

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ecg100-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU MIPS32[®] for Devices with microAptiv[™] and M-Class Cores" (DS60001192), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). MIPS32[®] microAptiv™ Microprocessor

MIPS32[®] microAptiv[™] Microprocessor Core resources are available at: www.imgtec.com.

The MIPS32[®] microAptiv[™] Microprocessor Core is the heart of the PIC32MZ EC family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

PIC32MZ EC family processor core key features:

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32[®] Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS[™] compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible

- MMU with Translation Lookaside Buffer (TLB) mechanism:
 - 16 dual-entry fully associative Joint TLB
 - 4-entry fully associative Instruction TLB
 - 4-entry fully associative Data TLB
 - 4 KB pages
- Separate L1 data and instruction caches:
 - 16 KB 4-way Instruction Cache (I-Cache)
 - 4 KB 4-way Data Cache (D-Cache)
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
- Four Watch registers:
 - Instruction, Data Read, Data Write options
 - Address match masking options
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations

TABLE 4-9: SYSTEM BUS TARGET 1 REGISTER MAP (CONTINUED)

SS			1							,	Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
84E0	SBT1REG5	31:16								BA	SE<21:6>								xxxx
0460	OBTINEOS	15:0			BA	SE<5:0>			PRI	-			SIZE<4:0	>		—	—	—	xxxx
84F0	SBT1RD5	31:16	—	—	—	—	—	—		_	—		—	—	—	—		—	xxxx
0+1 0	0011100	15:0	—	—	—	—	—	—		_	—		—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
84F8	SBT1WR5	31:16	—	—	—	—	—	—		_	—		—	—	—	—			xxxx
0+10	OBTIMIts	15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8500	SBT1REG6	31:16								BA	SE<21:6>								xxxx
	02111200	15:0		-	BA	SE<5:0>			PRI	—			SIZE<4:0	>		—	—	—	xxxx
8510	SBT1RD6	31:16	—	-	—	—	—	—	-	-	—	_	—	—		—	—	—	xxxx
00.0	0211120	15:0	—		—	—	—	—	_	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8518	SBT1WR6	31:16	—		—	—	—	—	_	_	_	_	—	—	-	—	—	—	xxxx
		15:0	—	—	—	—	—	—	—	—	—	—	—	—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
8520	SBT1REG7	31:16								r	SE<21:6>							1	xxxx
		15:0				SE<5:0>			PRI	_			SIZE<4:0			_	—	—	XXXX
8530	SBT1RD7	31:16			_	—	—	—	_	-	—	—	—	—	-	—	—		xxxx
		15:0	—		_	_	—	_	_	_	—	_	_	—	GROUP3	GROUP2	GROUP1	GROUP0	
8538	SBT1WR7	31:16			_	—	—	—	_	-	_	—	—	—	-	—	—	—	XXXX
		15:0	—	—	_	—	—	_	_	-	—	—	_	—	GROUP3	GROUP2	GROUP1	GROUP0	
8540	SBT1REG8	31:16				05 5 0					SE<21:6>		0.75 4 6						XXXX
		15:0				\SE<5:0>			PRI	_			SIZE<4:0			-			XXXX
8550	SBT1RD8	31:16						_		_	_	_		—		-		-	XXXX
		15:0	—							_	_		_		GROUP3	GROUP2		GROUP0	
8558	SBT1WR8	31:16			_	_	—	_	_	_									XXXX
		15:0	—					_			—	—	—	—	GROUP3	GROUP2	GROUP1	GROUPU	XXXX

PIC32MZ Embedded Connectivity (EC) Family

DS60001191G-page 76

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

In (annual Causes (1)		IRQ	Maatan #		Interru	upt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC1 Digital Comparator 3	_ADC1_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes
ADC1 Digital Comparator 4	_ADC1_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes
ADC1 Digital Comparator 5	_ADC1_DC5_VECTOR	50	OFF050<17:1>	IFS1<18>	IEC1<18>	IPC12<20:18>	IPC12<17:16>	Yes
ADC1 Digital Comparator 6	_ADC1_DC6_VECTOR	51	OFF051<17:1>	IFS1<19>	IEC1<19>	IPC12<28:26>	IPC12<25:24>	Yes
ADC1 Digital Filter 1	_ADC1_DF1_VECTOR	52	OFF052<17:1>	IFS1<20>	IEC1<20>	IPC13<4:2>	IPC13<1:0>	Yes
ADC1 Digital Filter 2	_ADC1_DF2_VECTOR	53	OFF053<17:1>	IFS1<21>	IEC1<21>	IPC13<12:10>	IPC13<9:8>	Yes
ADC1 Digital Filter 3	_ADC1_DF3_VECTOR	54	OFF054<17:1>	IFS1<22>	IEC1<22>	IPC13<20:18>	IPC13<17:16>	Yes
ADC1 Digital Filter 4	_ADC1_DF4_VECTOR	55	OFF055<17:1>	IFS1<23>	IEC1<23>	IPC13<28:26>	IPC13<25:24>	Yes
ADC1 Digital Filter 5	_ADC1_DF5_VECTOR	56	OFF056<17:1>	IFS1<24>	IEC1<24>	IPC14<4:2>	IPC14<1:0>	Yes
ADC1 Digital Filter 6	_ADC1_DF6_VECTOR	57	OFF057<17:1>	IFS1<25>	IEC1<25>	IPC14<12:10>	IPC14<9:8>	Yes
Reserved	—	58	—	—	—	—	—	_
ADC1 Data 0	_ADC1_DATA0_VECTOR	59	OFF059<17:1>	IFS1<27>	IEC1<27>	IPC14<28:26>	IPC14<25:24>	Yes
ADC1 Data 1	_ADC1_DATA1_VECTOR	60	OFF060<17:1>	IFS1<28>	IEC1<28>	IPC15<4:2>	IPC15<1:0>	Yes
ADC1 Data 2	_ADC1_DATA2_VECTOR	61	OFF061<17:1>	IFS1<29>	IEC1<29>	IPC15<12:10>	IPC15<9:8>	Yes
ADC1 Data 3	_ADC1_DATA3_VECTOR	62	OFF062<17:1>	IFS1<30>	IEC1<30>	IPC15<20:18>	IPC15<17:16>	Yes
ADC1 Data 4	_ADC1_DATA4_VECTOR	63	OFF063<17:1>	IFS1<31>	IEC1<31>	IPC15<28:26>	IPC15<25:24>	Yes
ADC1 Data 5	_ADC1_DATA5_VECTOR	64	OFF064<17:1>	IFS2<0>	IEC2<0>	IPC16<4:2>	IPC16<1:0>	Yes
ADC1 Data 6	_ADC1_DATA6_VECTOR	65	OFF065<17:1>	IFS2<1>	IEC2<1>	IPC16<12:10>	IPC16<9:8>	Yes
ADC1 Data 7	_ADC1_DATA7_VECTOR	66	OFF066<17:1>	IFS2<2>	IEC2<2>	IPC16<20:18>	IPC16<17:16>	Yes
ADC1 Data 8	_ADC1_DATA8_VECTOR	67	OFF067<17:1>	IFS2<3>	IEC2<3>	IPC16<28:26>	IPC16<25:24>	Yes
ADC1 Data 9	_ADC1_DATA9_VECTOR	68	OFF068<17:1>	IFS2<4>	IEC2<4>	IPC17<4:2>	IPC17<1:0>	Yes
ADC1 Data 10	_ADC1_DATA10_VECTOR	69	OFF069<17:1>	IFS2<5>	IEC2<5>	IPC17<12:10>	IPC17<9:8>	Yes
ADC1 Data 11	_ADC1_DATA11_VECTOR	70	OFF070<17:1>	IFS2<6>	IEC2<6>	IPC17<20:18>	IPC17<17:16>	Yes
ADC1 Data 12	_ADC1_DATA12_VECTOR	71	OFF071<17:1>	IFS2<7>	IEC2<7>	IPC17<28:26>	IPC17<25:24>	Yes
ADC1 Data 13	_ADC1_DATA13_VECTOR	72	OFF072<17:1>	IFS2<8>	IEC2<8>	IPC18<4:2>	IPC18<1:0>	Yes
ADC1 Data 14	_ADC1_DATA14_VECTOR	73	OFF073<17:1>	IFS2<9>	IEC2<9>	IPC18<12:10>	IPC18<9:8>	Yes
ADC1 Data 15	_ADC1_DATA15_VECTOR	74	OFF074<17:1>	IFS2<10>	IEC2<10>	IPC18<20:18>	IPC18<17:16>	Yes

 ADC1 Data 14
 _ADC1_DATA14_VECTOR
 73
 OFF073<17:1>
 IFS2<9>
 IEC2<9>
 IPC18<12:10>
 IP

 ADC1 Data 15
 _ADC1_DATA15_VECTOR
 74
 OFF074<17:1>
 IFS2<10>
 IEC2<10>
 IPC18<20:18>
 IP

 Note 1:
 Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals.
 2:
 This interrupt source is not available on 64-pin devices.

 3:
 This interrupt source is not available on 100-pin devices.
 3:
 This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
51.24		_	—	—	—	PFMSECEN	-	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
25.10		_	_	—	—			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		_	_	—	—			_
7:0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7.0			PREFEN	N<1:0>	_	PF	MWS<2:0>(*	1)

REGISTER 9-1: PRECON: PREFETCH MODULE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-27 Unimplemented: Read as '0'
- bit 26 **PFMSECEN:** Flash SEC Interrupt Enable bit
 - 1 = Generate an interrupt when the PFMSEC bit (PRESTAT<26>) is set
 - 0 = Do not generate an interrupt when the PFMSEC bit is set
- bit 25-6 **Unimplemented:** Read as '0'
- bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits
 - 11 = Enable predictive prefetch for any address
 - 10 = Enable predictive prefetch for CPU instructions and CPU data
 - 01 = Enable predictive prefetch for CPU instructions only
 - 00 = Disable predictive prefetch

bit 3 Unimplemented: Read as '0'

bit 2-0 **PFMWS<2:0>:** PFM Access Time Defined in Terms of SYSCLK Wait States bits⁽¹⁾

- 111 = Seven Wait states
- •
- •
- •
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait states
- Note 1: For the Wait states to SYSCLK relationship, refer to Table 37-13 in Section37.0 "Electrical Characteristics".

SS										Bit	s								
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1280	DCH2CPTR	31:16	_	—	—		—		_	—			_	—	_	_	_	_	0000
.200	2011201 111	15:0			, ,					CHCPTR	<15:0>							•	000
1290	DCH2DAT	31:16	—	_	—		—		—	—	—	—	—	—	—	—	—	—	000
		15:0								CHPDAT	<15:0>								000
12A0	DCH3CON	31:16					N<7:0>				—	—	_	—	_	—	—	—	000
,	201100011	15:0	CHBUSY	_	CHPIGNEN	_	CHPATLEN	_	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	RI<1:0>	0000
12B0	DCH3ECON	31:16	—	_	—	_	—			—				CHAIR	r			-	00F1
		15:0				CHSIR	Q<7:0>			1	CFORCE		PATEN		AIRQEN	-	-		FFOO
12C0	DCH3INT	31:16	_		—	_	—	_		_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0 31:16	_	_	—	_		_	_	_	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
12D0	DCH3SSA	15:0								CHSSA-	<31:0>								0000
12E0	DCH3DSA	31:16 15:0								CHDSA	<31:0>								0000
1050	DCH3SSIZ	31:16	_	_	—	—	—	—	—	—	—	—	_	_	—	—	—	—	0000
12FU	DCH355IZ	15:0								CHSSIZ	<15:0>								0000
1300	DCH3DSIZ	31:16	—	_	—	_	—	_	—	—	—	—	_	—	_	—	—	—	0000
1000		15:0								CHDSIZ	<15:0>								0000
1310	DCH3SPTR	31:16	—		—	—	—	_		—		—	—		—	—	—	—	0000
		15:0								CHSPTR	<15:0>							-	0000
1320	DCH3DPTR	31:16	—		—				_		—	_	_	_	_			—	0000
		15:0	_							CHDPTR	<15:0>								0000
1330	DCH3CSIZ	31:16 15:0	—	_			_			CHCSIZ	<15:0>			_				_	0000
		31:16	_	_	_	_		_	_		<10.02	_	_	_	_	_	_	_	0000
1340	DCH3CPTR	15:0								CHCPTR	<15:0>								0000
1350	DCH3DAT	31:16								_	—	_			_			_	0000
1350	DUISDAI	15:0								CHPDAT	<15:0>								0000
1360	DCH4CON	31:16				CHPIG	N<7:0>				—	—	_	—	_	—	_	—	0000
.000	DOI1400N	15:0	CHBUSY	—	CHPIGNEN	_	CHPATLEN	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	RI<1:0>	0000
1370	DCH4ECON	31:16	—	—	—		—		—	—		1		CHAIR	r				00FF
		15:0				CHSIR	Q<7:0>				CFORCE		PATEN	SIRQEN	AIRQEN	—	—	—	FFOC
1380	DCH4INT	31:16	—	—	—	_	—	_	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	_
		15:0			—	_		_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000

PIC32MZ Embedded Connectivity (EC) Family

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—		—	—	—	—	—
22.46	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				CHAIRQ<	<7:0> ⁽¹⁾			
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8				CHSIRQ<	<7:0> ⁽¹⁾			
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31

bit 31-24	Unimplemented: Read as '0'
	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
511 20 10	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	 1 = Abort transfer and clear CHEN on pattern match 0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit

- 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
- 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				CHSSA<	31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16				CHSSA<	23:16>				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				CHSSA	<15:8>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	CHSSA<7:0>								

REGISTER 10-10: DCHxSSA: DMA CHANNEL x SOURCE START ADDRESS REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 CHSSA<31:0> Channel Source Start Address bits Channel source start address. Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL x DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				CHDSA<	31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16				CHDSA<	23:16>				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8				CHDSA	<15:8>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	CHDSA<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits Channel destination start address.

Note: This must be the physical address of the destination.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	—	_	-	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_			-			—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHPDAT	<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	<7:0>			

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	mplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **CHPDAT<15:0>:** Channel Data Register bits <u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow terminate on match.

> All other modes: Unused.

11.0 HI-SPEED USB WITH ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001232), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.

The module supports Hi-Speed, Full-Speed, or Low-Speed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, end-point control, a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

Note: To avoid cache coherency problems on devices with L1 cache, USB buffers must only be allocated or accessed from the KSEG1 segment.

The USB module includes the following features:

- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- Suspend and resume signaling support
- Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- Link power management support
 - Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
 - 2: If the USB module is used, the Primary Oscillator (Posc) is limited to either 12 MHz or 24 MHz.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_	- RXDPB RXFIFOSZ<3:0>					
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_	TXDPB	TXFIFOSZ<3:0>				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
15:8	_	—	—	_	—	—	TXEDMA	RXEDMA	
7.0	R-1	R-0	R-0	R-0	R-0	R-0	R/W-0, HC	R/W-0	
7:0	BDEV	FSDEV	LSDEV	VBUS	5<1:0>	HOSTMODE	HOSTREQ	SESSION	

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER

Legend:

3				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-29 Unimplemented: Read as '0'

- bit 28 RXDPB: RX Endpoint Double-packet Buffering Control bit
 - 1 = Double-packet buffer is supported. This doubles the size set in RXFIFOSZ.
 - 0 = Double-packet buffer is not supported

bit 27-24 RXFIFOSZ<3:0>: RX Endpoint FIFO Packet Size bits

The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)

- 1111 = Reserved
- •
- •
- •
- 1010 = Reserved
- 1001 = 4096 bytes
- 1000 = 2048 bytes
- 0111 = 1024 bytes
- 0110 = 512 bytes
- 0101 = 256 bytes
- 0100 = 128 bytes
- 0011 = 64 bytes
- 0010 = 32 bytes 0001 = 16 bytes
- 0000 = 8 bytes
- bit 23-21 Unimplemented: Read as '0'
- bit 20 TXDPB: TX Endpoint Double-packet Buffering Control bit
 - 1 = Double-packet buffer is supported. This doubles the size set in TXFIFOSZ.
 - 0 = Double-packet buffer is not supported

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
31:24		_	_	_	_	_	NRSTX	NRST				
23:16	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-0	R/W-1	R/W-0				
23.10	LSEOF<7:0>											
15:8	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-1	R/W-1	R/W-1				
10.0	FSEOF<7:0>											
7.0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R.W-0	R/W-0	R/W-0				
7:0				HSEO	F<7:0>							

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- bit 25 NRSTX: Reset of XCLK Domain bit
 - 1 = Reset the XCLK domain, which is clock recovered from the received data by the PHY
 - 0 = Normal operation
- bit 24 NRST: Reset of CLK Domain bit
 - $\ensuremath{\mathtt{1}}$ = Reset the CLK domain, which is clock recovered from the peripheral bus
 - 0 = Normal operation
- bit 23-16 LSEOF<7:0>: Low-Speed EOF bits These bits set the Low-Speed transaction in units of 1.067 μs (default setting is 121.6 μs) prior to the EOF to stop new transactions from beginning.

bit 15-8 **FSEOF<7:0>:** Full-Speed EOF bits These bits set the Full-Speed transaction in units of 533.3 μs (default setting is 63.46 μs) prior to the EOF to stop new transactions from beginning.

bit 7-0 **HSEOF<7:0>:** Hi-Speed EOF bits These bits set the Hi-Speed transaction in units of 133.3 μs (default setting is 17.07 μs) prior to the EOF to stop new transactions from beginning.

PIC32MZ Embedded Connectivity (EC) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	PSINTV<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	PSINTV<23:16>										
45-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	PSINTV<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-y	R-y	R-y			
7:0				PSINTV	<7:0>						

REGISTER 15-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER

Legend:	y = Value set from Configuration bits on PO					
R = Readable bit	W = Writable bit	U = Unimplemented I	= Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 **PSINTV<31:0>:** DMT Window Interval Configuration Status bits

This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.

SQI Control Registers 20.1

TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP

sse										Bits	5								
Virtual Address (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	SQI1	31:16		—	_	—	—	—	—	—	DUN	MYBYTES<	:2:0>	AD	DRBYTES	<2:0>	READOPC	ODE<7:6>	0000
2000	XCON1	15:0			READOPCO	DDE<5:0>			TYPED	ATA<1:0>	TYPEDU	MMY<1:0>	TYPEMO	DE<1:0>	TYPEAD	DR<1:0>	TYPEC	/ID<1:0>	0000
2004	SQI1	31:16	-								0000								
2004	XCON2	15:0	—	- - DEVSEL<1:0> MODEBYTES<1:0> MODECODE<7:0> 00							0000								
2008	SQI1CFG	31:16	SQIEN	DIEN - - - CSEN<1:0> - - DATAEN<1:0> - - RESET 0000															
2000	SQLICIG	15:0	—	_		BURSTEN	—	HOLD	WP	SERMODE	RXLATCH	—	LSBF	CPOL	CPHA		MODE<2:0>		0000
200C	SQI1CON	31:16	—	—	—	—	—	—	—	—	—	DASSERT	DEVSE	L<1:0>	LANEMO	DE<1:0>	CMDIN	IT<1:0>	0000
2000	ognoon	15:0		TXRXCOUNT<15:0> 0000															
2010	SQI1	31:16	—	—	—	—	—	_	_	—	_	—	_	_	_	—	—	—	0000
	CLKCON	15:0				CLKDIV<7:	0>				_	—	—	-	—	—	STABLE	EN	0000
2014	SQI1	31:16	_	_		—	—			—	_	_	_	—	—	—	_	_	0000
	CMDTHR	15:0	—	-	_		TXCM	1DTHR<4:()>		_	—	—		F	RXCMDTHR	<4:0>		0000
2018	SQI1	31:16	—	—	-	—	—	—	—	—	-	—	—	—	—	—	—	—	0000
2010	INTTHR	15:0	D TXINTTHR<4:0> RXINTTHR<4:0>							0000									
	SQI1	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
201C	INTEN	15:0	—	—	—	—	—	PKT COMPIE	BD DONEIE	CON THRIE	CON EMPTYIE	CON FULLIE	RX THRIE	RX FULLIE	RX EMPTYIE	TX THRIE	TX FULLIE	TX EMPTYIE	0000
	SQI1	31:16	_	_	—		_		_			_	_	-	_	_	_		0000
2020	INTSTAT	15:0	-	—	—	—	—	PKT COMPIF	BD DONEIF	CON THRIF	CON EMPTYIF	CON FULLIF	RX THRIF	RX FULLIF	RX EMPTYIF	TX THRIF	TX FULLIF	TX EMPTYIF	0000
2024	SQI1	31:16								TXDATA<	31:16>								0000
2024	TXDATA	15:0								TXDATA<	:15:0>								0000
0000	SQI1	31:16								RXDATA<	31:16>								0000
2028	RXDATA	15:0								RXDATA-	<15:0>								0000
2020	SQI1	31:16	—	-	_	—	_		_	_				TXFIFC)FREE<7:0>				0000
202C	STAT1	15:0	_	-	—	—	_	_	_					RXFIF	OCNT<7:0>				0000
2030	SQI1	31:16		_	—	_	_		-	_	_	_	_	-	_	_	_	_	0000
2030	STAT2	15:0	—	—	—	—	—	_	—	_	_	SQID3	SQID2	SQID1	SQID0	_	RXUN	TXOV	00x0
2024	SQI1	31:16		_	—	_	_		-	_	_	_	_	-	_	_	_	_	0000
2034	BDCON	15:0		—	—		—	—	—	—	—	—		_	—	START	POLLEN	DMAEN	0000
2038	SQI1BD	31:16							BI	DCURRADE)R<31:16>								0000
2038	CURADD	15:0							В	DCURRAD	DR<15:0>								0000
2040	SQI1BD	31:16								BDADDR<	:31:16>								0000
2040	BASEADD	15:0								BDADDR	<15:0>								0000
2044	SQI1BD	31:16	_	_	_	—	—	—	—	—	—	—		BDSTA	ATE<3:0>		DMASTART	DMAACTV	0000
2044	STAT	15:0		BDCON<15:0> 0000															
Legen	d: x =	unknov	vn value on	Reset; — = un	implemented	, read as '0'. R	eset values	are shown	in hexaded	imal.									

PIC32MZ Embedded **Connectivity (EC) Family**

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	-	-	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CLKDIV<	:7:0> ⁽¹⁾			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R/W-0
7:0					_		STABLE	EN

REGISTER 20-5: SQI1CLKCON: SQI CLOCK CONTROL REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	1
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	1

bit 31-16 Unimplemented: Read as '0'

bit 15-8 CLKDIV<7:0>: SQI Clock TSQI Frequency Select bit⁽¹⁾

10000000 = Base clock TBC is divided by 512 01000000 = Base clock TBC is divided by 256 00100000 = Base clock TBC is divided by 128 00010000 = Base clock TBC is divided by 64 00001000 = Base clock TBC is divided by 32 00000100 = Base clock TBC is divided by 16 00000010 = Base clock TBC is divided by 8 00000001 = Base clock TBC is divided by 4 00000000 = Base clock TBC is divided by 2

Setting these bits to '0000000' specifies the highest frequency of the SQI clock.

- bit 7-2 Unimplemented: Read as '0'
- bit 1 STABLE: TSQI Clock Stable Select bit

This bit is set to '1' when the SQI clock, TsQI, is stable after writing a '1' to the EN bit.

- 1 = Tsqi clock is stable
- 0 = TSQI clock is not stable

bit 0 EN: TSQI Clock Enable Select bit

When clock oscillation is stable, the SQI module will set the STABLE bit to '1'.

1 = Enable the SQI clock (TsQI) (when clock oscillation is stable, the SQI module sets the STABLE bit to '1')

Disable the SQI clock (TsQI) (the SQI module should stop its clock to enter a low power state); SFRs can still be accessed, as they use PBCLK5

Note 1: Refer to Table in **Section 37.0 "Electrical Characteristics**" for the maximum clock frequency specifications.

26.0 CRYPTO ENGINE

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced, and actions such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hard-ware engines can perform the encryption and authentication in sequence or in parallel.

Note:	To avoid cache coherency problems on
	devices with L1 cache, Crypto buffers
	must only be allocated or accessed from
	the KSEG1 segment.

Key features of the Crypto Engine include:

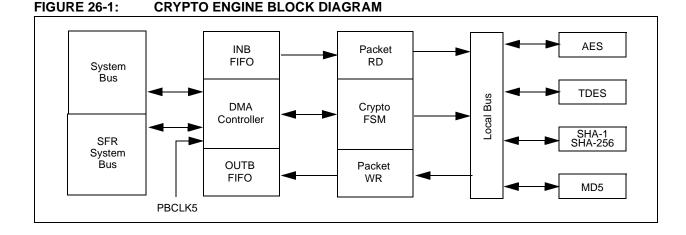
- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- · Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)


The rate of data that can be processed by the Crypto Engine depends on a number of factors, including:

- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 26-1 shows typical performance for various engines.

TABLE 26-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)				
DES	14.4	1440				
TDES	6.6	660				
AES-128	9.0	900				
AES-192	7.9	790				
AES-256	7.2	720				
MD5	15.6	1560				
SHA-1	13.2	1320				
SHA-256	9.3	930				

REGISTER 28-4: AD1IMOD: ADC1 INPUT MODE CONTROL REGISTER (CONTINUED)

bit 11-10	SH5MOD<1:0>: Input Configuration for S&H 5 (SH5) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 9-8	SH4MOD<1:0>: Input Configuration for S&H 4 (SH4) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 7-6	SH3MOD<1:0>: Input Configuration for S&H 3 (SH3) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 5-4	SH2MOD<1:0>: Input Configuration for S&H 2 (SH2) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 3-2	SH1MOD<1:0>: Input Configuration for S&H 1 (SH1) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 1-0	SHOMOD<1:0>: Input Configuration for S&H 0 (SH0) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output

- **Note 1:** Alternate inputs are only available for Class 1 Inputs.
 - 2: When an alternate input is selected (SHxALT<1:0> ≠ 0), the data, status, and control registers for the default Class 1 input are still used. Selecting an alternate input changes the physical input source only.

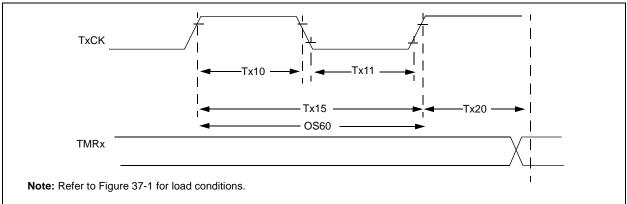
REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
- 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

bit 5 **RXBUSY:** Receive Busy bit^(3,6)

1 = RX logic is receiving data 0 = RX logic is idle


This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - **2:** This bit is only affected by TX operations.
 - **3:** This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1 < 15 >) = 1.
 - 6: This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

REGISTER 34-3: DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = Reserved
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit⁽¹⁾
 - 1 = JTAG is enabled
 - 0 = JTAG is disabled
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 1x = Debugger is disabled
 - 0x =Debugger is enabled
- Note 1: This bit sets the value of the JTAGEN bit in the CFGCON register.

FIGURE 37-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 37-25: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS (unle				ndard Operating Conditions: 2.3V to 3.6V ess otherwise stated) rating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics ⁽²⁾			Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchrono with presc		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns			ns	Must also meet parameter TA15 (Note 3)
			Asynchronous, with prescaler		10	—	—	ns	—
TA11	TTXL	TxCK Low Time	Synchrono with presc		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	_	—	ns	Must also meet parameter TA15 (Note 3)
			Asynchror with presc		10	-	_	ns	—
ΤΑ15 Ττχι	ΤτχΡ	TxCK Input Period	Synchronous, with prescaler		[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	—	_	ns	VDD > 2.7V (Note 3)
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	—		ns	VDD < 2.7V (Note 3)
			Asynchronous with prescaler	nous,	20	—	_	ns	Vdd > 2.7V
				aler	50		_	ns	Vdd < 2.7V
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>))			32	_	50	kHz	_
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		СК	_		1	Трвськз	—

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

Section Name	Update Description				
28.0 "12-bit Pipelined Analog-to-	Figure 28-1, Figure 28-2, and Figure 28-3 were updated.				
Digital Converter (ADC)"	Register names were updated in the ADC Register Map (see Table 28-1).				
	The OVRSAM<2:0> bit values were updated (see Register 28-14).				
34.0 "Special Features"	The DEVCFG3/ADEVCFG3 register was updated (see Register 34-6).				
37.0 "Electrical Characteristics"	Various electrical specifications were updated, including:				
	• The minimum value for parameter DC10 (VDD) in the DC Temperature and Voltage Specifications was updated (see Table 37-4).				
	 The minimum and maximum values for parameter BO10 (VBOR) were updated in the BOR Electrical Characteristics (see Table 37-4). 				
	• Updated the third and fourth bullet list items in Note 2 in DC Characteristics: Operating Current (IDD) (see Table 37-6).				
	• Updated the third and fourth bullet list items in Note 1 in DC Characteristics: Idle Current (IIDLE) (see Table 37-7).				
	• Updated the third and fourth bullet list items in Note 1in DC Characteristics: Power-Down Current (IPD) (see Table 37-8).				
	 Added Note 6 and updated parameters DI20, DI28a, DI28b, DI30, and DI31 in DC Characteristics: I/O Pin Input Specifications (see Table 37-9). 				
	 Added DC Characteristics: I/O Pin Input Injection Current Specifications (see Table 37-10). 				
	 Added parameter DO50 to Capacitive Loading Requirements on Output Pins (see Table 37-15). 				
	• Note 3 was added and the Conditions were updated for parameter OS42 in the External Clock Timing Requirements (see Table 37-16).				
	 Updated the Minimum value for parameter OS51 (Fsys) in the System Timing Requirements (see Table 37-17). 				
	 Added parameter OS54a and updated the Maximum value for parameter OS50 in the PLL Clock Timing Specifications (see Table 37-18). 				
	 The Internal Backup FRC (BFRC) Accuracy specification was added (see Table 37-21). 				
	 The SQI Input and Output Timing Characteristics diagram were updated (see Figure 37-14 and Figure 37-15). 				
	 The SQI Timing Requirements were updated (see Table 37-33). 				
	 Parameter AD13 was removed (see Table 37-37). 				
	• The Min. and Max. values for parameter TS12 and the Conditions for parameter TS13 and TS14 in the Temperature Sensor Specifications were updated (see Table 36-39).				
38.0 "AC and DC Characteristics Graphs"	Updated Typical Temperature Sensor Voltage (see Figure 38-7).				
Appendix A: "Migrating from PIC32MX5XX/6XX/7XX to PIC32MZ"	New appendix for migrating to PIC32MZ devices was added.				

TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)