 = Reserved
 - 010 = Posc (HS, EC)
 - 001 = SPLL
 - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

TABLE 37-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage (Note 1)	2.3	_	3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage (Note 2)	1.75	_	—	V	_	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal (Note 3)	1.75	_	_	V	_	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00004	_	0.0004	V/µs	_	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

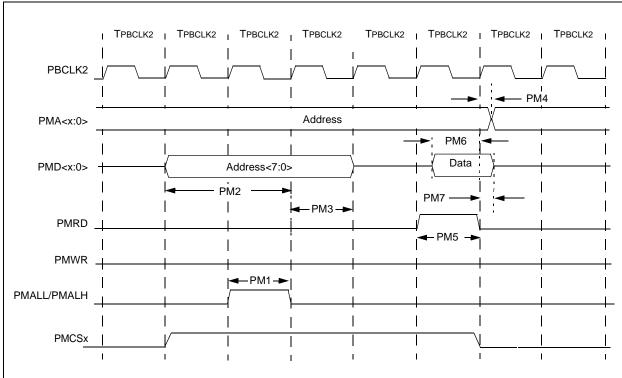

- 2: This is the limit to which VDD can be lowered without losing RAM data.
- 3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 37-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾ Typ. Max. Units Condition				Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	1.9	_	2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

FIGURE 37-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 37-42: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Symbol Characteristics ⁽¹⁾ Min. Typ. Max. Units						
PM1	TLAT	PMALL/PMALH Pulse Width	_	1 TPBCLK2	_	—		
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	—	2 TPBCLK2	—	—	1	
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 TPBCLK2	_	_	_	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	_	ns	_	
PM5	Trd	PMRD Pulse Width	—	1 TPBCLK2	_	_	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	5	—	—	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.