

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ecg100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.4 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available from the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- "MPLAB[®] ICD 3 Design Advisory" (DS50001764)
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.5 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.6 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU MIPS32[®] for Devices with microAptiv[™] and M-Class Cores" (DS60001192), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). MIPS32[®] microAptiv™ Microprocessor

Core resources are available at: www.imgtec.com.

The MIPS32[®] microAptiv[™] Microprocessor Core is the heart of the PIC32MZ EC family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

PIC32MZ EC family processor core key features:

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32[®] Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS[™] compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible

- MMU with Translation Lookaside Buffer (TLB) mechanism:
 - 16 dual-entry fully associative Joint TLB
 - 4-entry fully associative Instruction TLB
 - 4-entry fully associative Data TLB
 - 4 KB pages
- Separate L1 data and instruction caches:
 - 16 KB 4-way Instruction Cache (I-Cache)
 - 4 KB 4-way Data Cache (D-Cache)
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (*rs*) sign extension-dependent)
- Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
- Four Watch registers:
 - Instruction, Data Read, Data Write options
 - Address match masking options
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations

NOTES:

FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 2048 KB OF PROGRAM MEMORY^(1,2)

	Virtual Memory Map			Physical Memory Map	_
0xFFFFFFFF	Reserved)	Reserved	0xFFFFFFFF
0xF4000000		e			-
DxF3FFFFFF	External Memory via	3 ⁽⁴⁾			
0xF0000000	501	Э Э Э Э Э Э Э	\geq		0x34000000
	Reserved	t ca		External Memory via	0x33FFFFFF
	Extornal Momony via	ŝ		SQI	0x30000000
0xE0000000	EBI				
	Beconvod	\sim		Reserved	0x24000000
0xD4000000	Reserved			External Mamon via	0x23FFFFFF
)xD3FFFFFF	External Memory via	(4)		EBI	
)xD0000000	SQI	- G2			0x20000000
	Reserved	SKS		Reserved	0x1EC74000
xC3FFFFFF	External Memory via	0			0x1FC73FFF
)xC0000000	EBI		J	Boot Flash	
DxBFFFFFFF	Reserved	\langle	\ \	(see rigule 4-5)	0x1FC00000
0xBFC74000	Reserved			Reserved	
0xBFC73FFF	Boot Flash				0x1F900000
	(see Figure 4-5)			SFRs	UX1F8FFFFF
				(see Table 4-1)	0x1F800000
0xBF900000	Reserved				
0xBF8FFFFF	SEBo	() ()		Reserved	
	(see Table 4-1)	i1 abl			0x1D200000
0xBF800000		SEG		Dragram Flash	0x1D1FFFFF
0xBD200000	Reserved	t X	$\begin{bmatrix} & & \\ & & & \end{bmatrix}$	Program Flash	0x1D000000
0xBD1FFFFF		- ŝ			
	Program Flash			Reserved	0x00080000
0xBD000000				RAM ⁽³⁾	0x0007FFFF
<u>∿∧∩080000</u>	Reserved				0x00000000
57/10071111	RAM ⁽³⁾				
0xA0000000			/ /		
	Reserved				
0x9FC74000		-	/		
UX9FC/3FFF	Boot Flash		/		
0x9FC00000	(see Figure 4-5)		/		
		1	/		
	Reserved	0 ble)			
0x9D200000		iEG Teat	\leq		
0x9D1FFFFF		KS	ſ		
020000000	Program Flash	U S			
		-			
0x80080000	Reserved				
0x8007FFFF		1			
	RAM ⁽³⁾		ļ		
Ux80000000			/		
0x00000000	Reserved				
			4l-		
Note 1:	Memory areas are not	shown	to scale.	or stort up oc de	
2:	The Cache, MIMU, and	I I LB 8	re minalized by compile	er start-up code.	
2.	RAM momony is divide	d into t	wo equal banks. DAM	BOINT I ONLY EVEN	

Bit Range	Bit Bit Bit Inge 31/23/15/7 30/22/14		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—		—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—		—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0	_	—	—	—	—	_	—	SWRST ^(1,2)

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit^(1,2) 1 = Enable software Reset event 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - **2:** Once this bit is set, any read of the RSWRST register will cause a reset to occur.

PIC32MZ Embedded Connectivity (EC) Family

ILCIOID IL														
Bit Range	Bit 31/23/15/7	Bit Bit 31/23/15/7 30/22/14/6		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0						
31.24	VBUSERRIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE						
22.46	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS						
23.10	VBUSERRIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF						
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
10.0	—	—	—	—	—	—	—	—						
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0						
7.0	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE							

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Legend:	HS = Hardware Settable							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31	VBUSERRIE: VBUS Error Interrupt Enable bit 1 = VBUS error interrupt is enabled 0 = VBUS error interrupt is disabled
bit 30	 SESSRQIE: Session Request Interrupt Enable bit 1 = Session request interrupt is enabled 0 = Session request interrupt is disabled
bit 29	DISCONIE: Device Disconnect Interrupt Enable bit 1 = Device disconnect interrupt is enabled 0 = Device disconnect interrupt is disabled
bit 28	CONNIE: Device Connection Interrupt Enable bit 1 = Device connection interrupt is enabled 0 = Device connection interrupt is disabled
bit 27	SOFIE: Start of Frame Interrupt Enable bit 1 = Start of Frame event interrupt is enabled 0 = Start of Frame event interrupt is disabled
bit 26	RESETIE: Reset/Babble Interrupt Enable bit 1 = Interrupt when reset (<i>Device mode</i>) or Babble (<i>Host mode</i>) is enabled 0 = Reset/Babble interrupt is disabled
bit 25	RESUMEIE: Resume Interrupt Enable bit 1 = Resume signaling interrupt is enabled 0 = Resume signaling interrupt is disabled
bit 24	SUSPIE: Suspend Interrupt Enable bit 1 = Suspend signaling interrupt is enabled 0 = Suspend signaling interrupt is disabled
bit 23	VBUSERRIF: VBUS Error Interrupt bit 1 = VBUS has dropped below the VBUS valid threshold during a session 0 = No interrupt
bit 22	SESSRQIF: Session Request Interrupt bit 1 = Session request signaling has been detected 0 = No session request detected
bit 21	 DISCONIF: Device Disconnect Interrupt bit 1 = In <i>Host mode</i>, indicates when a device disconnect is detected. In <i>Device mode</i>, indicates when a session ends. 0 = No device disconnect detected
bit 20	CONNIF: Device Connection Interrupt bit 1 = In <i>Host mode</i> , indicates when a device connection is detected 0 = No device connection detected

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7) (CONTINUED)

bit 15-8 RXINTERV<7:0>: Endpoint RX Polling Interval/NAK Limit bits

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and meaning for this field:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 7-6 **SPEED<1:0>:** RX Endpoint Operating Speed Control bits

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed
- 00 = Reserved
- bit 5-4 **PROTOCOL<1:0>:** RX Endpoint Protocol Control bits
 - 11 = Interrupt
 - 10 **= Bulk**
 - 01 = Isochronous
 - 00 = Control
- bit 3-0 **TEP<3:0>:** RX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

PIC32MZ Embedded Connectivity (EC) Family

Bit Bit Range 31/23/15/7		Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	_	_	_	_		_	_	_						
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23.10	—	—	—	—		—	—	—						
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	—	—	—	—		—	—	—						
7.0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS						
7.0	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF						

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **DMAxIF:** DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

bit 0 LPMSTIF: LPM STALL Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with a STALL
- 0 = No Stall condition

When in Host mode:

- 1 = A LPM transaction was transmitted and the device responded with a STALL
- 0 = No Stall condition

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = <u>U3TX</u>
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS
RPD10	RPD10R	RPD10R<3:0>	0011 = Reserved
RPF1	RPF1R	RPF1R<3:0>	-0100 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = SDO3
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	$1001 = SDO5^{(1)}$
RPC1 ⁽¹⁾	RPC1R ⁽¹⁾	RPC1R<3:0> ⁽¹⁾	1010 = SS6(')
RPD14 ⁽¹⁾	RPD14R ⁽¹⁾	RPD14R<3:0> ⁽¹⁾	-1011 = 003
RPG1 ⁽¹⁾	RPG1R ⁽¹⁾	RPG1R<3:0> ⁽¹⁾	1100 = REFCLKO4
RPA14 ⁽¹⁾	RPA14R ⁽¹⁾	RPA14R<3:0> ⁽¹⁾	1110 = C2OUT
RPD6 ⁽²⁾	RPD6R ⁽²⁾	RPD6R<3:0> ⁽²⁾	1111 = C1TX ⁽³⁾
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U1TX
RPF5	RPF5R	RPF5R<3:0>	0010 = U2RTS
RPD11	RPD11R	RPD11R<3:0>	-0011 = USTX
RPF0	RPF0R	RPF0R<3:0>	-0100 = 06RTS
RPB1	RPB1R	RPB1R<3:0>	0101 = SDO1
RPE5	RPE5R	RPE5R<3:0>	0111 = SDO3
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO 4
RPB3	RPB3R	RPB3R<3:0>	1001 = SDO5 ⁽¹⁾
RPC4 ⁽¹⁾	RPC4R ⁽¹⁾	RPC4R<3:0> ⁽¹⁾	1010 = Reserved
RPD15 ⁽¹⁾	RPD15R ⁽¹⁾	RPD15R<3:0> ⁽¹⁾	-1011 = 0C4
RPG0 ⁽¹⁾	RPG0R ⁽¹⁾	RPG0R<3:0> ⁽¹⁾	1100 = OC7 1101 = Reserved
RPA15 ⁽¹⁾	RPA15R ⁽¹⁾	RPA15R<3:0> ⁽¹⁾	1110 = Reserved
RPD7 ⁽²⁾	RPD7R ⁽²⁾	RPD7R<3:0> ⁽²⁾	1111 = REFCLKO1
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPG6	RPG6R	RPG6R<3:0>	0001 = U3RTS
RPB8	RPB8R	RPB8R<3:0>	-0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0011 = Reserved
RPD4	RPD4R	RPD4R<3:0>	0101 = SS1
RPB0	RPB0R	RPB0R<3:0>	0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	$-0111 = \frac{SS3}{SS4}$
RPB7	RPB7R	RPB7R<3:0>	$1000 = \frac{334}{355}$
RPF12 ⁽¹⁾	RPF12R ⁽¹⁾	RPF12R<3:0> ⁽¹⁾	1010 = SDO6 ⁽¹⁾
RPD12 ⁽¹⁾	RPD12R ⁽¹⁾	RPD12R<3:0> ⁽¹⁾	1011 = OC5
RPF8 ⁽¹⁾	RPF8R ⁽¹⁾	RPF8R<3:0> ⁽¹⁾	-1100 = OC8
RPC3 ⁽¹⁾	RPC3R ⁽¹⁾	RPC3R<3:0> ⁽¹⁾	1110 = C10UT
RPE9 ⁽¹⁾	RPE9R ⁽¹⁾	RPE9R<3:0> ⁽¹⁾	1111 = REFCLKO3

TABLE 12-2: OUTPUT PIN SELECTION

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

21.1 I²C Control Registers

TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP

ess										Bi	its								
Virtual Addr (BF82_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	1201000	31:16							_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	000
0000	12CTCON	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	100
0010	I2C1STAT	31:16	_	—	—	—	—		—	_	—	—	—	—	—	—	—	—	000
0010	12010171	15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	000
0020	I2C1ADD	31:16		_		—	_			_		—	—	—	—	—		—	000
0020	.20	15:0		_		—	_						Address	Register					000
0030	I2C1MSK	31:16		—		—	—	_		—	—	—	—	—	—	—		—	000
		15:0	—	—		—	—	—					Address Ma	ask Registe	r				000
0040	I2C1BRG	31:16	_	_	_	_	_	_		—	_		—	_	—	_	—	—	000
		15:0							Bau	d Rate Ger	erator Reg	Ister	1		1				000
0050	I2C1TRN	31:16	_	_		_	_	_		_		—	—		<u> </u>	—	_	—	000
		15:0					_							Transmit	Register				000
0060	I2C1RCV	15:0											_	- Beesive				_	000
		15.0										DOIE	SOLE.	Receive	CDALIT	CDCDC			000
0200 120	12C2CON ⁽²⁾	15:0					STRICT			- SMEN		PUIE STREN	ACKDT		BOEN	DEN			100
	0200 1202001 1	15.0	ON		SIDL	JULKEL	STRICT	ATUN	DISSLW	SIVIEIN	GCEN	STREN	ACKDT	ACKEN	RGEN	FEIN	ROEN	SEN	100
0210	12C2STAT(2)	15.0		TRSTAT				BCI	GOSTAT				 D/A	P		 R/W	RBE	TRF	000
	(1)	31.16	_			_					-	-		- ·	_				000
0220	12C2ADD(2)	15.0	_	_	_	_	_	_					Address	Register					000
	(0)	31:16	_	_	_	_	_	_		_			_		_	_		_	000
0230	12C2MSK(2)	15:0	_	_	_	_	_	_					Address Ma	ask Registe	r				000
		31:16	_	_	_	_	_	_	_	_			_	_	_		_	_	000
0240	I2C2BRG(2)	15:0							Bau	d Rate Ger	erator Reg	ister							000
0050		31:16	-	—	_	—	—	—	—	—	—	—	—	_	_	_	—	—	000
0250	12021 RN-7	15:0	_	_	_	_	_	_	_	_				Transmit	Register				000
0260	12C2BCV(2)	31:16		_	—	_	_		_		_	_	—	_	—	_	_	_	000
0200	IZCZRCV /	15:0		_	_	-	_	I	_					Receive	Register				000
0.400	1202000	31:16	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	000
0400	120300N	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	100
0410	12C2STAT	31:16		—	—	—	—		—		_	—	—	—	—	—	_	—	000
0410	120331AI	15:0	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	000
0420		31:16	_	—	-	—	_	_	-	_	_	-	-	-	-	-	—	_	000
0420	0420 12C3ADD	15:0	—	_	—	—	—	-					Address	Register					000

PIC32MZ

Embedded

Connectivity

EC) Family

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table except I2CxRCV have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and Note 1: INV Registers" for more information.

2: This register is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0
31.24	—	—	—	—	ABAT	F	REQOP<2:0>	>
22.46	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0
23:16	OPMOD<2:0>			CANCAP	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDLE	—	CANBUSY	—	—	—
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		_	_			DNCNT<4:0>		

REGISTER 29-1: CiCON: CAN MODULE CONTROL REGISTER

Legend:	HC = Hardware Clear	S = Settable bit	
R = Readable bit	W = Writable bit	P = Programmable bit	r = Reserved bit
U = Unimplemented bi	t -n = Bit Value at POR: ('	0'. '1'. x = Unknown)	

bit 31-28 Unimplemented: Read as '0'

bit 27 **ABAT:** Abort All Pending Transmissions bit

- 1 = Signal all transmit buffers to abort transmission
- 0 = Module will clear this bit when all transmissions aborted

bit 26-24 REQOP<2:0>: Request Operation Mode bits

- 111 = Set Listen All Messages mode
- 110 = Reserved Do not use
- 101 = Reserved Do not use
- 100 = Set Configuration mode
- 011 = Set Listen Only mode
- 010 = Set Loopback mode
- 001 = Set Disable mode
- 000 = Set Normal Operation mode

bit 23-21 OPMOD<2:0>: Operation Mode Status bits

- 111 = Module is in Listen All Messages mode
- 110 = Reserved
- 101 = Reserved
- 100 = Module is in Configuration mode
- 011 = Module is in Listen Only mode
- 010 = Module is in Loopback mode
- 001 = Module is in Disable mode
- 000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

- 1 = CANTMR value is stored on valid message reception and is stored with the message
- 0 = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
- bit 19-16 Unimplemented: Read as '0'
- bit 15 **ON:** CAN On bit⁽¹⁾
 - 1 = CAN module is enabled
 - 0 = CAN module is disabled
- bit 14 Unimplemented: Read as '0'
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN27	MSEL27<1:0>			FSEL27<4:0>			
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN26	MSEL26<1:0>		FSEL26<4:0>				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FLTEN24	MSEL2	24<1:0>			FSEL24<4:0>	•	

REGISTER 29-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	FLTEN27: Filter 27 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL27<1:0>: Filter 27 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL27<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 •
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN26: Filter 26 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 22-21	MSEL26<1:0>: Filter 26 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	<pre>FSEL26<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
••	

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R-x	R-x									
31.24		CiFIFOUAn<31:24>									
22.16	R-x	R-x									
23.10	CiFIFOUAn<23:16>										
15.0	R-x	R-x									
15.0		CiFIFOUAn<15:8>									
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
				CiFIFOL	JAn<7:0>						

REGISTER 29-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

						•		,
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	—	_	—
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—		—
7.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
7.0	_	_	_		C	iFIFOCIn<4:0	>	

REGISTER 29-23: CiFIFOCIn: CAN MODULE MESSAGE INDEX REGISTER (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24		HT<31:24>										
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	HT<23:16>											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.0	HT<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				HT<	7:0>							

REGISTER 30-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 30-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24		HT<63:56>									
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	HT<55:48>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	HT<47:40>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
				HT<3	9:32>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DI50 IIL Input Leakage Current (Note 3)							
		I/O Ports (with the follow- ing three exceptions)	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$
		SOSCI/RPC13/RC13	—	_	<u>+</u> 500	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$
		SOSCO/RPC14/TI1CK/ RC14	—	_	<u>+</u> 500	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$
		RPF3/USBID/RF3	—	_	<u>+</u> 500	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance} \end{array}$
DI51	lı∟	Analog Input Pins	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$
DI55	lı∟	MCLR ⁽²⁾	—		<u>+</u> 1	μA	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$
DI56	lı∟	OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ HS \mbox{ mode} \end{array}$

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 37-46: EBI TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
EB10	TEBICLK	Internal EBI Clock Period (PBCLK8)	10	—	—	ns	
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	20	—	—	ns	—
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	20	—	—	ns	_
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	10	—	—	ns	—
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	10	_	_	ns	—
EB15	Tebiwr	EBI Write Recovery Time (TWR<1:0>)	10	—	—	ns	_
EB16	TEBICO	EBI Output Control Signal Delay	—	—	5	ns	See Note 1
EB17	Tebido	EBI Output Data Signal Delay	_	—	5	ns	See Note 1
EB18	TEBIDS	EBI Input Data Setup	5	_	_	ns	See Note 1
EB19	TEBIDH	EBI Input Data Hold	3	_	_	ns	See Note 1, 2

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

TABLE 37-47: EBI THROUGHPUT REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions
EB20	Asynchronous SRAM Read	_	100	—	Mbps	
EB21	Asynchronous SRAM Write	—	533	—	Mbps	

Note 1: Maximum pin capacitance = 10 pF.

2: Hold time from EBI Address change is 0 ns.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

A.7 Interrupts and Exceptions

TABLE A-8:

The key difference between Interrupt Controllers in PIC32MX5XX/6XX/7XX devices and PIC32MZ devices concerns vector spacing. Previous PIC32MX devices had fixed vector spacing, which is adjustable in set increments, and every interrupt had the same amount of space. PIC32MZ devices replace this with a variable offset spacing, where each interrupt has an offset register to determine where to begin execution.

INTERRUPT DIFFERENCES

In addition, the IFSx, IECx, and IPCx registers for old peripherals have shifted to different registers due to new peripherals. Please refer to **Section 7.0 "CPU Exceptions and Interrupt Controller"** to determine where the interrupts are now located.

Table A-8 lists differences (indicated by **Bold** type) in the registers that will affect software migration.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature				
Vector Spacing					
On PIC32MX devices, the vector spacing was determined by the VS field in the CPU core.	On PIC32MZ devices, the vector spacing is variable and determined by the Interrupt controller. The VOFFx<17:1> bits in the OFFx register are set to the offset from EBASE where the interrupt service routine is located.				
VS<4:0> (IntCtI<9:5>: CP0 Register 12, Select 1) 10000 = 512-byte vector spacing 01000 = 256-byte vector spacing 00100 = 128-byte vector spacing 00010 = 64-byte vector spacing 00001 = 32-byte vector spacing 00000 = 0-byte vector spacing	VOFFx<17:1> (OFFx<17:1>) Interrupt Vector 'x' Address Offset bits				
Shadow Register Sets					
On PIC32MX devices, there was one shadow register set which could be used during interrupt processing. Which interrupt priority could use the shadow register set was determined by the FSRS- SEL field in DEVCFG3 and SS0 on INTCON.	On PIC32MZ devices, there are seven shadow register sets, and each priority level can be assigned a shadow register set to use via the PRIxSS<3:0> bits in the PRISS register. The SS0 bit is also moved to PRISS<0>.				
FSRSSEL<2:0> (DEVCFG3<18:16>) 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set • • • • • • • • • • • • • • • • • • •	PRIxSS<3:0> PRISS <y:z> 1xxxx = Reserved (by default, an interrupt with a priority level of x uses Shadow Set 0) 0111 = Interrupt with a priority level of x uses Shadow Set 7 0110 = Interrupt with a priority level of x uses Shadow Set 6 • • 0001 = Interrupt with a priority level of x uses Shadow Set 1 0000 = Interrupt with a priority level of x uses Shadow Set 0</y:z>				
SS0 (INTCON<16>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set	SS0 (PRISS<0>) 1 = Single vector is presented with a shadow register set 0 = Single vector is not presented with a shadow register set				
Status					
PIC32MX devices, the VEC<5:0> bits show which interrupt is being serviced.	On PIC32MZ devices, the SIRQ<7:0> bits show the IRQ number of the interrupt last serviced.				
VEC<5:0> (INTSTAT<5:0>) 11111-00000 = The interrupt vector that is presented to the CPU	SIRQ<7:0> (INTSTAT<7:0>) 11111111-00000000 = The last interrupt request number serviced by the CPU				