

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz1024ech100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Ti	imer1 thr	ough Timer	9
T1CK	48	73	A49	106	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input
	•	•	•	Real-	Time Clo	ck and Cale	endar
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levelsO = OutputTTL = Transistor-transistor Logic input bufferPPS = Peripl

Analog = Analog input

PPS = Peripheral Pin Select

I = Input

DS60001191G-page 24

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
			Unive	ersal Asyn	chronou	IS Receive	r Transmitter 1
U1RX	PPS	PPS	PPS	PPS	I	ST	UART1 Receive
U1TX	PPS	PPS	PPS	PPS	0		UART1 Transmit
U1CTS	PPS	PPS	PPS	PPS	Ι	ST	UART1 Clear to Send
U1RTS	PPS	PPS	PPS	PPS	0		UART1 Ready to Send
			Unive	rsal Asyn	chronou	s Receive	r Transmitter 2
U2RX	PPS	PPS	PPS	PPS	I	ST	UART2 Receive
U2TX	PPS	PPS	PPS	PPS	0		UART2 Transmit
U2CTS	PPS	PPS	PPS	PPS	Ι	ST	UART2 Clear To Send
U2RTS	PPS	PPS	PPS	PPS	0		UART2 Ready To Send
			Unive	ersal Asyn	chronou	Is Receive	r Transmitter 3
U3RX	PPS	PPS	PPS	PPS	I	ST	UART3 Receive
U3TX	PPS	PPS	PPS	PPS	0		UART3 Transmit
U3CTS	PPS	PPS	PPS	PPS	Ι	ST	UART3 Clear to Send
U3RTS	PPS	PPS	PPS	PPS	0		UART3 Ready to Send
			Unive	ersal Asyn	chronou	Is Receive	r Transmitter 4
U4RX	PPS	PPS	PPS	PPS	I	ST	UART4 Receive
U4TX	PPS	PPS	PPS	PPS	0		UART4 Transmit
U4CTS	PPS	PPS	PPS	PPS	Ι	ST	UART4 Clear to Send
U4RTS	PPS	PPS	PPS	PPS	0		UART4 Ready to Send
			Unive	ersal Asyn	chronou	Is Receive	r Transmitter 5
U5RX	PPS	PPS	PPS	PPS	I	ST	UART5 Receive
U5TX	PPS	PPS	PPS	PPS	0		UART5 Transmit
U5CTS	PPS	PPS	PPS	PPS	I	ST	UART5 Clear to Send
U5RTS	PPS	PPS	PPS	PPS	0	—	UART5 Ready to Send
		•	Unive	ersal Asyn	chronou	s Receive	r Transmitter 6
U6RX	PPS	PPS	PPS	PPS	I	ST	UART6 Receive
U6TX	PPS	PPS	PPS	PPS	0	_	UART6 Transmit
U6CTS	PPS	PPS	PPS	PPS	I	ST	UART6 Clear to Send
U6RTS	PPS	PPS	PPS	PPS	0	_	UART6 Ready to Send
Legend: (CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-8: UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

© 2013-2016 Microchip Technology Inc.

3.3 **Power Management**

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 33.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.4 L1 Instruction and Data Caches

3.4.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.4.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache. In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.4.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

3.5 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.6 MIPS DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSPlike algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- Support for multiplication of complex operands
- Variable bit insertion and extraction
- Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

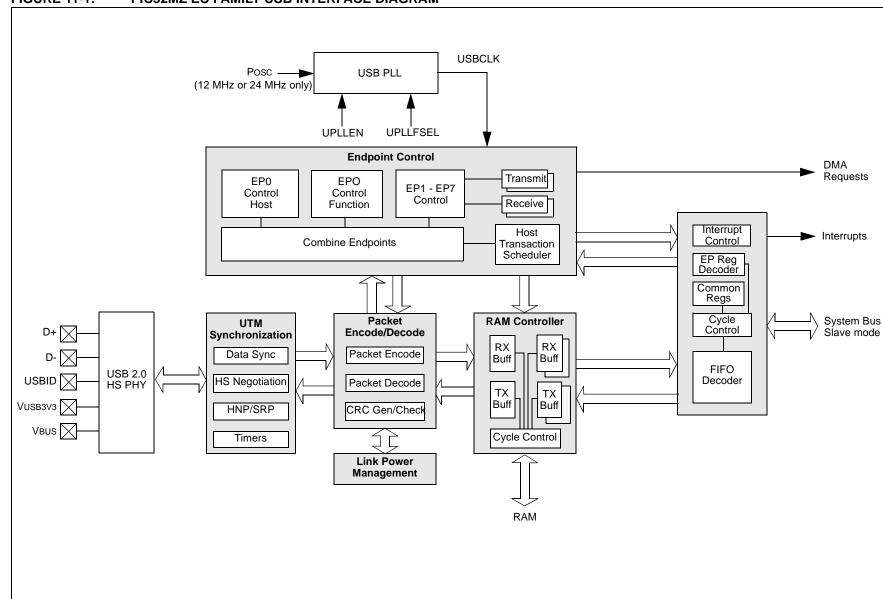

NOTES:

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess										Bit	s								
VII LUAI AULIESS (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	DCH1SSIZ	31:16	_		—			_		—		—	_	_	_		_		00
170	DOITISSIZ	15:0								CHSSIZ	<15:0>								00
180	DCH1DSIZ	31:16	_	_	—	_	—	_	—	_	_	—	—	—	—	—	—	—	0
100	DCITIDOIZ	15:0								CHDSIZ	<15:0>	-	-	-			-		0
100	DCH1SPTR	31:16	—	—	—	_	—	_	—	—	—				_	—	—	—	0
190		15:0								CHSPTR	<15:0>								0
140	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0
/ 10		15:0								CHDPTR	<15:0>								(
B0	DCH1CSIZ	31:16	_		—	_		_	_		—	—	_	—	—	—	—	—	(
80		15:0								CHCSIZ	<15:0>								(
CO	DCH1CPTR	31:16	_		—	_		_	_		—	—	_	—	—	—	—	—	(
		15:0								CHCPTR	<15:0>								(
D0	DCH1DAT	31:16	—	_	—	_	—	_	—	—	—	—	—	—	—	—	—	—	(
		15:0								CHPDAT	<15:0>						-		(
IE0	DCH2CON	31:16				CHPIG					-	—	—	—	—	—	—	—	(
		15:0	CHBUSY	—	CHPIGNEN	—	CHPATLEN	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	21<1:0>	(
IF0	DCH2ECON	31:16	—	—	—	—	—	—	—	—		-	-	CHAIR					(
		15:0				CHSIR	Q<7:0>				CFORCE		PATEN	SIRQEN	AIRQEN	—	-	—	I
200	DCH2INT	31:16	—		—	_	—	_	—	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	(
		15:0	—	_	—	_	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	_
210	DCH2SSA	31:16								CHSSA	<31:0>								(
-		15:0																	(
220	DCH2DSA	31:16								CHDSA-	<31:0>								(
		15:0																	(
230	DCH2SSIZ	31:16	—	_	—	_	_	_	_	-	-	—	_	—	—	_	—	_	(
		15:0								CHSSIZ	<15:0>						r		(
240	DCH2DSIZ	31:16	—	_	—	_	_	_	_		-	_	_	_	_	_	—	_	(
		15:0 31:16	_							CHDSIZ	<15:0>					_			0
250	DCH2SPTR		_	_	_	_		_				_	_	_	_	_	_	_	0
		15:0 31:16					_			CHSPTR	<10:0>		_	_	_	_			0
260	DCH2DPTR		—		—	_				CHDPTR						_	—	—	0
		15:0									<10:0>								0
270	DCH2CSIZ	31:16		_	_	_	_	_	_			_		_	_		_	—	C
		15:0					s '0'. Reset v			CHCSIZ	<15:0>								0

PIC32MZ Embedded Connectivity (EC) Family

All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

FIGURE 11-1: PIC32MZ EC FAMILY USB INTERFACE DIAGRAM

				OI I/ AI ALE		NBBILE00		(x = 10)			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				DMAADD	R<31:24>						
00.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DMAADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				DMAADE	DR<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7:0	DMAADDR<7:0>										

REGISTER 11-22: USBDMAxA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Legend:

=ogonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				DMACOUI	NT<31:24>							
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	DMACOUNT<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				DMACOU	NT<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	DMACOUNT<7:0>											

REGISTER 11-23: USBDMAXN: USB DMA CHANNEL 'x' COUNT REGISTER ('X' = 1-8)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

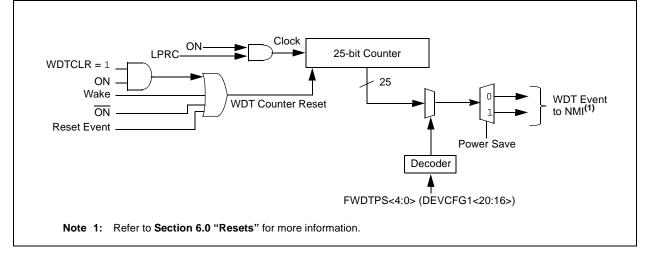
TABLE 12-14: PORTG REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bit	5								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16	_	_	—	—	_	—	—			—	—	_		—		—	0000
	/	15:0	ANSG15	_	_	—	_	_	ANSG9	ANSG8	ANSG7	ANSG6	_	—	_	—	—	_	83C0
0610	TRISG	31:16	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	0000
0010	1100	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	—	TRISG9	TRISG8	TRISG7	TRISG6	_	—	_	—	TRISG1	TRISG0	F3C3
0620	PORTG	31:16	—			—	_	_				—	_	_	_	_	_		0000
0020	TOKIO	15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	-	—	RG1	RG0	xxxx
0630	LATG	31:16	_	_	_	—	—	—	_	-	-	_	_	_	_	—	—	—	0000
0030	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	—	-	LATG9	LATG8	LATG7	LATG6	_	-		_	LATG1	LATG0	xxxx
0640	ODCG	31:16			—	—	—	_	—			_	—	Ι	-	_	—	-	0000
0040	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	_	ODCG9	ODCG8	ODCG7	ODCG6	—	Ι	-	_	ODCG1	ODCG0	0000
0650	CNPUG	31:16		—	—	—	_	_	—	—	—	—	_	—	—	_	—	—	0000
0050	CINFUG	15:0	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	—	_	CNPUG1	CNPUG0	0000
0660	CNPDG	31:16		—	—	—	_	_	—	—	—	—	_	—	—	_	—	—	0000
0000	CINFUG	15:0	CNPDG15	CNPDG14	CNPDG13	CNPDG12	_	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	—	_	CNPDG1	CNPDG0	0000
0670	CNCONG	31:16	Ι	_	_	—	_	-	_	_	_	_	_	-	_	_	—	—	0000
0070	CINCOING	15:0	ON	_	SIDL	—	_	-	_	_	_	_	_	-	_	_	—	—	0000
0000	CNENG	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	—	0000
0660	CINEING	15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	CNIEG1	CNIEG0	0000
		31:16	_	_	—	—	—	—	—	_	_	—	_	—		—	—	—	0000
0690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	_	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	_	—	CN STATG1	CN STATG0	0000

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

16.0 WATCHDOG TIMER (WDT)


This data sheet summarizes the features Note: of the PIC32MZ Embedded Connectivity (EC) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

Some of the key features of the WDT module are:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

- bit 3 **SPITBE:** SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.
- bit 2 Unimplemented: Read as '0'
- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

- bit 0 SPIRBF: SPI Receive Buffer Full Status bit
 - 1 = Receive buffer, SPIxRXB is full
 - 0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER (CONTINUED)

- bit 16 ACTIVE: Buffer Descriptor Processor Status bit
 - 1 = BDP is active
 - 0 = BDP is idle
- bit 15-0 **BDCTRL<15:0>:** Descriptor Control Word Status bits These bits contain the current descriptor control word.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				SID<1	0:3>			
23:16	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
23.10		SID<2:0>		—	MIDE	—	EID<	17:16>
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6				EID<1	5:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				EID<7	7:0>			

REGISTER 29-9: CIRXMN: CAN ACCEPTANCE FILTER MASK N REGISTER (N = 0, 1, 2 OR 3)

Legend:

- J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Include bit, SIDx, in filter comparison
- 0 = Bit SIDx is 'don't care' in filter operation
- bit 20 Unimplemented: Read as '0'
- bit 19 MIDE: Identifier Receive Mode bit
 - 1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
 0 = Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message SID) or if (FILTER SID/EID) = (Message SID/EID))
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Include bit, EIDx, in filter comparison
 - 0 = Bit EIDx is 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 29-20: CIFIFOCONn: CAN FIFO CONTROL REGISTER (n = 0 THROUGH 31) bit 6 TXABAT: Message Aborted bit⁽²⁾ 1 = Message was aborted 0 = Message completed successfully TXLARB: Message Lost Arbitration bit⁽³⁾ bit 5 1 = Message lost arbitration while being sent 0 = Message did not loose arbitration while being sent TXERR: Error Detected During Transmission bit⁽³⁾ bit 4 1 = A bus error occured while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 **TXREQ:** Message Send Request TXEN = 1: (FIFO configured as a Transmit FIFO) Setting this bit to '1' requests sending a message. The bit will automatically clear when all the messages queued in the FIFO are successfully sent Clearing the bit to '0' while set ('1') will request a message abort. TXEN = 0: (FIFO configured as a Receive FIFO) This bit has no effect. bit 2 RTREN: Auto RTR Enable bit 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected bit 1-0 TXPR<1:0>: Message Transmit Priority bits 11 = Highest Message Priority 10 = High Intermediate Message Priority 01 = Low Intermediate Message Priority 00 = Lowest Message Priority Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits

- Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - **2:** This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - **3:** This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Reserved
 - 101 = LPRC
 - 100 **= S**OSC
 - 011 = Reserved
 - 010 = Posc (HS, EC)
 - 001 = SPLL
 - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHA	ARACTER	RISTICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param. No.	Symbol	Characteristics	6 Min. Typ. ⁽¹⁾ Max.			Units	Conditions					
DI50	lı∟	Input Leakage Current (Not	e 3)	1	1							
		I/O Ports (with the follow- ing three exceptions)	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} VSS &\leq V PIN \leq V DD, \\ \mathbf{Pin} \mbox{ at high-impedance } \end{split}$					
		SOSCI/RPC13/RC13	—	—	<u>+</u> 500	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance					
		SOSCO/RPC14/TI1CK/ RC14	_	—	<u>+</u> 500	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance					
		RPF3/USBID/RF3	—	—	<u>+</u> 500	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$					
DI51	lı∟	Analog Input Pins	_	—	<u>+</u> 1	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$					
DI55	lı∟	MCLR ⁽²⁾	_		<u>+</u> 1	μA	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$					
DI56	lı∟	OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ HS \mbox{ mode} \end{array}$					

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 37-14: COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
D300	VIOFF	Input Offset Voltage	—	±10	—	mV	AVDD = VDD, AVSS = VSS
D301	VICM	Input Common Mode Voltage	0	_	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)
D302	CMRR	Common Mode Rejection Ratio	55	—	—	dB	Max VICM = (VDD - 1)V (Note 2)
D303	TRESP	Response Time	—	150	—	ns	AVDD = VDD, AVSS = VSS (Notes 1,2)
D304	ON20V	Comparator Enabled to Output Valid	_		10	μS	Comparator module is configured before setting the comparator ON bit (Note 2)
D305	IVref	Internal Voltage Reference	1.194	1.2	1.206	V	—

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

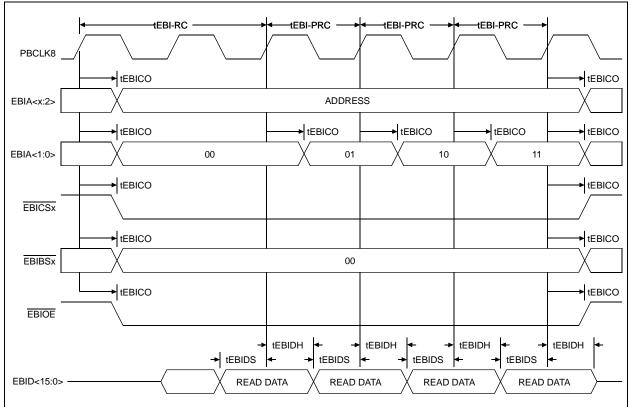
3: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

DC CHARACTERISTICS			Standard Operating Conditions (see Note 3): 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_		10	μs	See Note 1	
D313	DACREFH	H CVREF Input Voltage	AVss	_	AVdd	V	CVRSRC with CVRSS = 0	
		Reference Range	Vref-		VREF+	V	CVRSRC with CVRSS = 1	
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size	
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size	
D315	DACRES	Resolution	—		DACREFH/24		CVRCON <cvrr> = 1</cvrr>	
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>	
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>	
			—		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>	

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

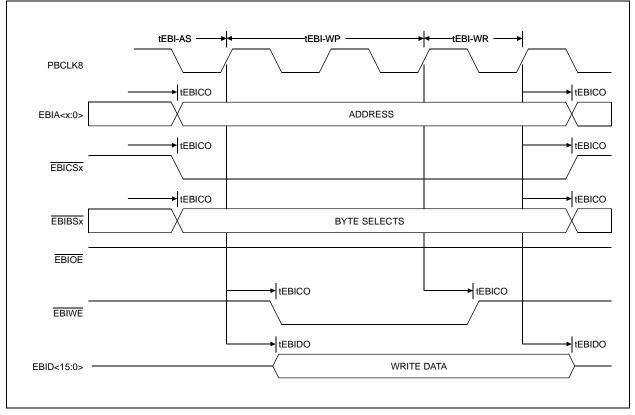
2: These parameters are characterized but not tested.

AC CHARACTERISTICS				IIREMENTS (MASTER MODE) (CONTINUED)Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾	Max. Units		Conditions	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
		Setup Time	400 kHz mode	100	_	ns		
			1 MHz mode (Note 2)	100	_	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Repeated Start	
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	Ι	μS	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	first clock pulse is	
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)		μS		
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	—	ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	ns	-	
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time	
			400 kHz mode	1.3	—	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5	_	μs	before a new transmission can start	
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58	
IM51	Tpgd	Pulse Gobbler De	elay	52	312	ns	See Note 3	


TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: The typical value for this parameter is 104 ns.

PIC32MZ Embedded Connectivity (EC) Family

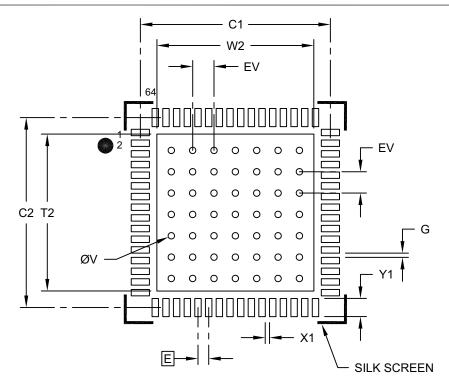

FIGURE 37-28: EBI PAGE READ TIMING

FIGURE 37-29: EBI WRITE TIMING

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 7.70x7.70mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.50
Optional Center Pad Length	T2			7.50
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.90
Contact Pad to Center Pad (X20)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2213B

Revision E (October 2015)

Note:	The	Preliminary	footer,	which	was	
	inadvertently omitted in the "D" revision of					
	the document was added.					

In this revision, all references to the V-Temp temperature range (-40°C to +105°C) were removed throughout the data sheet.

This revision also includes the following major changes, which are referenced by their respective chapter in Table B-5.

TABLE B-5: MAJOR SECTION UPDATES

Section Name	Update Description
32-bit MCUs (up to 2 MB Live- Update Flash and 512 KB SRAM) with Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog	Removed the shading from the RPF3/USBID/RF3 pins, which are not 5V tolerant in the Device Pin Tables (see Table 2 through Table 5).
1.0 "Device Overview"	Updated the USB Pinout I/O Description for the VUSB3V3 pin (see Table 1-14).
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Added 2.10.2.1 "EMI Suppression Considerations".
3.0 "CPU"	Updated the K0<2:0>: Kseg0 Coherency Algorithm bits in the Configuration Register; CP0 Register 16, Select 0 (see Register 3-1).
4.0 "Memory Organization"	The Boot and Alias Memory Map was updated (see Figure 4-5).
	Note 1 was added to the SFR Memory Map (see Table 4-1).
	Legal information for the System Bus was added (see 4.2 "System Bus Arbitration").
7.0 "CPU Exceptions and Interrupt Controller"	Updated the Notes in the Interrupt Register Map (see Table 7-3).
8.0 "Oscillator Configuration"	The System and Peripheral Clock Distribution was updated (see Table 8-1).
	The PLLIDIV<2:0>: System PLL Input Clock Divider bits in the SPLLCON register were updated (see Register 8-3).
9.0 "Prefetch Module"	The PRESTAT register was updated (see Register 9-2).
11.0 "Hi-Speed USB with On-The- Go (OTG)"	The USBCSR2 register was updated (see Register 11-3).
23.0 "Parallel Master Port (PMP)"	The PMADDR register was updated (see Register 23-3).
24.0 "External Bus Interface (EBI)"	The EBISMTx register was updated (see Register 24-3).
37.0 "Electrical Characteristics"	The Operating Current specifications were updated (see Table 37-6).
	The Idle Current specifications were updated (see Table 37-7).
	The Power-down Current specifications were updated (see Table 37-8).
	The I/O Pin Input VIH specifications were updated (see Table 37-9).
	The conditions for parameter DI60b (lich) in the I/O Pin Input Injection Current Specifications were updated (see Table 37-10).
	The Internal FRC Accuracy specifications were updated (see Table 37-20).
	The Internal LPRC Accuracy specifications were updated (see Table 37-21).