

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ech064t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

ess		6		Bits															
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0710	055449(2)	31:16	_	-	—	—	—	-	_	—	—		_	—	—	-	VOFF<1	7:16>	0000
0/18	OFF II 6	15:0								VOFF<15:1	>							_	0000
0710	055110	31:16	_	_	—	—	—	—	—	—	—	_	—	—	—	-	VOFF<1	7:16>	0000
0/10	OFFII9	15:0								VOFF<15:1	>							_	0000
0720	OFE120	31:16	_		—	—	_	—	—	—	—	_	—	_	—	—	VOFF<1	7:16>	0000
0720	UFF120	15:0								VOFF<15:1	>							_	0000
0724	OFF121	31:16	_	_	—	—	—	—	—	—	—	—	—	—	—	-	VOFF<1	7:16>	0000
0724	VOFF<15:1>								_	0000									
0728	OFF122	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<1	7:16>	0000
0720	011122	15:0					-			VOFF<15:1	>		-					_	0000
0720	OFE123	31:16	_	_	—	—	_	—	_	—	_	—	—	_	—	—	VOFF<1	7:16>	0000
0720	011123	15:0								VOFF<15:1	>							—	0000
0730	OFE124	31:16	_	_	—	—	_	—	_	—	_	—	—	_	—	—	VOFF<1	7:16>	0000
0/30	15:0 VOFF<15:1>							_	0000										
0734	OFE125(2,4)	31:16	—	_	—	—	_	—	—	_	_	—	—	—	—	—	VOFF<1	7:16>	0000
0734	011123	15:0					-			VOFF<15:1	>		-					_	0000
0738	OFE126(2,4)	31:16	—	_	—	—	_	—	—	_	_	—	—	—	—	—	VOFF<1	7:16>	0000
0730	OFF 120	15:0								VOFF<15:1	>							—	0000
0720	00002(2.4.8)	31:16	_		—	_	_	—	—	_	—	—	—	_	—	_	VOFF<1	7:16>	0000
0730	OFF 127,	15:0			-	-		-	-	VOFF<15:1	>	-	-	-	-	-		_	0000
0740	055129	31:16	_		—	—	_	—	—	_	_	—	—	_	—	_	VOFF<1	7:16>	0000
0740	UFF120	15:0								VOFF<15:1	>							—	0000
0744	OEE120	31:16	—		—	—	—	—	—	_	—	_	—	_	—	—	VOFF<1	7:16>	0000
0744	UFF129	15:0								VOFF<15:1	>							—	0000
0749	055120	31:16	—		—	—	—	—	—	_	—	_	—	_	—	—	VOFF<1	7:16>	0000
VOFF<15:1>							>		•		•	•		_	0000				
0740	055404	31:16	-	_	—	-	_	—	_	_	_	_	_	_	—	-	VOFF<1	7:16>	0000
074C	UFF131	15:0								VOFF<15:1	>							—	0000
0750	055422	31:16	—	—	—	—	—	_	_	—	—		—	—	—	—	VOFF<1	7:16>	0000
0750	UFF132	15:0								VOFF<15:1	>							_	0000
Leger	nd: x = unknown value on Reset: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																		

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Note 1: Registers" for more information. 2:

This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

8: This bit or register is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0				
51.24	—	—	—	—	PFMDED	PFMSEC	—	—				
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	—	—	—	—	—	—				
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	—	—	—	—	—	—	—				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		PFMSECCNT<7:0>										

REGISTER 9-2: PRESTAT: PREFETCH MODULE STATUS REGISTER

Legend:		HS = Hardware Set				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-28 Unimplemented: Read as '0'

bit 27 **PFMDED:** Flash Double-bit Error Detected (DED) Status bit

- This bit is set in hardware and can only be cleared (i.e., set to '0') in software.
- 1 = A DED error has occurred
- 0 = A DED error has not occurred
- bit 26 PFMSEC: Flash Single-bit Error Corrected (SEC) Status bit 1 = A SEC error occurred when PFMSECCNT<7:0> was equal to '0' 0 = A SEC error has not occurred
- bit 25-8 Unimplemented: Read as '0'
- bit 7-0 **PFMSECCNT<7:0>:** Flash SEC Count bits

11111111 - 00000000 = SEC count

This field decrements by one each time an SEC error occurs. It will hold at zero on the two-hundred and fifty-sixth error. When an SEC error occurs, when PFMSECCNT = 0, the PFMSEC status bit is set. If PFMSECEN is also set, an interrupt is generated.

Note: These bits count all SEC errors and are not limited to SEC errors on unique addresses.

	LE 10-3.	. JMA CHANNEL UTHKOUGH CHANNEL / REGISTER MAP (CONTINUED)																	
ess										Bit	s								
Virtual Addr (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16			—		—			—		—		—		—			0000
1280	DCH2CPTR	15:0								CHCPTR	<15:0>								0000
4000	DOLIODAT	31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
1290	DCH2DA1	15:0								CHPDAT	<15:0>								0000
4040	DOUDOON	31:16				CHPIG	SN<7:0>				_	—	_	_	_		_	_	0000
12A0	DCH3CON	15:0	CHBUSY		CHPIGNEN	_	CHPATLEN	_	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
1280		31:16	_	_	—		—	_	—	_		-		CHAIR	Q<7:0>	-			OOFF
1200	DCH3LCON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	_	FF00
12C0	DCH3INT	31:16	_	—	-		—	_		—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1200	Donionti	15:0	_	—	—	—	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
12D0	DCH3SSA	31:16	6 0000 CHSSA<31:0>																
		15:0																	
12E0	DCH3DSA	CH3DSA 31:0> CHDSA<31:0>									0000								
		15:0																	0000
12F0	DCH3SSIZ	15.0								CHSSIZ		_							0000
		31.16	_		_	_	_	_	_	_		_	_	_	_	_	_	_	0000
1300	DCH3DSIZ	15:0								CHDSIZ	<15:0>								0000
		31:16	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
1310	DCH3SPTR	15:0								CHSPTR	<15:0>								0000
1000		31:16	—		—	_	—	_	—	—	_	_	_	_	_	—	—	_	0000
1320	DCH3DPTR	15:0								CHDPTR	<15:0>								0000
1330	DCH3CSI7	31:16	—	—	—	_	—	_	—	-	—	—	—	—	—	—	—	—	0000
1000	DOI 190012	15:0								CHCSIZ	<15:0>								0000
1340	DCH3CPTR	31:16	_		—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHCPTR	<15:0>								0000
1350	DCH3DAT	31:16	_		—	—	—	_	—		—	—	—	—	—	—	_	—	0000
15:0 CHPDAT<15:0>										0000									
1360	DCH4CON	31:16				CHPIG	N<7:0>				—	—	—	—	_	_	_	—	0000
		15:0	CHBUSY	—	CHPIGNEN	_	CHPATLEN	—	_	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	I<1:0>	0000
1370	DCH4ECON	31:16			_			_		—	CEORCE	CARORT	DATEN						UUFF
		15:0															CHTAIE		F.F.00
1380	DCH4INT	15.0									CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1		10.0									01001				0110011		0111/01		0000

PIC32MZ Embedded Connectivity (EC) Family

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 11-6: USBIE0CSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 0)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	—	—	—	NAKLIM<4:0>							
00.46	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	SPEE	D<1:0>	—	—	—	_	—	—			
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	—	_	_	—			
7.0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	_	RXCNT<6:0>									

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 NAKLIM<4:0>: Endpoint 0 NAK Limit bits

The number of frames/microframes (Hi-Speed transfers) after which Endpoint 0 should time-out on receiving a stream of NAK responses.

- bit 23-22 SPEED<1:0>: Operating Speed Control bits
 - 11 = Low-Speed
 - 10 = Full-Speed
 - 01 = Hi-Speed
 - 00 = Reserved
- bit 21-7 Unimplemented: Read as '0'
- bit 6-0 **RXCNT<6:0>:** Receive Count bits

The number of received data bytes in the Endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

bit 0 LPMSTIF: LPM STALL Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with a STALL
- 0 = No Stall condition

When in Host mode:

- 1 = A LPM transaction was transmitted and the device responded with a STALL
- 0 = No Stall condition

12.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ EC family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Key features of the I/O ports include:

- · Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register. The available configurations are shown in Table 18-1.

TABLE 18-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery						
OCACLK (CFGC	ON<16>) = 0							
OC1	Timer2	Timer3						
•	•	•						
•	•	•						
• OC9	• Timer 2	• Timer 3						
OCACLK (CFGCON<16>) = 1								
OC1	Timer4	Timer5						
OC2	Timer4	Timer5						
OC3	Timer4	Timer5						
OC4	Timer2	Timer3						
OC5	Timer2	Timer3						
OC6	Timer2	Timer3						
OC7	Timer6	Timer7						
OC8	Timer6	Timer7						
OC9	Timer6	Timer7						

19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

The following are some of the key features of the SPI module:

- Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs
 - based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-iustified
 - Right-justified
 - PCM

FIGURE 19-1: SPI/I²S MODULE BLOCK DIAGRAM

sse										Bi	ts								
Virtual Addre (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	SDIACON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:	0>	MCLKSEL	—	—		_	_	SPIFE	ENHBUF	0000
1600	3F14CUN	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXIS	EL<1:0>	0000
1610	SPI4STAT	31:16			_		RXE	BUFELM<4	0>		—	—	—		TX	BUFELM<4	:0>		0000
1010		15:0		—		FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
1620	SPI4BUF	31:16 15:0		DATA<31:0>									0000						
4000	SDIABBC	31:16	—	-	-	—	—	—	_	_	—	—	—	_	—	_	—	-	0000
1630	SP14BRG	15:0	_	—			—	—	—					BRG<8:0>	,				0000
		31:16	-	—	_	_	_	_	-	_	_	_	_	-	_	_	_	_	0000
1640	SPI4CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	—	AUD MONO	—	AUDMO	DD<1:0>	0000
1000		31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:	0>	MCLKSEL	—	-	—	—	_	SPIFE	ENHBUF	0000
1800	SFISCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXIS	EL<1:0>	0000
1010		31:16	.:16 - - - - TXBUFELM<4:0>									0000							
1010	OF ISOTAT	15:0	_	—		FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
1820	SPI5BUF	31:16 15:0								DATA<	<31:0>								0000
1020	SPI5BRG	31:16		—	_	_	—		_	—	—	_	-	—	—	_	—	—	0000
1630		15:0	_	—	—	—		—	—			-	-	BRG<8:0>			-		0000
		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1840	SPI5CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	—	AUD MONO	—	AUDMO	DD<1:0>	0000
14.00	SPIECON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:	0>	MCLKSEL	—	—	—	—	—	SPIFE	ENHBUF	0000
1700		15:0	ON	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXIS	EL<1:0>	0000
1410	SPI6STAT	31:16	-	—	—		RXE	BUFELM<4	:0>		—	—	—		TX	BUFELM<4	1:0>	•	0000
17110	0	15:0		—		FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
1A20	SPI6BUF	31:16 15:0								DATA<	<31:0>								0000
4400	SDIEDDO	31:16	_	—	—	_	—	—	—	_	—	—	—	_	_	_	—	—	0000
1A30	SPIODRG	15:0		_	_		_	_	_					BRG<8:0>					0000
		31:16	_	—	—		—				—	_	_	—	—	—	—	—	0000
1A40	SPI6CON2	15:0	SPI SGNEXT	_	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_		—	AUD MONO	—	AUDMO	DD<1:0>	0000

TABLE 19-1: SPI1 THROUGH SPI6 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	TXDATA<31:24>											
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	TXDATA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	TXDATA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				TXDATA	<7:0>							

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Just prior to the beginning of a data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur even while a transfer is already in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
	RXDATA<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	RXDATA<23:16>									
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	RXDATA<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
		RXDATA<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words. These bits indicate the starting write block address for an erase operation.

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	its								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	1201000	31:16							_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	000
0000	12CTCON	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	100
0010	I2C1STAT	31:16	_	—	—	—	—		—	_	—	—	—	—	—	—	—	—	000
0010	12010171	15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	000
0020	I2C1ADD	31:16		_		—	_			_		—	—	—	—	—		—	000
0020	.20	15:0		_		—	_						Address	Register					000
0030	I2C1MSK	31:16		—		—	—	_		—	—	—	—	—	—	—		—	000
		15:0	—	—		—	—	—					Address Ma	ask Registe	r				000
0040	I2C1BRG	31:16	_	_	_	_	_	_		—	_		—	_	—	_	—	—	000
		15:0							Bau	d Rate Ger	erator Reg	Ister	1		1				000
0050	I2C1TRN	31:16	_	_		_	_	_		_		—	—		<u> </u>	—	_	—	000
		15:0					_							Transmit	Register				000
0060	I2C1RCV	15:0											_	- Beesive				_	000
		15.0										DOIE	SOLE.	Receive	CDALIT	CDCDC			000
0200	12C2CON ⁽²⁾	15:0					STRICT			- SMEN		PUIE STREN	ACKDT		BOEN	DEN			100
		15.0	ON		SIDL	JULKEL	STRICT	ATUN	DISSLW	SIVIEIN	GCEN	STREN	ACKDT	ACKEN	RGEN	FEIN	ROEN	SEN	100
0210	12C2STAT(2)	15.0		TRSTAT				BCI	GOSTAT				 D/A	P		 R/W	RBE	TRF	000
	(1)	31.16	_			_					-	-		- ·	_				000
0220	12C2ADD(2)	15.0	_	_	_	_	_	_					Address	Register					000
	(0)	31:16	_	_	_	_	_	_		_			_		_	_		_	000
0230	12C2MSK(2)	15:0	_	_	_	_	_	_					Address Ma	ask Registe	r				000
		31:16	_	_	_	_	_	_	_	_			_	_	_		_	_	000
0240	I2C2BRG(2)	15:0							Bau	d Rate Ger	erator Reg	ister							000
0050		31:16	-	—	_	—	—	—	—	—	—	—	—	_	_	_	—	—	000
0250	12021 RN-7	15:0	_	_	_	_	_	_	_	_				Transmit	Register				000
0260	12C2BCV(2)	31:16		_	—	_	_		_		_	_	—	_	—	_	_	_	000
0200	IZCZRCV /	15:0		_	_	-	_	I	_					Receive	Register				000
0.400	1202000	31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	000
0400	120300N	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	100
0410	12C2STAT	31:16		—	—	—	—		—		_	—	—	—	—	—	_	—	000
0410	120331AI	15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	000
0420		31:16	_	—	-	—	_	_	-	_	_	-	-	-	-	-	—	_	000
0420	0420 I2C3ADD	15:0	—	_	—	—	—	-					Address	Register					000

PIC32MZ

Embedded

Connectivity

EC) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table except I2CxRCV have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and Note 1: INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	_	_	_
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	SIDL	SCKREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

REGISTER 21-1: I2CxCON: I²C CONTROL REGISTER

Legend:	HC = Cleared in Hardware	e	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

bit 22	PCIE: Stop Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Stop condition
	0 = Stop detection interrupts are disabled
bit 21	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only)
	1 = Enable interrupt on detection of Start or Restart conditions
	0 = Start detection interrupts are disabled
bit 20	BOEN: Buffer Overwrite Enable bit (I ² C Slave mode only)
	 1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0 0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19	SDAHT: SDA Hold Time Selection bit
	1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
	0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18	SBCDE: Slave Mode Bus Collision Detect Enable bit (I ² C Slave mode only)
	1 = Enable slave bus collision interrupts
	0 = Slave bus collision interrupts are disabled
bit 18	AHEN: Address Hold Enable bit (Slave mode only)
	1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared and the SCL will be held low.
	0 = Address holding is disabled
bit 16	DHEN: Data Hold Enable bit (I ² C Slave mode only)
	 1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
	0 = Data holding is disabled
bit 15	ON: I ² C Enable bit
	 1 = Enables the I²C module and configures the SDA and SCL pins as serial port pins 0 = Disables the I²C module; all I²C pins are controlled by PORT functions
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode

28.0 PIPELINED ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "12-bit Pipelined Analog-to-Digital Converter (ADC)" (DS60001194), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MZ EC Pipelined Analog-to-Digital Converter (ADC) includes the following features:

- 10-bit resolution
- Six-stage conversion pipeline
- External voltage reference input pins
- Six Sample and Hold (S&H) circuits, SH0 SH5:
 - Five dedicated S&H circuits with individual input selection and individual conversion trigger selection for high-speed conversions
 - One shared S&H circuit with automatic Input Scan mode and common conversion trigger selection
- Up to 48 analog input sources, in addition to the internal voltage reference and an internal temperature sensor
- 32-bit conversion result registers with dedicated interrupts:
 - Conversion result can be formatted as unsigned or signed fractional or integer data
- · Six digital comparators with dedicated interrupts:
 - Multiple comparison options
 - Assignable to specific analog input
- Six oversampling filters with dedicated interrupts:
 - Provides increased resolution
 - Assignable to specific analog input
- · Operation during Sleep and Idle modes

Besides the analog inputs that can be converted, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins, and can also be used by other analog module references.

The analog inputs are connected through multiplexers (MUXs) to the S&H circuits. Each of the dedicated S&H circuits, is assigned to analog inputs, and can optionally use another analog input in a differential configuration. The dedicated S&H circuits are used for high-speed and precise sampling/conversion of time sensitive or transient inputs.

The sixth S&H circuit, SH5, can be used in Input Scan mode and is connected to all the available analog inputs on a device, along with internal voltage reference and the temperature sensor signals. Input Scan mode sequentially converts user-specified analog input sources. The control registers specify the analog input sources that are included in the scanning sequence.

A simplified block diagram of the ADC1 module is illustrated in Figure 28-1. Diagrams for the Dedicated and Shared ADC modules are provided in Figure 28-2 and Figure 28-3, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
31.24	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24
00.40	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
23.10	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16
15.0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
10.0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8
7:0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC					
	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0

REGISTER 28-9: AD1DSTAT1: ADC1 DATA READY STATUS REGISTER 1

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **ARDYx:** Conversion Data Ready for Corresponding Analog Input Ready bits ('x' = 31-0)

1 = This bit is set when data is ready in the buffer. An interrupt will be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt in the AD1GIRQEN register.

0 = This bit is cleared when the associated data register is read

Note: ARDYx = ANx, where 'x' = 0-31.

Bit Range Bit Bit Bit Bit Bit Bit Bit Bit 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 26/18/10/2 25/17/9/1 24/16/8/0 27/19/11/3 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ____ ____ ____ _ ____ ____ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 ____ ____ ____ ___ _ ____ ____ _ R-0, HS, HC U-0 U-0 U-0 R-0, HS, HC R-0, HS, HC R-0, HS, HC R-0, HS, HC 15:8 ARDY44 ARDY43 ARDY42 ARDY41 ARDY40 R-0, HS, HC 7:0 ARDY39 ARDY38 ARDY37 ARDY36 ARDY35 ARDY34 ARDY33 ARDY32

REGISTER 28-10: AD1DSTAT2: ADC1 DATA READY STATUS REGISTER 2

Legend:	HS = Hardware Set	HC = Hardware Cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 **ARDYx:** Conversion Data Ready for Corresponding Analog Input Ready bits ('x' = 32-44)

 1 = This bit is set when data is ready in the buffer. An interrupt will be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt in the AD1GIRQEN register.

0 = This bit is cleared when the associated data register is read

Note: ARDYx = ANx, where 'x' = 32-42, ARDY43 = IVREF, and ARDY44 = IVTEMP.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN31	MSEL31<1:0>			FSEL31<4:0>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	FLTEN30	MSEL30<1:0>		FSEL30<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0.61	FLTEN29	MSEL2	9<1:0>	FSEL29<4:0>					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	FLTEN28	MSEL2	8<1:0>			FSEL28<4:0>	•		

REGISTER 29-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7

Legend:

L:L 04

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DIT 31	FLIENST: Flitter 31 Enable bit
	1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL31<1:0>: Filter 31 Mask Select bits

ELTENDA: Eller OA Exclusion

- 11 = Acceptance Mask 3 selected
- 10 = Acceptance Mask 2 selected
- 01 = Acceptance Mask 1 selected
- 00 = Acceptance Mask 0 selected

bit 28-24 FSEL31<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

- 11110 = Message matching filter is stored in FIFO buffer 30
- ٠

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

- bit 23 FLTEN30: Filter 30Enable bit
 - 1 = Filter is enabled
 - 0 = Filter is disabled
- bit 22-21 MSEL30<1:0>: Filter 30Mask Select bits
 - 11 = Acceptance Mask 3 selected
 - 10 = Acceptance Mask 2 selected
 - 01 = Acceptance Mask 1 selected
 - 00 = Acceptance Mask 0 selected
- bit 20-16 FSEL30<4:0>: FIFO Selection bits
 - 11111 = Message matching filter is stored in FIFO buffer 31
 - 11110 = Message matching filter is stored in FIFO buffer 30

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

REGISTER 30-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		—	—	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—		—	—	—	—	—
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
		—		PHYADDR<4:0>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—			RE	GADDR<4:0)>	

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

- bit 12-8 **PHYADDR<4:0>:** MII Management PHY Address bits This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed (0 is reserved).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

	DA	IA REGIST	EK					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	—	—	_	—	_	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	MWTD<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 30-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 15-0 **MWTD<15:0>:** MII Management Write Data bits

When written, a MII Management write cycle is performed using the 16-bit data and the preconfigured PHY and Register addresses from the EMAC1MADR register.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	_	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	MRDD<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	MRDD<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MRDD<15:0>: MII Management Read Data bits

Following a MII Management Read Cycle, the 16-bit data can be read from this location.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

31.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Analog Comparator module consists of two comparators that can be configured in a variety of ways.

Key features of the Analog Comparator module are:

- Differential inputs
- Rail-to-rail operation
- Selectable output polarity
- Selectable inputs:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference
 - Comparator voltage reference (CVREF)
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 31-1.

38.0 AC AND DC CHARACTERISTICS GRAPHS

Note: The graphs provided are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

PIC32MZ Embedded

Connectivity

(EC)

Famil

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		64	-	
Lead Pitch	е	0.50 BSC			
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ø	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2