

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 48x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ecg144t-i-pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

64·	-PIN QFN ⁽⁴⁾ AND TQFP (TOP VIEW)			
Pl Pl	C32MZ0512EC(E/F/K)064 C32MZ1024EC(G/H/M)064 C32MZ1024EC(E/F/K)064 C32MZ2048EC(G/H/M)064	64 QFN	(4)	1 64 1 TQFP
Pin #	Full Pin Name	Pin	#	Full Pin Name
1	AN17/ETXEN/RPE5/PMD5/RE5	33	3	VBUS
2	AN16/ETXD0/PMD6/RE6	34		VUSB3V3
3	AN15/ETXD1/PMD7/RE7	35	;	Vss
4	AN14/C1IND/RPG6/SCK2/PMA5/RG6	36	;	D-
5	AN13/C1INC/RPG7/SDA4/PMA4/RG7	37	,	D+
6	AN12/C2IND/RPG8/SCL4/PMA3/RG8	38	3	RPF3/USBID/RF3
7	Vss	39	,	Vdd
8	Vdd	40)	Vss
9	MCLR	41		RPF4/SDA5/PMA9/RF4
10	AN11/C2INC/RPG9/PMA2/RG9	42		RPF5/SCL5/PMA8/RF5
11	AN45/C1INA/RPB5/RB5	43		AERXD0/ETXD2/RPD9/SDA1/PMCS2/PMA15/RD9
12	AN4/C1INB/RB4	44	Ļ I	ECOL/RPD10/SCL1/SCK4/RD10
13	AN3/C2INA/RPB3/RB3	45	;	AERXCLK/AEREFCLK/ECRS/RPD11/PMCS1/PMA14/RD1
14	AN2/C2INB/RPB2/RB2	46	;	AERXD1/ETXD3/RPD0/RTCC/INT0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/RB1	47	,	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	3	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN46/RPB6/RB6	49	,	EMDIO/AEMDIO/RPD1/SCK1/RD1
18	PGED2/AN47/RPB7/RB7	50)	ETXERR/AETXEN/RPD2/SDA3/RD2
19	AVdd	51		AERXERR/ETXCLK/RPD3/SCL3/RD3
20	AVss	52	,	SQICS0/RPD4/PMWR/RD4
21	AN48/RPB8/PMA10/RB8	53	3	SQICS1/RPD5/PMRD/RD5
22	AN49/RPB9/PMA7/RB9	54		Vdd
23	TMS/CVREFOUT/AN5/RPB10/PMA13/RB10	55	;	Vss
24	TDO/AN6/PMA12/RB11	56		ERXD3/AETXD1/RPF0/RF0
25	Vss	57	,	TRCLK/SQICLK/ERXD2/AETXD0/RPF1/RF1
26	Vdd	58		TRD0/SQID0/ERXD1/PMD0/RE0
27	TCK/AN7/PMA11/RB12	59		Vss
28	TDI/AN8/RB13	60		VDD
29	AN9/RPB14/SCK3/PMA1/RB14	61		TRD1/SQID1/ERXD0/PMD1/RE1
30	AN10/EMDC/AEMDC/RPB15/OCFB/PMA0/RB15	62		TRD2/SQID2/ERXDV/ECRSDV/AECRSDV/PMD2/RE2
	OSC1/CLKI/RC12	63		
31	USCI/CLNI/RCIZ	0.) 1	TRD3/SQID3/ERXCLK/EREFCLK/RPE3/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
AN0	16	25	A18	36	Ι	Analog	Analog Input Channels
AN1	15	24	A17	35	I	Analog	
AN2	14	23	A16	34	I	Analog	
AN3	13	22	A14	31	I	Analog	
AN4	12	21	A13	26	Ι	Analog	
AN5	23	34	B19	49	-	Analog	
AN6	24	35	A24	50	Ι	Analog	
AN7	27	41	A27	59	Ι	Analog	
AN8	28	42	B23	60	-	Analog	
AN9	29	43	A28	61	I	Analog	1
AN10	30	44	B24	62	Ι	Analog	
AN11	10	16	B9	21	-	Analog	
AN12	6	12	B7	16	Ι	Analog	
AN13	5	11	A8	15	I	Analog	
AN14	4	10	B6	14	I	Analog	
AN15	3	5	A4	5	Ι	Analog	
AN16	2	4	B2	4	I	Analog	
AN17	1	3	A3	3	I	Analog	
AN18	64	100	A67	144	Ι	Analog	
AN19	_	9	A7	13	Ι	Analog	
AN20	_	8	B5	12	-	Analog	
AN21	_	7	A6	11	Ι	Analog	
AN22	_	6	B3	6	Ι	Analog	
AN23	_	1	A2	1	-	Analog	
AN24	_	17	A11	22	Ι	Analog	
AN25		18	B10	23	-	Analog	
AN26		19	A12	24	-	Analog	
AN27	_	28	B15	39	Ι	Analog	
AN28	—	29	A20	40	I	Analog	1
AN29	—	38	B21	56	I	Analog	1
AN30		39	A26	57	I	Analog]
AN31		40	B22	58	I	Analog]
AN32	—	47	B27	69	I	Analog	1
AN33	—	48	A32	70	I	Analog	1
AN34	—	2	B1	2	I	Analog	1
AN35	_	—	A5	7	I	Analog	1
Legend:	CMOS = C	MOS-comp	atible input	or output		Analog =	Analog input P = Power

TABLE 1-1: ADC1 PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

	LE 7-3:						(CONTI	NUED)											
ess		æ								В	its								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0568	OFF010	31:16		_	—	—	_	—	_	—		—	_	—	_	_	VOFF<1	7:16>	0000
0000	011010	15:0								VOFF<15:1	>							_	0000
056C	OFF011	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<1	7:16>	0000
	011011	15:0								VOFF<15:1	>								0000
0570	OFF012	31:16	—	_	—	—	—	—	—	—	_	—	—	—	—	—	VOFF<1	7:16>	0000
		15:0								VOFF<15:1	>	i		i				_	0000
0574	OFF013	31:16		—	—	—	—		—	—	—	—	—	—	—	—	VOFF<1	7:16>	0000
		15:0								VOFF<15:1									0000
0578	OFF014	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	_	VOFF<1		0000
		15:0								VOFF<15:1									0000
057C	OFF015	31:16 15:0	—	_	—	_	—	—	—	— VOFF<15:1:	_	—	_	_	_	_	VOFF<1		0000
		31:16	_						_	VOFF<15:1	<u> </u>	_				_	VOFF<1	7:16:	0000
0580	OFF016	15:0	—	—	_	—	_	_	_			_	—	_	—	_	VUFF<1		0000
		31:16	_		_		_	_	_		_	_				_	VOFF<1		0000
0584	OFF017	15:0								VOFF<15:1							00111		0000
		31:16	_		_		_	_	_	_			_				VOFF<1		0000
0588	OFF018	15:0								VOFF<15:1	>							_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<1	7:16>	0000
058C	OFF019	15:0								VOFF<15:1	>						· · · · · · · · · · · · · · · · · · ·	_	0000
	0.55000	31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	_	VOFF<1	7:16>	0000
0590	OFF020	15:0								VOFF<15:1	>							_	0000
0594	OFF021	31:16		_	—	—	—	—	—	_	_	—	_	—	—	—	VOFF<1	7:16>	0000
0594	UFF021	15:0								VOFF<15:1	>							_	0000
0598	OFF022	31:16	_	_	—	—		—	-	—	_	—	-	—	_	_	VOFF<1	7:16>	0000
0590	UFF022	15:0								VOFF<15:1	>	-		-				_	0000
059C	OFF023	31:16	_	_	-	_	_	—	_	_	_	_	_	_	_	_	VOFF<1	7:16>	0000
0000	011023	15:0								VOFF<15:1	>							_	0000
05A0	OFF024	31:16	_	_	—	—	_	_	—	_	_	—	—	—	—	_	VOFF<1	7:16>	0000
50, 10	511024	15:0								VOFF<15:1	>							_	0000

TARIE 7-3. INTEDDUDT DECISTED MAD (CONTINUED)

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Note 1: **Registers**" for more information.

2:

This bit or register is not available on 64-pin devices. This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

This bit or register is not available on devices without a Crypto module. 7:

8: This bit or register is not available on 124-pin devices.

PIC32MZ Embedded Connectivity (EC) Family

REGISTE	CEGISTER 11-20. USBDMAINT: USB DMA INTERROFT REGISTER										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—		—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	_	_	_	_	_		—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	_	_	_	_	_	_		—			
7:0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS			
7:0	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF			

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 DMAxIF: DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

- 1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to `0b11. Both LPMXMT and LPMEN must be set in the same cycle.
- 0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
- 0 = Maintain current state

bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits

This is the endpoint in the token packet of the LPM transaction.

bit 11-9 Unimplemented: Read as '0'

bit 8 **RMTWAK:** Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled

bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	—	-
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit			

64 04 46 LIN d. D . . .

bit 31-16	Unimplemented: Read as '0'
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = NACK received from slave
	0 = ACK received from slave
	Hardware set or clear at end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)
	 1 = I²C bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No collision
	Hardware set at detection of bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
	Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8	ADD10: 10-bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7	IWCOL: Write Collision Detect bit
	1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy
	0 = No collision
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register is still holding the previous byte
	 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

EBI Control Registers 24.1

TABLE 24-2: EBI REGISTER MAP

ess											Bits								s
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1014	EBICS0 ⁽¹⁾	31:16		-			-		-	CS	SADDR<15:0	>				-		-	2000
1014		15:0	_	—	—	—	—	—		—	—	—	—	—	—		—	—	0000
1018	EBICS1(2)	31:16								CS	SADDR<15:0	>							1000
		15:0	—	—	—	—		—	—	—	_	—	—	—	—	—	—	—	0000
101C	EBICS2(2)	31:16								CS	SADDR<15:0	>		r					2040
		15:0	—	_	—	_	_	—		—		—	_	—	_	—	—	_	0000
1020	EBICS3(2)	31:16									SADDR<15:0								1040
		15:0	_		_		_		—	_	—				_	—	_	_	0000
1054	EBIMSK0 ⁽¹⁾	31:16						— DFC	 SEL<2:0	_		EMTYPE<2				EMSIZE<4	-	_	0000
		15:0 31:16			_			REG	SEL<2:0	>	IVI		.0>		IVI		.0>		0020
1058	EBIMSK1(2)	15:0						- REG	SEL<2:0		M	EMTYPE<2			M	EMSIZE<4			0020
		31:16						_		_								_	00020
105C	EBIMSK2 ⁽²⁾	15:0	_	_	_	_		REG	SEL<2:0		М	EMTYPE<2			M	EMSIZE<4	.0>		0120
	(2)	31:16	_	_	_		_	_	_	_	_		_	_	_	_	_	_	0000
1060	EBIMSK3 ⁽²⁾	15:0	_	_	_	_	_	REG	SEL<2:0	>	М	EMTYPE<2	:0>		M	EMSIZE<4	:0>		0120
		31:16	_	_	_	_	_	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		041C
1094	EBISMT0	15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2D4B
4000	EBISMT1	31:16	_	_	_	_	_	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		041C
1098	ERIZMIT	15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2D4B
109C	EBISMT2	31:16	_	—	_	_	_	RDYMODE	PAGESI	ZE<1:0>	PAGEMODE		TPRC<	<3:0>			TBTA<2:0>		041C
1090	EDISIVITZ	15:0			TW	P<5:0>			TWR	<1:0>	TAS<	1:0>			TRC<	5:0>			2d\$b
1040	EBIFTRPD	31:16	_	_	—	_	_	_	_	—	_	—	-	—	_	_	—	-	0000
1070		15:0	—	-	—							TR	PD<11:0>						00C8
10A4	EBISMCON	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
10/14		15:0	SMD	WIDTH2<2	2:0>	SME	DWIDTH1<	:2:0>	SM	IDWIDTH	10<2:0>	—	—	—	—	—	—	SMRP	0201

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

 This register is not available on 64-pin devices.
 This register is available on 144-pin devices only. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24		—	_	—	_	-	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	—	—	-	—	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	_	—	_	_	_	_	—	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	HDRLEN<7:0>										

REGISTER 26-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER

Legend:

Logona						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **HDRLEN<7:0>:** DMA Header Length bits For every packet, skip this length of locations and start filling the data.

REGISTER 26-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_		—	—			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	—	_	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	—	—	_	_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				TRLRLE	N<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0'

bit 7-0 TRLRLEN<7:0>: DMA Trailer Length bits

For every packet, skip this length of locations at the end of the current packet and start putting the next packet.

27.1 RNG Control Registers

TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

ess		0								В	its								6
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	RNGVER	31:16								ID<1	5:0>								xxxx
0000	KNOVER	15:0				VERSIC)N<7:0>							REVISI	ON<7:0>				xxxx
6004	RNGCON	31:16	_	_	_	_	_	—	_	-	-	—	—	—	_	—	—	_	0000
0004	RINGCON	15:0	Ι	-	-	LOAD		CONT	PRNGEN	TRNGEN				PLEN	 <7:0>				0064
6008	RNGPOLY1	31:16								POLY	-21.0								FFFF
0000	RINGFOLT	15:0								FULI	<31.0>								0000
600C	RNGPOLY2	31:16									<31:0>								FFFF
000C	RINGFOLT2	15:0								FULI	<31.0>								0000
6010	RNGNUMGEN1	31:16								PNG	:31:0>								FFFF
0010	RINGINOWIGEINT	15:0								KNG	.01.0>								FFFF
6014		31:16								BNC	:31:0>								FFFF
6014	RNGNUMGEN2	15:0								RNG<	31:0>								FFFF
0040		31:16								0550	04.0								0000
6018	RNGSEED1	15:0		SEED<31:0>															
004.0	DNOOFEDO	31:16		0000															
601C	RNGSEED2	15:0		SEED<31:0>															
0000	DNOONT	31:16	_	—	—	—	_	—	—	—	—	—	—	_	_	—	—	—	0000
6020	RNGCNT	15:0	-	_	_	_	_	—	_	-	-		•		RCNT<6:0>	>	•		0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24				ADCMPH	H<15:8>					
00.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				ADCMP	HI<7:0>					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				ADCMPL	.0<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ADCMPLO<7:0>									

REGISTER 28-13: AD1CMPn: ADC1 DIGITAL COMPARATOR REGISTER 'n' ('n' = 1, 2, 3, 4, 5 OR 6)

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 **ADCMPHI<15:0>:** Digital Analog Comparator High Limit Value bits These bits store the high limit value, which is used for comparisons with the analog-to-digital conversion data. The user is responsible for formatting the data as signed or unsigned to match the data format as specified by the SHxMOD<1:0> bits for the associated S&H circuit and the FRACT bit.

bit 15-0 **ADCMPLO<15:0>:** Digital Analog Comparator Low Limit Value bits These bits store the low limit value, which is used for comparisons with the analog-to-digital conversion data. The user is responsible for formatting the data as signed or unsigned to match the data format as specified by the SHxMOD<1:0> bits for the associated S&H circuit and the FRACT bit.

Note: Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_		_				-	—
23:16	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23.10	_	WAKFIL	_	-		SEG	62PH<2:0> ⁽¹	,4)
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾	S	EG1PH<2:0>	(4)	PR	SEG<2:0> ⁽⁴))
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	7:0 SJW<1:0> ⁽³⁾		BRP<5:0>					

REGISTER 29-2: CICFG: CAN BAUD RATE CONFIGURATION REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bit	-n = Bit Value at POR: ('0	0', '1', x = Unknown)	

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

- 0 = CAN bus line filter is not used for wake-up
- bit 21-19 Unimplemented: Read as '0'

bit 18-16	SEG2PH<2:0>: Phase Buffer Segment 2 bits ^(1,4)
	111 = Length is 8 x TQ
	•
	•
	•
	000 = Length is 1 x TQ
bit 15	SEG2PHTS: Phase Segment 2 Time Select bit ⁽¹⁾
	1 = Freely programmable0 = Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14	SAM: Sample of the CAN Bus Line bit ⁽²⁾
	1 = Bus line is sampled three times at the sample point0 = Bus line is sampled once at the sample point
bit 13-11	SEG1PH<2:0>: Phase Buffer Segment 1 bits ⁽⁴⁾
	111 = Length is 8 x TQ
	•
	•
	•
	000 - 1 on the is 1 x To

 $000 = \text{Length is } 1 \times TQ$

- Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
 - 2: 3 Time bit sampling is not allowed for BRP < 2.
 - **3:** SJW \leq SEG2PH.
 - **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> Note: (CiCON < 23:21 >) = 100).

REGISTE	R 29-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED)
bit 15	FLTEN13: Filter 13 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 14-13	MSEL13<1:0>: Filter 13 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 12-8	FSEL13<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 7	FLTEN12: Filter 12 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 6-5	MSEL12<1:0>: Filter 12 Mask Select bits
DIL 0-5	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 4-0	FSEL12<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			—	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—			—	—	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—			—	—	-	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7.0	_	_	_	_		_	SCAN	READ

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

33.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the PIC32MZ Embedded Connectivity
	(EC) Family of devices. It is not intended
	to be a comprehensive reference source.
	To complement the information in this
	data sheet, refer to Section 10. "Power-
	Saving Features" (DS60001130), which
	is available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MZ EC devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

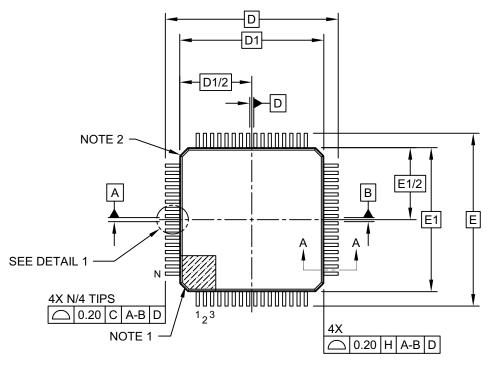
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

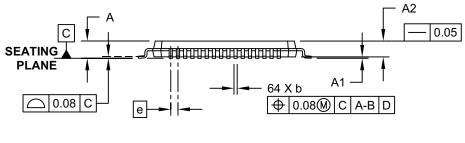
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


36.12 Third-Party Development Tools

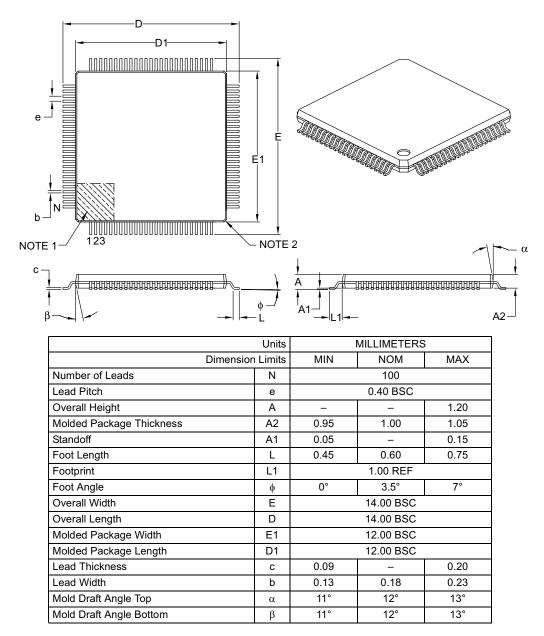
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.


- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW



SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

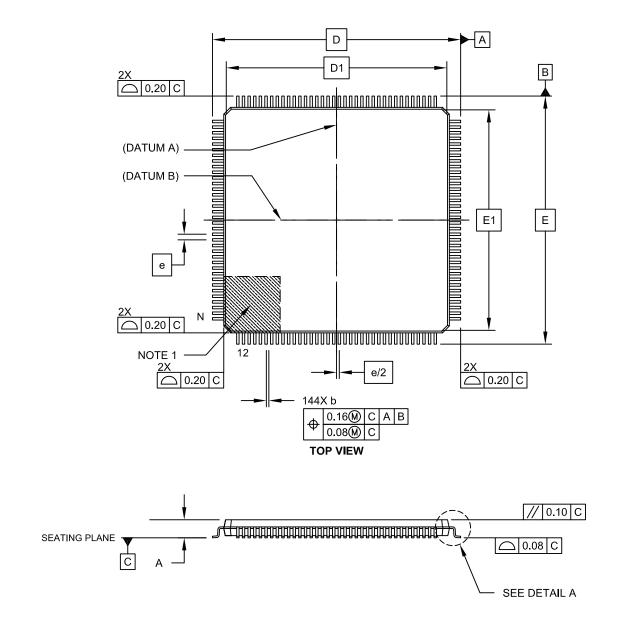
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-044B Sheet 1 of 2

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
PLL Con	figuration
The FNOSC<2:0> and NOSC<2:0> bits select between POSC and FRC.	Selection of which input clock (POSC or FRC) is now don through the FPLLICLK/PLLICLK bits.
FNOSC<2:0> (DEVCFG1<2:0>) NOSC<2:0> (OSCCON<10:8>)	FPLLICLK (DEVCFG2<7>) PLLICLK (SPLLCON<7>)
On PIC32MX devices, the input frequency to the PLL had to be between 4 MHz and 5 MHz. FPLLIDIV selected how to divide the input frequency to give it the appropriate range.	On PIC32MZ devices, the input range for the PLL is wider (5 MH to 64 MHz). The input divider values have changed, and new FPLLRNG/PLLRNG bits have been added to indicate under what range the input frequency falls.
FPLLIDIV<2:0> (DEVCFG2<2:0>) 111 = 12x divider	range the input frequency falls. FPLLIDIV<2:0> (DEVCFG2<2:0>) PLLIDIV<2:0> (SPLLCON<2:0>)
110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider	111 = Divide by 8 110 = Divide by 7 101 = Divide by 6 100 = Divide by 5 011 = Divide by 4
001 = 2x divider 000 = 1x divider	010 = Divide by 3 001 = Divide by 2 000 = Divide by 1
	FPLLRNG<2:0> (DEVCFG2<6:4>) PLLRNG<2:0> (SPLLCON<2:0>) 111 = Reserved 110 = Reserved
	101 = 34-64 MHz 100 = 21-42 MHz 011 = 13-26 MHz 010 = 8-16 MHz 001 = 5-10 MHz
On PIC32MX devices, the output frequency of PLL is between 60 MHz and 120 MHz. The PLL multiplier and divider bits configure the PLL for this range.	000 = Bypass The PLL multiplier and divider on PIC32MZ devices have a wide range to accommodate the wider PLL specification range of 1 MHz to 200 MHz.
FPLLMUL<2:0> (DEVCFG2<6:4>) PLLMULT<2:0> (OSCCON<18:16>) 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier	FPLLMULT<6:0> (DEVCFG2<14:8>) PLLMULT<6:0> (SPLLCON<22:16>) 111111 = Multiply by 128 111110 = Multiply by 127 1111101 = Multiply by 126 1111100 = Multiply by 125
011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier	• • • • • • • • • • • • • • • • • • • •
FPLLODIV<2:0> (DEVCFG2<18:16>) PLLODIV<2:0> (OSCCON<29:27>) 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier	FPLLODIV<2:0> (DEVCFG2<18:16>) PLLODIV<2:0> (SPLLCON<26:24>) 111 = PLL Divide by 32 110 = PLL Divide by 32 101 = PLL Divide by 32
 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier 	100 = PLL Divide by 16 011 = PLL Divide by 8 010 = PLL Divide by 4 001 = PLL Divide by 2 000 = PLL Divide by 2

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

A.8 Flash Programming

The PIC32MZ family of devices incorporates a new Flash memory technology. Applications ported from PIC32MX5XX/6XX/7XX devices that take advantage of Run-time Self Programming will need to adjust the Flash programming steps to incorporate these changes.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Program Flash Write Protection	
On PIC32MX devices, the Program Flash write-protect bits are part of the Flash Configuration words (DEVCFG0).	On PIC32MZ devices, the write-protect register is contained separately as the NVMPWP register. It has been expanded to 24 bits, and now represents the address below, which all Flash mem- ory is protected. Note that the lower 14 bits are forced to zero, so that all memory locations in the page are protected.
PWP< 7 :0> (DEVCFG0<19:12>)	PWP< 23 :0> (NVMPWP<23:0>)
11111111 = Disabled 11111110 = 0xBD000FFF 1111110 = 0xBD001FFF 1111100 = 0xBD002FFF 1111011 = 0xBD003FFF 1111001 = 0xBD005FFF 1111000 = 0xBD006FFF 1111011 = 0xBD007FFF 1111010 = 0xBD009FFF 1111010 = 0xBD008FFF 1111001 = 0xBD008FFF 1111001 = 0xBD00FFF 1111001 = 0xBD00FFF 1111000 = 0xBD00FFF 1111000 = 0xBD00FFF 1111000 = 0xBD00FFF 11110111 = 0xBD00FFFF	Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.
01111111 = 0xBD07FFFF Code Pr	otection
On PIC32MX devices, code protection is enabled by the CP	On PIC32MZ devices, code protection is enabled by the CP
(DEVCFG<28>) bit.	(DEVCP0<28>) bit.
Boot Flash Write Protection	
On PIC32MX devices, Boot Flash write protection is enable by the BWP (DEVCFG<24>) bit and protects the entire Boot Flash memory.	On PIC32MZ devices, Boot Flash write protection is divided into pages and is enable by the LBWPx and UBWPx bits in the NVMBWP register.
Low-Voltage Detect Status	
LVDSTAT (NVMCON<11>) 1 = Low-voltage event is active 0 = Low-voltage event is not active	The LVDSTAT bit is not available in PIC32MZ devices.
ÿ	Letter and the second se