

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ecg064t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
ERXD0	61	41	B32	81	Ι	ST	Ethernet Receive Data 0				
ERXD1	58	42	B26	66	I	ST	Ethernet Receive Data 1				
ERXD2	57	43	A31	67	I	ST	Ethernet Receive Data 2				
ERXD3	56	44	A40	82		ST	Ethernet Receive Data 3				
ERXERR	64	35	A30	65	-	ST	Ethernet Receive Error Input				
ERXDV	62	12	B40	101	I	ST	Ethernet Receive Data Valid				
ERXCLK	63	16	B12	27	I	ST	Ethernet Receive Clock				
ETXD0	2	86	A5	7	0	—	Ethernet Transmit Data 0				
ETXD1	3	85	B4	8	0	—	Ethernet Transmit Data 1				
ETXD2	43	79	B17	43	0	—	Ethernet Transmit Data 2				
ETXD3	46	80	A22	44	0	—	Ethernet Transmit Data 3				
ETXERR	50	87	B44	114	0	—	Ethernet Transmit Error				
ETXEN	1	77	A57	120	0	—	Ethernet Transmit Enable				
ETXCLK	51	78	B47	121	I	ST	Ethernet Transmit Clock				
ECOL	44	10	B33	83	Ι	ST	Ethernet Collision Detect				
ECRS	45	11	A47	100		ST	Ethernet Carrier Sense				
EMDC	30	70	B39	99	0	—	Ethernet Management Data Clock				
EMDIO	49	71	A55	115	I/O	—	Ethernet Management Data				
Legend:	CMOS = C	MOS-compa	atible input	or output		Analog =	Analog input P = Power				

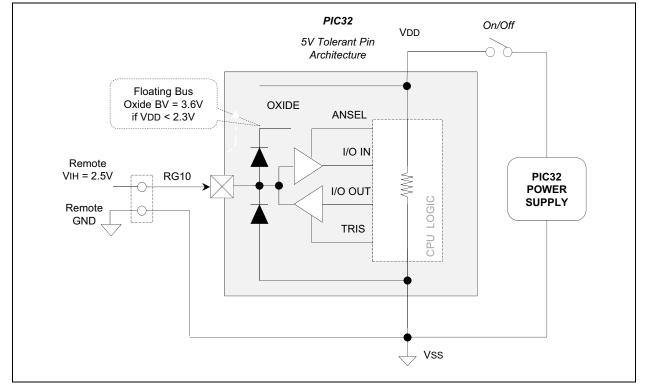
TABLE 1-16: ETHERNET MII I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

PPS = Peripheral Pin Select

I = Input


TABLE 1-17: ETHERNET RMII PINOUT I/O DESCRIPTIONS

		Pin Nu	mber								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description				
				E	thernet I	VII Interfac	e				
ERXD0	61	41	B32	81	I	ST	Ethernet Receive Data 0				
ERXD1	58	42	B26	66	I	ST	Ethernet Receive Data 1				
ERXERR	64	35	A30	65	I	ST	Ethernet Receive Error Input				
ETXD0	2	86	A5	7	0	—	Ethernet Transmit Data 0				
ETXD1	3	85	B4	8	0	—	Ethernet Transmit Data 1				
ETXEN	1	77	A57	120	0	—	Ethernet Transmit Enable				
EMDC	30	70	B39	99	0	—	Ethernet Management Data Clock				
EMDIO	49	71	A55	115	I/O	—	Ethernet Management Data				
EREFCLK	63	16	B12	27	I	ST	Ethernet Reference Clock				
ECRSDV	62	12	B40	101	I	ST	Ethernet Carrier Sense Data Valid				
Legend:	CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power				

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog inputP = Power<math>O = OutputI = InputPPS = Peripheral Pin Select

2.10.2 5V TOLERANT INPUT PINS

The internal high side diode on 5V tolerant pins are bussed to an internal floating node, rather than being connected to VDD, as shown in Figure 2-7. Voltages on these pins, if VDD < 2.3V, should not exceed roughly 3.2V relative to Vss of the PIC32 device. Voltage of 3.6V or higher will violate the absolute maximum specification, and will stress the oxide layer separating the high side floating node, which impacts device reliability. If a remotely powered "digital-only" signal can be guaranteed to always be \leq 3.2V relative to Vss on the PIC32 device side, a 5V tolerant pin could be used without the need for a digital isolator. This is assuming there is not a ground loop issue, logic ground of the two circuits not at the same absolute level, and a remote logic low input is not less than Vss - 0.3V.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	_	—	_	_		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	_	_	_
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK	—	_	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7.0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0	UBWPULOCK		_	UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Legend:		r = Reserved	
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
	1 = LBWPx bits are not locked and can be modified
	0 = LBWPx bits are locked and cannot be modified
	This bit is only clearable and cannot be set except by any reset.
bit 14-13	Unimplemented: Read as '0'
bit 12	LBWP4: Lower Boot Alias Page 4 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled 0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
bit 11	LBWP3: Lower Boot Alias Page 3 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled 0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
bit 10	LBWP2: Lower Boot Alias Page 2 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled 0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
bit 9	LBWP1: Lower Boot Alias Page 1 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled 0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
bit 8	LBWP0: Lower Boot Alias Page 0 Write-protect bit ⁽¹⁾
	 1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled 0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
bit 7	UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
	 1 = UBWPx bits are not locked and can be modified 0 = UBWPx bits are locked and cannot be modified This bit is only user-clearable and cannot be set except by any reset.
bit 6	Reserved: This bit is reserved for use by development tools
bit 5	Unimplemented: Read as '0'
Note 1:	These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24		_	_		IP3<2:0>		IS3<	:1:0>
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	—	—	—		IP2<2:0>		IS2<	:1:0>
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0
15.0	_	—			IP1<2:0>		IS1<	1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0		_			IP0<2:0>		IS0<	:1:0>

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP3<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1 000 = Interrupt is disabled
	1
bit 25-24	IS3<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
	Unimplemented: Read as '0'
bit 20-18	IP2<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS2<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 15-13	Unimplemented: Read as '0'
	-
Note:	This register represents a generic defin

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

8.2 Oscillator Control Registers

TABLE 8-2: OSCILLATOR CONFIGURATION REGISTER MAP Virtual Address (BF80_#) Bits Bit Range Register Name 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 FRCDIV<2:0> DRMEN SOSCRDY 31:16 OSCCON 1200 15:0 COSC<2:0> NOSC<2:0> CLKLOCK ULOCK _ |

														-	-				
1210	OSCTUN	31:16	—	—	—	—	—	-	—	—	—	—	—		-	—	_	—	0000
1210	OSCION	15:0	—	—	—	—	—		—	—	—	—				 <5:0>			0000
1220	SPLLCON	31:16	_	—	—	—	—		PLLODIV<2:(—			PL	LMULT<6:				01xx
		15:0	_	—	_	—	—		PLLIDIV<2:0		PLLICLK	—	— — — PLLRANGE<2:0>						0x0x
1280	REF01CON	31:16	—								DIV<14:0>								0000
.200		15:0	ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	—	—			ROSE	L<3:0>		0000
1290	REF01TRIM	31:16 ROTRIM<8:0>									—	0000							
		15:0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
12A0	REF02CON	31:16													0000				
-		15:0												L<3:0>	1	0000			
12B0	REFO2TRIM	31:16		•	•		OTRIM<8:0>		-			—	—	—	—	—	—	—	0000
-	-	15:0	—	—	—	—	—	—	—	—	—	_	—	—	-	—	—	—	0000
12C0	REFO3CON	31:16												0000					
		15:0	ON	—	SIDL	OE	RSLP	_	DIVSWEN	ACTIVE	-	_	_	_		ROSE	L<3:0>	1	0000
12D0	REFO3TRIM	31:16		-	r		OTRIM<8:0>						_	_	_	_	_	—	0000
		15:0	_	—	—	—	-	_	—	-		_	—	_	—	—	—	—	0000
12E0	REFO4CON	31:16	_								DIV<14:0>								0000
		15:0	ON	—	SIDL	OE	RSLP	_	DIVSWEN	ACTIVE	-	_	_	_			L<3:0>	1	0000
12F0	REFO4TRIM	31:16					OTRIM<8:0>		1			—	—	—	—	_	—	—	0000
		15:0	_	-	-	_	_	—	-	-			-	_	_	_	_		0000
1300	PB1DIV	31:16	_	-	_	—		—	-	_	_	_	_		-	—		—	0000
		15:0			_	_	PBDIVRDY	_			_			F	BDIV<6:0	1			8801
1310	PB2DIV	31:16	-		-	_		_	-	_			—		-	-		_	0000
		15:0	ON	_	_	_	PBDIVRDY	_							BDIV<6:0				8801
1320	PB3DIV	31:16 15:0	ON	_	-	_			-	_		—	—		BDIV<6:0>	—	_	—	0000
				-	-	_			-	-	_	_		- F		<u> </u>			8801
1330	PB4DIV	31:16 15:0	ON	-	-	-		_		-	_		_		BDIV<6:0>			_	0000
				-	-	-	PBDIVRDY			_				- F	BDIV<6:05			_	8801
1340	PB5DIV	31:16 15:0	ON	-	-	_			-	-	_	—				-	_	_	0000
			ON	_	-	-	PBDIVRDY	_		_				F	BDIV<6:0	>			8801
1360	PB7DIV	31:16 15:0	ON	_	_	_		_		_	_	_	_		BDIV<6:0>	—			0000
			-	-	-	_	FBUIVRDY	—		_					ט> עועם:0	-			8800
1370	PB8DIV	31:16 15:0	ON	_		_			-	_	_		—			—	_	—	0000
egen			-	eset; — = uni	—	—			-	—	_			F	PBDIV<6:0>	>			8801

21/5

SLOCK

20/4

SLPEN

19/3

CF

18/2

|

17/1

SOSCEN

1: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

Note

All Resets⁽¹⁾

0000

xx0x

16/0

OSWEN

TABLE 11-1: USB REGISTER MAP (CONTINUED)

						(00111					Bits								
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	USB E7CSR0	31:16 15:0		L		L	L	L	Inde	exed by the s	same bits in U	SBIE7CSR0	L	l	•				0000
3174	USB E7CSR1	31:16 15:0		Indexed by the same bits in USBIE7CSR1 0000															
3178	USB E7CSR2	31:16 15:0		Indexed by the same bits in USBIE7CSR2 0000															
317C	USB E7CSR3	31:16 15:0		Indexed by the same bits in USBIE7CSR3															
3200	USB	31:16	_	—	—	—	—	—	—	—	-	_	—	—	_	_	_	_	000
	DMAINT	15:0	_	_	—	_	—	_		—	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF	_
3204	USB DMA1C	31:16 15:0		_	_	_	_		 STM<1:0>	— DMAERR	—		— EP<3:0>	_	 DMAIE	— DMAMODE	— DMADIR	— DMAEN	000
3208	USB DMA1A	31:16 15:0						DWADIN	5110((1.0))	DMA	ADDR<31:16	>	1 <0.02		DWAL	DIMANIODE	DNIADIR	DWALN	000
320C	USB DMA1N	31:16								DMAG	ADDR<15:0: COUNT<31:10	i>							000
		15:0 31:16	_							DMA	COUNT<15:0	>			1		1	_	000
3214	USB DMA2C	15:0	_					DMABR:	 STM<1:0>	 DMAERR			 EP<3:0>	_	DMAIE	 DMAMODE	 DMADIR	DMAEN	_
3218	USB DMA2A	31:16 15:0						0101011		DMA	ADDR<31:16	>			010002	5	5111,011	Blister	000
	USB	31:16									COUNT<31:10								000
321C	DMA2N	15:0								DMA	COUNT<15:0	>							000
3224	USB	31:16		—	—					_	_	_	_		—	-	—	-	000
0224	DMA3C	15:0	—	—	—	—		DMABR	STM<1:0>	DMAERR			EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	_
3228	USB DMA3A	31:16 15:0									ADDR<31:16								000
		31:16									ADDR<15:0: COUNT<31:10								000
322C	USB DMA3N	15:0									COUNT<15:0								000
3234	USB DMA4C	31:16	_	-	—	—	_	—	—	—		—	-		-	-	-	—	000
		15:0	_	—			—	DMABR	STM<1:0>	DMAERR	ADDR<31:16		EP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	
3238	USB DMA4A	31:16 15:0									ADDR<31:16 ADDR<15:0:								000
	USB	31:16									COUNT<31:10								0000
323C	DMA4N	15:0									COUNT<15:0								000
2244	USB	31:16	_			—	—	—	_	_	_	—	_	—	—	—	—	_	000
3244	DMA5C	15:0	_	—	—	—	—	DMABR	STM<1:0>	DMAERR		DMA	EP<3:0>	·	DMAIE	DMAMODE	DMADIR	DMAEN	1 0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note

Device mode. 1: 2: Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2 (CONTINUED)

- bit 19 **SOFIF:** Start of Frame Interrupt bit
 - 1 = A new frame has started
 - 0 = No start of frame detected
- bit 18 **RESETIF:** Reset/Babble Interrupt bit
 - 1 = In *Host mode*, indicates babble is detected. In *Device mode*, indicates reset signaling is detected on the bus.
 - 0 = No reset/babble detected
- bit 17 **RESUMEIF:** Resume Interrupt bit
 - 1 = Resume signaling is detected on the bus while USB module is in Suspend mode
 - 0 = No Resume signaling detected
- bit 16 SUSPIF: Suspend Interrupt bit
 - 1 = Suspend signaling is detected on the bus (Device mode)
 - 0 = No suspend signaling detected
- bit 15-8 Unimplemented: Read as '0'
- bit 7-1 EP7RXIE: Endpoint 'n' Receive Interrupt Enable bit
 - 1 = Receive interrupt is enabled for this endpoint
 - 0 = Receive interrupt is not enabled
- bit 0 Unimplemented: Read as '0'

REGISTER 11-10: USBIENCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 1-7)

			,								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	TXINTERV<7:0>										
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	SPEE	D<1:0>	PROTOCO	OL<1:0>		TEP<	3:0>				
15:8	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
15.6	—	—			RXCNT	<13:8>					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				RXC	NT<7:0>						

Legend:	HC = Hardware Clearable HS = Hardware Settable				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24 TXINTERV<7:0>: Endpoint TX Polling Interval/NAK Limit bits (Host mode)

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and interpretation for these bits:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 23-22 SPEED<1:0>: TX Endpoint Operating Speed Control bits (Host mode)

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed
- 00 = Reserved

bit 21-20 PROTOCOL<1:0>: TX Endpoint Protocol Control bits

- 11 = Interrupt
- 10 = Bulk
- 01 = Isochronous
- 00 = Control
- bit 19-16 TEP<3:0>: TX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

- bit 15-14 Unimplemented: Read as '0'
- bit 13-0 RXCNT<13:0>: Receive Count bits

The number of received data bytes in the endpoint RX FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	_	_	—	—	-	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_		—	—	-	—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	POLLCON<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	POLLCON<7:0>								

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **POLLCON<15:0>:** Buffer Descriptor Processor Poll Status bits These bits indicate the number of cycles the BDP block would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0	
31:24		_	_		TXSTATE<3:0>				
23:16	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x	
	—	_	_	TXBUFCNT<4:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_	_	—	—	—	—	
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
7:0	TXCURBUFLEN<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **TXSTATE<3:0>:** Current DMA Transmit State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits

These bits provide information on the internal FIFO space.

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **TXCURBUFLEN<7:0>:** Current DMA Transmit Buffer Length Status bits These bits provide the length of the current DMA transmit buffer.

REGISTER 20-20: SQI1BDRXDSTAT: SQI BUFFER DESCRIPTOR DMA RECEIVE STATUS REGISTER

	1	LOISTEN							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0	
31:24	—	_	_		—				
00.40	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x	
23:16	—	—	_	RXBUFCNT<4:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	_	_	_	_	—	—	—	—	
7.0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
7:0				RXCURBUF	LEN<7:0>				

Le	egend	l:				

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

bit 28-25 **RXSTATE<3:0>:** Current DMA Receive State Status bits These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 **RXBUFCNT<4:0>:** DMA Buffer Byte Count Status bits These bits provide information on the internal FIFO space.

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXCURBUFLEN<7:0>:** Current DMA Receive Buffer Length Status bits These bits provide the length of the current DMA receive buffer.

REGIST	ER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER
bit 10-9	RTCCLKSEL<1:0>: RTCC Clock Select bits
	When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC. 11 = Reserved
	01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)00 = RTCC uses the internal 32 kHz oscillator (LPRC)
bit 8-7	RTCOUTSEL<1:0>: RTCC Output Data Select bits ⁽²⁾
	11 = Reserved
	10 = RTCC Clock is presented on the RTCC pin
	01 = Seconds Clock is presented on the RTCC pin
1.11.0	00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
bit 6	RTCCLKON: RTCC Clock Enable Status bit ⁽⁵⁾
	 1 = RTCC Clock is actively running 0 = RTCC Clock is not running
bit 5-4	Unimplemented: Read as '0'
bit 3	RTCWREN: Real-Time Clock Value Registers Write Enable bit ⁽³⁾
	 1 = Real-Time Clock Value registers can be written to by the user 0 = Real-Time Clock Value registers are locked out from being written to by the user
bit 2	RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
	1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
	0 = Real-time clock value registers can be read without concern about a rollover ripple
bit 1	HALFSEC: Half-Second Status bit ⁽⁴⁾
	1 = Second half period of a second
	0 = First half period of a second
bit 0	RTCOE: RTCC Output Enable bit
	1 = RTCC output is enabled

- 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).
 - **5:** This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	—	—	—	—	—	—	
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	ARPT<7:0> ⁽²⁾								

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	_	—	—	—	_	SH4ALT	<1:0> ^(1,2)
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	SH3ALT<1:0> ^(1,2)		SH2ALT<1:0> ^(1,2)		SH1ALT<1:0> ^(1,2)		SH0ALT<1:0> ^(1,2)	
15.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	—	_	SH5MC)D<1:0>	SH4MC)D<1:0>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SH3M0)D<1:0>	SH2MOD<1:0>		SH1MOD<1:0>		SH0MOD<1:0>	

REGISTER 28-4: AD1IMOD: ADC1 INPUT MODE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-24 SH4ALT<1:0>: Analog Input to Dedicated S&H 4 (SH4) Select bits^(1,2)

- 11 = Reserved
- 10 = Reserved
- 01 = Alternate input AN49
- 00 = Default Class 1 input AN4

bit 23-22 SH3ALT<1:0>: Analog Input to Dedicated S&H 3 (SH3) Select bits^(1,2)

- 11 = Reserved
- 10 = Reserved
- 01 = Alternate input AN48
- 00 = Default Class 1 input AN3

bit 21-20 SH2ALT<1:0>: Analog Input to Dedicated S&H 2 (SH2) Select bits^(1,2)

- 11 = Reserved
- 10 = Reserved
- 01 = Alternate input AN47
- 00 = Default Class 1 input AN2

bit 19-18 SH1ALT<1:0>: Analog Input to Dedicated S&H 1 (SH1) Select bits^(1,2)

- 11 = Reserved
- 10 = Reserved
- 01 = Alternate input AN46
- 00 = Default Class 1 input AN1

bit 17-16 SH0ALT<1:0>: Analog Input to Dedicated S&H 0 (SH0) Select bits^(1,2)

- 11 = Reserved
- 10 = Reserved
- 01 = Alternate input AN45
- 00 = Default Class 1 input AN0
- bit 15-12 Unimplemented: Read as '0'
- **Note 1:** Alternate inputs are only available for Class 1 Inputs.
 - 2: When an alternate input is selected (SHxALT<1:0> ≠ 0), the data, status, and control registers for the default Class 1 input are still used. Selecting an alternate input changes the physical input source only.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	FLTEN27	MSEL2	27<1:0>	FSEL27<4:0>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	FLTEN26	MSEL2	:6<1:0>	FSEL26<4:0>					
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	FLTEN24	MSEL2	24<1:0>	FSEL24<4:0>					

REGISTER 29-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31	FLTEN27: Filter 27 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits
511 20 24	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits
	11 = Acceptance Mask 3 selected10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 2 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL26<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
Note:	The bits in this register can only be modified if the corresponding fil

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

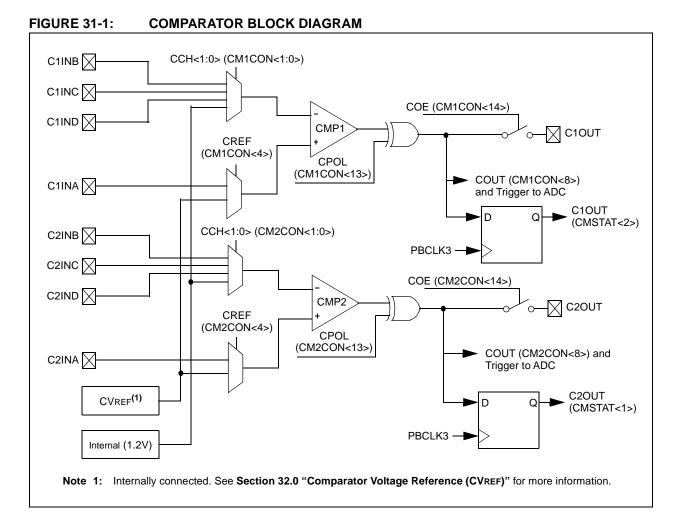
REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER VLANPAD: VLAN Pad Enable bit^(1,2) bit 6 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC 0 = The MAC does not perform padding of short frames PADENABLE: Pad/CRC Enable bit^(1,3) bit 5 1 = The MAC will pad all short frames 0 = The frames presented to the MAC have a valid length bit 4 CRCENABLE: CRC Enable1 bit 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set. 0 = The frames presented to the MAC have a valid CRC bit 3 DELAYCRC: Delayed CRC bit This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames. 1 = Four bytes of header (ignored by the CRC function) 0 = No proprietary header bit 2 HUGEFRM: Huge Frame enable bit 1 = Frames of any length are transmitted and received 0 = Huge frames are not allowed for receive or transmit bit 1 LENGTHCK: Frame Length checking bit 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector. 0 = Length/Type field check is not performed bit 0 FULLDPLX: Full-Duplex Operation bit

- 1 = The MAC operates in Full-Duplex mode
- 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 30-6 provides a description of the pad function based on the configuration of this register.
 - **2:** This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

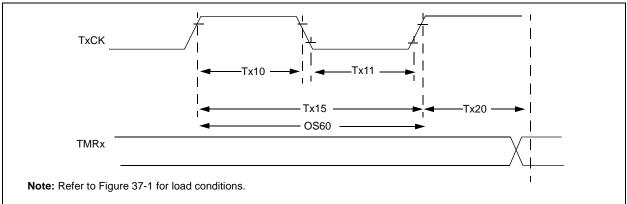
Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 30-6: PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	х	x	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	x	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC


31.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Analog Comparator module consists of two comparators that can be configured in a variety of ways.


Key features of the Analog Comparator module are:

- Differential inputs
- Rail-to-rail operation
- Selectable output polarity
- Selectable inputs:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference
 - Comparator voltage reference (CVREF)
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 31-1.

FIGURE 37-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 37-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHA	ARACTERIS	TICS		(unl	indard Operating Conditions: 2.3V to 3.6V iless otherwise stated) erating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Charac	Characteristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchronous, with prescaler		•		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns			ns	Must also meet parameter TA15 (Note 3)
			Asynchronous, with prescaler		10	—	—	ns	—		
TA11			Synchronous, with prescaler		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	_	—	ns	Must also meet parameter TA15 (Note 3)		
			Asynchronous, with prescaler		10	-	_	ns	—		
TA15	ΤτχΡ	TxCK Input Period	Synchronous, with prescaler		[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	_	ns	VDD > 2.7V (Note 3)		
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	—		ns	VDD < 2.7V (Note 3)		
			Asynchronous,		20	—	_	ns	Vdd > 2.7V		
			with prescaler	aler	50		_	ns	Vdd < 2.7V		
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))			32	_	50	kHz	_		
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		СК	_		1	Трвськз	—		

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

AC CHA	RACTER	ISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode (Note 2)	100	_	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	—	
		Hold Time	400 kHz mode	0	0.9	μs	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	Repeated Start	
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs	condition	
IM31 THD:	THD:STA	Start Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	After this period, the	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	first clock pulse is	
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs	generated	
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μs	—	
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS		
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	ns	—	
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	ns		
			1 MHz mode (Note 2)	Трвськ2 * (BRG + 2)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		from Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	The amount of time	
			400 kHz mode	1.3	_	μs	the bus must be free	
			1 MHz mode (Note 2)	0.5		μs	before a new transmission can start	
IM50	Св	Bus Capacitive L	oading	—	_	pF	See parameter DO58	
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3	

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

AC CHARACTERISTICS ^(5,6)			(unless othe	Standard Operating Conditions (see Notes 3,5) (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Ir					
Param. Symbol Characteristics			Min.	Тур.	Max.	Units	Conditions		
Device Supply									
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.3	_	Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	—		
Referen	ce Inputs	1				1	I		
AD05	Vrefh	Reference Voltage High	AVss + 1.2	_	AVdd	V	VREFH = VREF+ (Note 1)		
AD06	Vrefl	Reference Voltage Low	AVss		VREFH – 1.2	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	1.2	_	AVdd	V	(Note 4)		
AD08 AD08a	IREF	Current Drain	_	100 .002	150 1	μΑ μΑ	ADC operating ADC off		
Analog	Input								
AD12	VINH-VINL	Full-Scale Input Range	– Vrefh 0	_	Vrefh + Vrefh	V V	Differential Single-ended		
AD14	VINCM	Common Mode Input Voltage	AVSS + Vref/2	—	AVdd – Vref/2	V	_		
AD17	Rin	Recommended Impedance of Analog Voltage Source	—		200	Ω	(Note 1) For minimum sampling time		
ADC Ac	curacy – N	leasurements with Exter	nal VREF+/VR	EF-	•		•		
AD20c	Nr	Resolution	1	0 data bits	3	bits	—		
AD21c	INL	Integral Nonlinearity	—	±2	_	LSb	VINL = VREF- = VREFL = 0V, VREF+ = VREFH = 2.5V		
AD22c	DNL	Differential Nonlinearity	—	±2	_	LSb	VINL = VREF- = VREFL = 0V, VREF+ = VREFH = 2.5V		
AD23c	Gerr	Gain Error		±8	-	LSb	VINL = VREF- = VREFL = 0V, VREF+ = VREFH = 2.5V		
AD24c	EOFF	Offset Error	—	±10	_	LSb	Vinl = Vref- = 0V, AVdd = 2.5V		
AD25e	_	Monotonicity	—	_	_	—	Guaranteed		
Dynami	c Performa	ince							
AD31b	SINAD	Signal to Noise and Distortion	48	—	> 54	dB	(Note 2)		
AD34b	ENOB	Effective Number of bits	8	_	9	bits	(Note 2)		

TABLE 37-38: ADC1 MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: Characterized with a 1 kHz sine wave.

3: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

- 4: The BOOST (AD1CON2<6>) bit must be set to '1' when $VREF \le 1.8V$.
- 5: Specifications are based on adherence to the requirements listed in 28.1 "ADC Configuration Requirements".

6: External precision VREF+ and VREF- must be used at all times.