

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ech100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

Crystals with a speed of 4 MHz to 12 MHz that meet the following requirements will meet the PIC32MZ EC oscillation requirements when configured, as depicted in Figure 8-1.

- 1. Manufacturer Drive Level (min) \leq 10 μ W (hard requirements, 1 μ W preferred).
- 2. Manufacturer ESR $\leq 50\Omega$ (hard requirement, lower is better).

```
2.7.1.1 Calculating XTAL Capacitive Loading:
```

- 1. PIC32 CIN = COUT = \sim 4 pF (PIC32 OSCI and OSCO package pin capacitance).
- 2. C1MFG = C2MFG = Manufacturer Recommended Load Capacitance.
- 3. CLOAD = {([CIN + C1MFG] [C2MFG + COUT]) / [CIN + C1MFG + C2MFG + COUT]} + estimated PCB stray capacitance (2.5 pF).

(Simplified) CLOAD = (((CIN + C1MFG)/2) + 2.5 pF).

Actual C1, C2 Load value to use:

- C2 = CLOAD
- C1 = (CLOAD 2 pF)

Note: These recommendations are atypical, and are only applicable to the PIC32MZ EC family.

2.7.1.2 Validated Crystals

Temperature Range: (-45°C to +110°C)

VDD = 2.4V to 3.6V, RP = 1 M\Omega, RK = 10 $k\Omega$

• ABLS-12.000 MHz-L4Q-T (12 MHz surface mount)

Note: These recommendations are atypical, and only applicable to the PIC32MZ EC family.

2.7.1.3 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.9 Designing for High-Speed Peripherals

The PIC32MZ EC family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT PRODUCE HS SIGNALS ON EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin
EBI	EBIAx, EBIDx	50 MHz
SQI1	SQICLK, SQICSX, SQIDx	50 MHz
HS USB	D+, D-	480 MHz

Due to these high-speed signals, it is important to take into consideration several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- Minimize crosstalk
- Maintain signal integrity
- Reduce system noise
- Minimize ground bounce and power sag

	('2	x' = 1 AND 2	2)								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
31:24	24 CSEQ<15:8>										
00:40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
23:16	CSEQ<7:0>										
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
15:8	TSEQ<15:8>										
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
7:0	TSEQ<7:0>										

REGISTER 4-1: BFxSEQ0/ABFxSEQ0: BOOT FLASH 'x' SEQUENCE WORD 0 REGISTER

Legend:		P = Programmable bit	P = Programmable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 **CSEQ<15:0>:** Boot Flash Complement Sequence Number bits

bit 15-0 TSEQ<15:0>: Boot Flash True Sequence Number bits

Note: The BFxSEQ1 through BFxSEQ3 and ABFxSEQ1 through ABFxSEQ3 registers are used for Quad Word programming operation when programming the BFxSEQ0/ABFxSEQ0 registers, and do not contain any valid information.

TABLE 4-9: SYSTEM BUS TARGET 1 REGISTER MAP

ess											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
8420	SBT1ELOG1	31:16	MULTI		—	—		CODE	<3:0>			—	—			—	—	—	0000
0420	SBITELOGI	15:0				INI	TID<7:0>					REGIC	N<3:0>		_	0	CMD<2:0>		0000
8424	SBT1ELOG2	31:16		_		-	_	_	_	-			_	_	—	-	—	-	0000
0424	OBTILLOOZ	15:0	5:0 GROUP<1:0						P<1:0>	0000									
8428	SBT1ECON	31:16	—	—	_	—	—	—	—	ERRP	—		—	—	-	—	—	—	0000
0420	OBTILOON	15:0	—	—	_	—	—	—	—	—	—		—	—	-	—	—	—	0000
8430	SBT1ECLRS	31:16	_	—	_	—	—	—	—	—	—	_	—	—	_	—	—	—	0000
0400	OBTIEGERG	15:0	_	—	_	—	—	—	—	—	—	_	—	—	_	—	—	CLEAR	0000
8438	SBT1ECLRM	31:16	_	—	_	—	—	—	—	—	—	_	—	—	_	—	—	—	0000
0 100	OBTIEGER	15:0	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	CLEAR	0000
8440	SBT1REG0	31:16							1	BA	SE<21:6>					•			xxxx
0110	OBTINEOU	15:0			BA	SE<5:0>			PRI	—			SIZE<4:0	>		—	—		xxxx
8450	SBT1RD0	31:16	—	—	-	—	—	—	—	—	—	_	—	—	_	—	—	—	xxxx
8450		15:0	_	—	_	—	—	—	—	—	—	_	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8458	SBT1WR0	31:16	—	—	-	—	—	—	—	—	—	_	—	—	_	—	—	—	xxxx
0.00		15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8480	SBT1REG2	31:16							1	BA	SE<21:6>								XXXX
		15:0			BA	SE<5:0>			PRI	—			SIZE<4:0	>		—	—		XXXX
8490	SBT1RD2	31:16	—	—	_	—	—	_	—		—			—	-	—	—	—	XXXX
	-	15:0		—	_	_	—	_	—	_	_	_		—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8498	SBT1WR2	31:16		—	_	_	—	_	—	_	_	_		—	—	—	—	—	XXXX
		15:0		—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
84A0	SBT1REG3	31:16									SE<21:6>								XXXX
		15:0				SE<5:0>			PRI	—			SIZE<4:0		-	-	—	_	XXXX
84B0	SBT1RD3	31:16	_						_					_	-	-	-	-	XXXX
		15:0	—	—		_	_		_		_	_		_	GROUP3	GROUP2	GROUP1	GROUP0	
84B8	SBT1WR3	31:16		_		_	_		_			_	_						XXXX
		15:0		_	—	—	—	—	_	-	-	—	—		GROUP3	GROUP2	GROUP1	GROUP0	
84C0	SBT1REG4	31:16									XXXX								
		15:0			BA	\SE<5:0>			PRI				SIZE<4:0		[_		—	XXXX
84D0	SBT1RD4	31:16		_	_	_	_	_	_	_	_	_	_	_				-	XXXX
		15:0		_		_	_		_	—	_	_			GROUP3	GROUP2	GROUP1	GROUP0	XXXX
84D8	SBT1WR4	31:16	_	_				—	_	—		_		—					XXXX
Legen		15:0	—			—	_	_	shown in he	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	XXXX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

NOTES:

TABLE 12-11: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										E	Bits								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16	—	—	_	-	—		—	—		—	_	_	—	—	—	—	0000
0400	ANGELE	15:0				-	_		—	—	ANSE7	ANSE6	ANSE5	ANSE4	—	—	—	—	00F0
0410	TRISE	31:16	_	-	_	-	—	_	_	_	_	—	-	-	_	_	_	_	0000
0410	TRISE	15:0	-	-	_		_		_	_	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
0420	PORTE	31:16			_		_		_	_		_		-	-	_	_	_	0000
0420	PORTE	15:0			_	—	_	—	—	—	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16			_		_		_	_		_		-	-	_	_	_	0000
0430		15:0	-	-	_		_		-	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
0440	ODCE	31:16	-	-	_		_		-	_	_	_			_	_	_	-	0000
0440		15:0	-	-	_		_		-	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	_	_	_		—		_	_	_	-			—		_	-	0000
0430		15:0	—	—	—	—	—	-	—	—	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	—	—	—	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0400		15:0	—	—	—	—	—	-	—	—	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0470	CNCONE	31:16	—	—	—	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0470	CINCOINE	15:0	ON	—	SIDL	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0480	CNENE	31:16	—	—	—	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0400	CINEME	15:0	—	—	—	—	—	-	—	—	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	_	_	_		—		—	—	—	-		1	—	—	—	—	0000
0490	CNSTATE	15:0	_	_	_	-	_	_	_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; -- = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

ss										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4504	000400	31:16	-	—	—	_			_	—		—	—	_		_		—	0000
15B4	RPC13R	15:0	_	—	—	_	_	_	_	—	_	—	—	_		RPC13	R<3:0>		0000
4500	000440	31:16		—	—	—	—	—	—	—		—	—	_		—	—	—	0000
15B8	RPC14R	15:0	_		—	—	—	—	_		_	—		—		RPC14	R<3:0>		0000
15C0	RPD0R	31:16		-	_			_	_	-			-	-		_	-	_	0000
1500	RPDUR	15:0		-	_			_	_	-			-	-		RPD0	R<3:0>		0000
15C4	RPD1R	31:16		_	_	—	_	_	—	_		_		—		_	_	—	0000
1304	REDIK	15:0	-		—	—	—	—	—	—	-	—	_	—		RPD1	R<3:0>		0000
15C8	RPD2R	31:16	-		—	—	—	—	—	—	-	—	_	—	-	—	—	—	0000
1300	RF D2R	15:0	_		—	—	—	—			_			—		RPD2	R<3:0>		0000
15CC	RPD3R	31:16	-		—	—	—	—	—	—	-	—	_	—	-	—	—	—	0000
1300	KF D3K	15:0	-		—	—	—	—	—	—	-	—	_	—		RPD3	R<3:0>		0000
15D0	RPD4R	31:16		_	_	—	_	_	—	_		_		—		_	_	—	0000
	KF D4K	15:0	_	_	—	—	—	—	—	_	-	_	_	—		RPD4	R<3:0>		0000
15D4	RPD5R	31:16	-		—	—	—	—	—	—	-	—	_	—	-	—	—	—	0000
		15:0		_	_	—	_	_	—	_		_		—		RPD5	R<3:0>		0000
15D8	RPD6R ⁽²⁾	31:16	_	_	—	—	—	—	—	_	-	_	_	—	-	—	—	—	0000
1300	KF DOK 7	15:0	-		—	—	—	—	—	—	-	—	_	—		RPD6	R<3:0>		0000
15DC	RPD7R ⁽²⁾	31:16		_	_	—	_	_	—	_		_		—		_	_	—	0000
1300	KF D7 K ^e	15:0	_	_	—	—	—	—	—	_	-	_	_	—		RPD7	R<3:0>		0000
15E4	RPD9R	31:16	-		—	—	—	—	—	—	-	—	_	—	-	—	—	—	0000
1324	KF D9K	15:0	_	_	—	—	—	—			_			—		RPD9	R<3:0>		0000
15E8	RPD10R	31:16	_	_	—	—	—	—			_			—	_	—	—	_	0000
1320	KI DIOK	15:0	_	—	—	—	—	—	—	—	_	—	—	—		RPD10	R<3:0>		0000
15EC	RPD11R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1920	RIDIIR	15:0	_	_	—	—	—	—			_			—		RPD11	R<3:0>		0000
15F0	RPD12R ⁽¹⁾	31:16	_	—	—	—	—	—	—	—	_	—	—	—	_	—	—	—	0000
151.0	RI DIZR ¹	15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPD12	R<3:0>		0000
15F8	RPD14R ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
101.0	IN DIAN	15:0	_		—	—	—	—			_			_		RPD14	R<3:0>		0000
15FC	RPD15R ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—		—	0000
1010	IN DISK.	15:0	—	—	—	—	—	—	—	—	—	—	—	—			R<3:0>		0000
160C	RPE3R	31:16	_	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
1000		15:0	_	—	—	—	—	—	—	—	_	—	—	—		RPE3	R<3:0>		0000
1614	RPE5R	31:16		—	—	-	_	—	-	—		—	—	_		-	—	—	0000
1014		15:0	—	—	—	—	—	—	—	—	-	—	_	—		RPE5	R<3:0>		0000

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is not available on 64-pin devices. Note 1:

2: This register is not available on 64-pin and 100-pin devices.

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

- bit 1 TCS: Timer Clock Source Select bit⁽¹⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 **Unimplemented:** Read as '0'
- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

....

REGISTI	ER 21-2:	I2CXSTAT: I ⁻ C STATUS REGISTER (CONTINUED)
bit 5	D_A: Data/	Address bit (when operating as I ² C slave)
	1 = Indicate	es that the last byte received was data
	0 = Indicate	es that the last byte received was device address
	Hardware of	clear at device address match. Hardware set by reception of slave byte.
bit 4	P: Stop bit	
		es that a Stop bit has been detected last t was not detected last
	Hardware s	set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit	
	0 = Start bi	es that a Start (or Repeated Start) bit has been detected last t was not detected last
		set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read	d/Write Information bit (when operating as I ² C slave)
	1 = Read -	indicates data transfer is output from slave
		indicates data transfer is input to slave
	Hardware s	set or clear after reception of I ² C device address byte.
bit 1	RBF: Rece	ive Buffer Full Status bit
		e complete, I2CxRCV is full e not complete, I2CxRCV is empty
	Hardware s reads I2Cx	set when I2CxRCV is written with received byte. Hardware clear when software RCV.
bit 0	TBF: Trans	mit Buffer Full Status bit
	1 = Transm	it in progress, I2CxTRN is full

0 = Transmit complete, 12CxTRN is empty

2

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	-	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	—	_	_	—	—
45-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	_	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	CSF<1:0> ⁽¹⁾		CS2P ⁽¹⁾	CS1P ⁽¹⁾		WRSP	RDSP

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<15:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
 - 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
- bit 7-6 **CSF<1:0>:** Chip Select Function bits⁽¹⁾
 - 11 = Reserved
 - 10 = PMCS1 and PMCS2 function as Chip Select
 - 01 = PMCS2 functions as Chip Select and PMCS1 functions as address bit 14
 - 00 = PMCS1 and PMCS2 function as address bit 14 and address bit 15
- bit 5 ALP: Address Latch Polarity bit⁽¹⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 **CS2P:** Chip Select 2 Polarity bit⁽¹⁾
 - 1 = Active-high (PMCS2)
 - $0 = \text{Active-low}(\overline{PMCS2})$
- Note 1: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	_	—	—	—	_	—			
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	—	—	—	—	—			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾			מחחע	.12.0					
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾		ADDR<13:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	ADDR<7:0>										

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

bit 15

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 CS2: Chip Select 2 bit⁽¹⁾
 - 1 = Chip Select 2 is active
 - 0 = Chip Select 2 is inactive
 - ADDR<15>: Target Address bit 15⁽²⁾
- bit 14 CS1: Chip Select 1 bit⁽³⁾
 - 1 =Chip Select 1 is active 0 =Chip Select 1 is inactive
- bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾
- bit 13-0 ADDR<13:0>: Address bits
- **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00.
 - **3:** When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **4:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	_	—	—	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		ARPT<7:0> ⁽²⁾								

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

28.2 ADC Control Registers

TABLE 28-1: ADC REGISTER MAP

SS										Bits									Τ
Virtual Address (BF84_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	AD1CON1	31:16			FILTRDLY4:0>	`			S	TRGSRC<4:0:	>		—	_	-		EIE<2:0>		0000
D000	ADICONT	15:0	ADCEN	—	ADSIDL	—	FRACT	—	—	—	—	—	—	-	—	—	—	—	0000
B004	AD1CON2	31:16	ADCRDY	-	—	-	_	_	_	—				SAMC<	:7:0>				0000
D004	ADTOONZ	15:0	_	BOOST	LOWPWR	—	—	_	ADCS	EL<1:0>				AD	CDIV<6:0:	>			0000
B008	AD1CON3	31:16	CAL	GSWTRG	RQCNVRT	—	—	_		—	—	-	_	-	—	—	-	-	0000
Dooo		15:0	_	—	—	V	REFSEL<2:	0>			—	_			ADINS	EL<5:0>			0000
BOOC	AD1IMOD	31:16	_	—	—	—	_	—		LT<1:0>		LT<1:0>	SH2AL	-	SH1AL	-	SH0AL	-	0000
2000	/ B HINOB	15:0	—	—	_	—	SH5MC	D<1:0>	SH4M0	OD<1:0>	SH3M0	DD<1:0>	SH2MC)D<1:0>	SH0MC		0000
B010	AD1GIRQEN1	31:16	AGIEN31	AGIEN30	AGIEN29	AGIEN28	AGIEN27	AGIEN26	AGIEN25	AGIEN24	AGIEN23	AGIEN22	AGIEN21	AGIEN20		AGIEN18	AGIEN17		_
2010		15:0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0	0000
B014	AD1GIRQEN2	31:16	—	—	_	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
		15:0	_	—	—	AGIEN44	AGIEN43	AGIEN42	AGIEN41	AGIEN40	AGIEN39	AGIEN38	AGIEN37	AGIEN36	AGIEN35	AGIEN34	AGIEN33	AGIEN32	2 0000
B018	AD1CSS1	31:16	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
2010		15:0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
B01C	AD1CSS2	31:16	_	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	—	—	-	CSS44	CSS43	CSS42	CSS41	CSS40	CSS39	CSS38	CSS37	CSS36	CSS35	CSS34	CSS33	CSS32	0000
B020	AD1DSTAT1	31:16	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16	_
	-	15:0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY9	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0	0000
B024	AD1DSTAT2	31:16	—	—		—		—		—	—	—	—	—	—	—	—		0000
		15:0	—	—	—	ARDY44	ARDY43	ARDY42	ARDY41	ARDY40	ARDY39	ARDY38	ARDY37	ARDY36	ARDY35	ARDY34	ARDY33	ARDY32	
B028	AD1CMPEN1	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	_
B02C	AD1CMP1	31:16								ACMPHI<15:0									0000
		15:0								ADCMPLO<15									0000
B030	AD1CMPEN2	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19		CMPE17	CMPE16	
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B034	AD1CMP2	31:16								ADCMPHI<15:									0000
		15:0								ADCMPLO<15									0000
B038	AD1CMPEN3	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19		CMPE17	CMPE16	_
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B03C	AD1CMP3	31:16								ADCMPHI<15:									0000
		15:0	01056	011050-	01/050-	0.00565	011050-	0110505		ADCMPLO<15		010565		0110565	0.455	0.455	0.455/=	0405	0000
B040	AD1CMPEN4	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20		CMPE18	CMPE17	CMPE16	-
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B044	AD1CMP4	31:16								ADCMPHI<15:									0000
	d: v – unkn	15:0			nlemented re:					ADCMPLO<15	:0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 28-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 21-19	Unimplemented: Read as '0'
bit 18-16	EIE<2:0>: Early Interrupt Enable bits ⁽¹⁾ These bits select the number of clocks prior to the actual arrival of valid data when the associated ARDYx bit is set. Since the ARDYx bit triggers an interrupt, these bits allow for early interrupt generation. 111 = The data ready bit, ARDYx, is set 7 TAD clocks prior to when the data is ready 100 = The data ready bit, ARDYx, is set 6 TAD clocks prior to when the data is ready 101 = The data ready bit, ARDYx, is set 5 TAD clocks prior to when the data is ready 100 = The data ready bit, ARDYx, is set 4 TAD clocks prior to when the data is ready 111 = The data ready bit, ARDYx, is set 3 TAD clocks prior to when the data is ready 112 = The data ready bit, ARDYx, is set 3 TAD clocks prior to when the data is ready 113 = The data ready bit, ARDYx, is set 2 TAD clocks prior to when the data is ready 114 = The data ready bit, ARDYx, is set 1 TAD clocks prior to when the data is ready 115 = The data ready bit, ARDYx, is set 1 TAD clock prior to when the data is ready 116 = The data ready bit, ARDYx, when the data is ready
bit 15	ADCEN: ADC Operating Mode bit ^(2,4) 1 = ADC module is enabled 0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	FRACT: Fractional Data Output Format bit 1 = Fractional 0 = Integer
bit 10-0	Unimplemented: Read as '0'
Note 1:	The early interrupt feature should not be used if polling any of the ARDY bits to determine if the conversion is complete. Early interrupts should be used only when all results from the ADC module are retrieved using an individual interrupt routine to fetch ADC results.
2:	The ADCEN bit should be set only after the ADC module has been configured. Changing ADC Configura- tion bits when $ADCEN = 1$, will result in unpredictable behavior. When $ADCEN = 0$, the ADC clocks are disabled, the internal control logic is reset, and all status flags used by the module are cleared. However, the SFRs are available for reading and writing.
3:	The rising edge of the module output signal triggers an ADC conversion. See Figure 18-1 in Section 18.0 "Output Compare" and Figure 31-1 in Section 31.0 "Comparator" for more information.
4:	See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.

Note: The ADC module is not available for normal operations until the ADCRDY bit (AD1CON2<31>) is set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				ADCAL	<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	ADCAL<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ADCAL<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				ADCAL<7:0>							

REGISTER 28-19: AD1CALx: ADC1 CALIBRATION REGISTER 'x' ('x' = 1-5)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCAL<31:0>: Calibration Data for the ADC Module bits

.

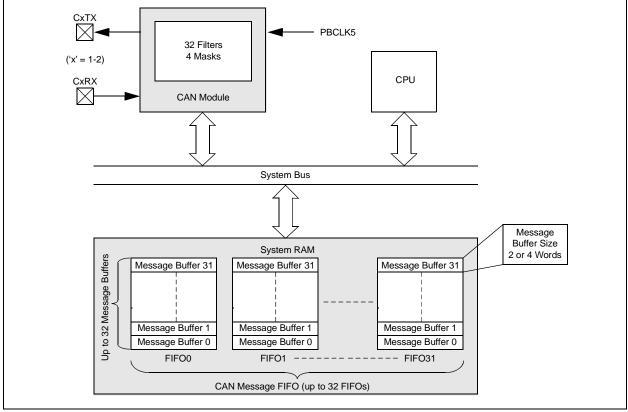
.

This data must be copied from the corresponding DEVADCx register. Refer to **Section 34.1** "**Configuration Bits**" for more information.

29.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Controller Area Network (CAN) module supports the following key features:


- Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
 - 32 message FIFOs
 - Each FIFO can have up to 32 messages for a total of 1024 messages
 - FIFO can be a transmit message FIFO or a receive message FIFO

- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
 DeviceNet[™] addressing support
- Additional Features:
 - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 System Bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 29-1 illustrates the general structure of the CAN module.

Note: To avoid cache coherency problems on devices with L1 cache, CAN buffers must only be allocated or accessed from the KSEG1 segment.

FIGURE 29-1: PIC32 CAN MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN19	MSEL1	9<1:0>		I	SEL19<4:0>	>		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN18	MSEL18<1:0>		FSEL18<4:0>					
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	FLTEN17	MSEL1	7<1:0>		I	SEL17<4:0>	>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN16	MSEL1	6<1:0>		I	SEL16<4:0>	>		

REGISTER 29-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN19: Filter 19 Enable bit 1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL19<1:0>: Filter 19 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 2 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL19<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN18: Filter 18 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL18<1:0>: Filter 18 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL18<4:0>: FIFO Selection bits
511 20 10	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24				—	_	TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16					RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8				_	_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	—	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO not full
	0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
h:+ 0.4	0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO empty0 = Interrupt disabled for FIFO empty
hit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
DIC 15	1 = Interrupt enabled for overflow event
	0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO full
	0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full
	0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	 1 = Interrupt enabled for FIFO not empty 0 = Interrupt disabled for FIFO not empty
hi+ 15 11	
	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a Transmit Buffer) 1 = FIFO is not full
	0 = FIFO is full
	TXEN = 0: (FIFO configured as a Receive Buffer)
	Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	PTV<15:8>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	PTV<7:0>								
15:8	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
	ON	—	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾	
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	
	AUTOFC	—	_	MANFC	_	_	_	BUFCDEC	

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	PAUSE Timer Value used for Flow Control. This register should only be written when RXEN (ETHCON1<8>) is not set.
	These bits are only used for Flow Control operations.
bit 15	ON: Ethernet ON bit
	1 = Ethernet module is enabled0 = Ethernet module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Ethernet Stop in Idle Mode bit
	 1 = Ethernet module transfers are paused during Idle mode 0 = Ethernet module transfers continue during Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	TXRTS: Transmit Request to Send bit
	 1 = Activate the TX logic and send the packet(s) defined in the TX EDT 0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)
	After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.
	This bit only affects TX operations.
bit 8	RXEN: Receive Enable bit ⁽¹⁾

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- 0 = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

PTV<15:0>: PAUSE Timer Value bits

bit 31-16

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11	2.4	_		V	IOH ≥ -10 mA, VDD = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	2.4	_		V	Iон ≥ -15 mA, Vdd = 3.3V
		Output High Voltage I/O Pins: 12x Source Driver Pins - RA6, RA7 RE0-RE3 RF1 RG12-RG14	2.4	_	_	V	Ioh ≥ -20 mA, Vdd = 3.3V

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

Note 1: Parameters are characterized, but not tested.

NOTES: