

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ech064-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-21: SYSTEM BUS TARGET 13 REGISTER MAP

ess											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	—		CODE	<3:0>		_	—	-		—		—		0000
B420	SBT13ELOG1	15:0				INI	INITID<7:0>			REGION<3:0>			_	С	MD<2:0>		0000		
B424	SBT13ELOG2	31:16	_	_	—	—	_	_	_	_	—	_	—	_	_	_	_	_	0000
D424	SB113ELUG2	15:0	—	_	_	_	_	_	_	_		_	_	_	_	_	GROU	P<1:0>	0000
B428	3 SBT13ECON	31:16	—	_	_	_	_	_	_	ERRP		_	_	_	_	_	_	_	0000
		15:0		-	_	_	—	_		-	_	_			—	_	—	_	0000
P420	SBT13ECLRS	31:16		-	_	_	—	_		-	_	_			—	_	—	_	0000
D430	SBI ISECLKS	15:0			_	—	—				_	_			_		_	CLEAR	0000
D120	SBT13ECLRM	31:16			_	—	—				_	_			_		_		0000
D430	SBITSECLKI	15:0			_	—	—				_	_			_		_	CLEAR	0000
B440	SBT13REG0	31:16								BA	SE<21:6>								xxxx
D440	SBITSREGU	15:0			BA	ASE<5:0>			PRI				SIZE<4:0:	>			_		xxxx
B450	SBT13RD0	31:16			_	—	_				_	—					_		xxxx
5450	3BT I3RD0	15:0		-	—	—	_				_	_			GROUP3	GROUP2	GROUP1	GROUP0	xxxx
B458	SBT13WR0	31:16		-	—	—	_				_	_			—		_		xxxx
5400	GBTTSWRU	15:0			_	_	—				_	—			GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	—	—	—	—	—	_	—			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16				PWP<2	3:16>						
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				PWP<	15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	PWP<7:0>										

REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31 **PWPULOCK:** Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

7.2 Interrupts

The PIC32MZ EC family uses variable offsets for vector spacing. This allows the interrupt vector spacing to be configured according to application needs. A unique interrupt vector offset can be set for each vector using its associated OFFx register.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION

For details on the Variable Offset feature, refer to **8.5.2 "Variable Offset"** in **Section 8. "Interrupt Controller"** (DS60001108) of the *"PIC32 Family Reference Manual"*.

IC32MZ

Π

mbedded

onnectivity

Π

Family

Table 7-2 provides the Interrupt IRQ, vector and bit location information.

(1)		IRQ			Interru	upt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
	Highest N	latura	Order Priority					
Core Timer Interrupt	_CORE_TIMER_VECTOR	0	OFF000<17:1>	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
Core Software Interrupt 0	_CORE_SOFTWARE_0_VECTOR	1	OFF001<17:1>	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
Core Software Interrupt 1	_CORE_SOFTWARE_1_VECTOR	2	OFF002<17:1>	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
External Interrupt	_EXTERNAL_0_VECTOR	3	OFF003<17:1>	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
Timer1	_TIMER_1_VECTOR	4	OFF004<17:1>	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
Input Capture 1 Error	_INPUT_CAPTURE_1_ERROR_VECTOR	5	OFF005<17:1>	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
Input Capture 1	_INPUT_CAPTURE_1_VECTOR	6	OFF006<17:1>	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>	Yes
Output Compare 1	_OUTPUT_COMPARE_1_VECTOR	7	OFF007<17:1>	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>	No
External Interrupt 1	_EXTERNAL_1_VECTOR	8	OFF008<17:1>	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>	No
Timer2	_TIMER_2_VECTOR	9	OFF009<17:1>	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>	No
Input Capture 2 Error	_INPUT_CAPTURE_2_ERROR_VECTOR	10	OFF010<17:1>	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>	Yes
Input Capture 2	_INPUT_CAPTURE_2_VECTOR	11	OFF011<17:1>	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>	Yes
Output Compare 2	_OUTPUT_COMPARE_2_VECTOR	12	OFF012<17:1>	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>	No
External Interrupt 2	_EXTERNAL_2_VECTOR	13	OFF013<17:1>	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>	No
Timer3	_TIMER_3_VECTOR	14	OFF014<17:1>	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>	No
Input Capture 3 Error	_INPUT_CAPTURE_3_ERROR_VECTOR	15	OFF015<17:1>	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>	Yes
Input Capture 3	_INPUT_CAPTURE_3_VECTOR	16	OFF016<17:1>	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>	Yes
Output Compare 3	_OUTPUT_COMPARE_3_VECTOR	17	OFF017<17:1>	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>	No
External Interrupt 3	_EXTERNAL_3_VECTOR	18	OFF018<17:1>	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>	No
Timer4	_TIMER_4_VECTOR	19	OFF019<17:1>	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>	No
Input Capture 4 Error	_INPUT_CAPTURE_4_ERROR_VECTOR	20	OFF020<17:1>	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

- 1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to `0b11. Both LPMXMT and LPMEN must be set in the same cycle.
- 0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
- 0 = Maintain current state

bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits

This is the endpoint in the token packet of the LPM transaction.

bit 11-9 Unimplemented: Read as '0'

bit 8 **RMTWAK:** Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled

bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT3	INT3R	INT3R<3:0>	0000 = RPD2
T2CK	T2CKR	T2CKR<3:0>	0001 = RPG8
T6CK	T6CKR	T6CKR<3:0>	0010 = RPF4
IC3	IC3R	IC3R<3:0>	0011 = RPD10
IC7	IC7R	IC7R<3:0>	
U1RX	U1RXR	U1RXR<3:0>	0101 = RPB9 0110 = RPB10
U2CTS	U2CTSR	U2CTSR<3:0>	0111 = RPC14
U5RX	U5RXR	U5RXR<3:0>	1000 = RPB5
U6CTS	U6CTSR	U6CTSR<3:0>	1001 = Reserved
SDI1	SDI1R	SDI1R<3:0>	$1010 = \text{RPC1}^{(1)}$
SDI3	SDI3R	SDI3R<3:0>	$-1011 = \text{RPD14}^{(1)}$
SDI5 ⁽¹⁾	SDI5R ⁽¹⁾	SDI5R<3:0> ⁽¹⁾	1100 = RPG1 ⁽¹⁾ 1101 = RPA14 ⁽¹⁾
<u>SS6</u> (1)	SS6R ⁽¹⁾	SS6R<3:0> ⁽¹⁾	$11101 = RPD6^{(2)}$
REFCLKI1	REFCLKI1R	REFCLKI1R<3:0>	1111 = Reserved
INT4	INT4R	INT4R<3:0>	0000 = RPD3
T5CK	T5CKR	T5CKR<3:0>	0001 = RPG7
T7CK	T7CKR	T7CKR<3:0>	0010 = RPF5 0011 = RPD11
IC4	IC4R	IC4R<3:0>	0100 = RPF0
IC8	IC8R	IC8R<3:0>	
U3RX	U3RXR	U3RXR<3:0>	0111 = RPC13
	U4CTSR	U4CTSR<3:0>	1000 = RPB3 1001 = Reserved
SDI2	SDI2R	SDI2R<3:0>	1010 = RPC4 ⁽¹⁾
SDI4	SDI4R	SDI4R<3:0>	$- 1011 = \text{RPD15}^{(1)}$ 1100 = RPG0 ⁽¹⁾
C1RX ⁽³⁾	C1RXR ⁽³⁾	C1RXR<3:0> ⁽³⁾	1101 = RPA15 ⁽¹⁾
REFCLKI4	REFCLKI4R	REFCLKI4R<3:0>	
INT2	INT2R	INT2R<3:0>	0000 = RPD9
T3CK	T3CKR	T3CKR<3:0>	0001 = RPG6
T8CK	TBCKR	T8CKR<3:0>	0010 = RPB8
IC2	IC2R	IC2R<3:0>	0011 = RPB15
IC5	IC5R	IC5R<3:0>	
IC9	IC9R	IC9R<3:0>	0101 = RPB0
UICTS	U1CTSR	U1CTSR<3:0>	0110 = RPE3 0111 = RPB7
U2RX	U2RXR	U2RXR<3:0>	1000 = Reserved
USCTS	USCTSR		1001 = RPF12 ⁽¹⁾
<u>SS1</u>		U5CTSR<3:0>	1010 = RPD12 ⁽¹⁾
<u> </u>	SS1R	SS1R<3:0>	
	SS3R	SS3R<3:0>	1100 = RPC3 ⁽¹⁾
<u>SS4</u> <u>SS5</u> (1)	SS4R	SS4R<3:0>	1101 = RPE9 ⁽¹⁾
222.1	SS5R ⁽¹⁾	SS5R<3:0> ⁽¹⁾	1110 = Reserved

TABLE 12-1: INPUT PIN SELECTION

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

TABLE 12-6: PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bits									
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0210	TRISC	31:16			_	—	_	_		-	—		-	-	—	—	—	—	0000
0210	INIOC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	_	—	_		—	_	_	—	—		—	F000
0220	PORTC	31:16	—	—	—	—		—	_	_		—	_		—	—		—	0000
0220		15:0	RC15	RC14	RC13	RC12	_	_	_	_	_	—	_	_	—	—	—	—	xxxx
0230	LATC	31:16		—	—	—	—	—	—	_	—	—	-	—	—	—	—	—	0000
0200	LATO	15:0	LATC15	LATC14	LATC13	LATC12	—	_	_	—	—	—	—	_	—	—	—	—	xxxx
0240	ODCC	31:16		—	_	—	—	_	_	-	—	—	-	—	—	—	—	—	0000
0210	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12	—	_	_	—	—	—	—	_	—	—	—	—	xxxx
0250	CNPUC	31:16	—	—	—	—	—	_	_	—	—	—	—	_	—	—	—	—	0000
0200	011 00	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	_	_	—	—	—	—	_	—	—	—	—	0000
0260	CNPDC	31:16	—	—	—	—	—	_	_	—	—	—	—	_	—	—	—	—	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	_		—	—			—	—	—	—	0000
0270	CNCONC	31:16		—	_	—	_	_	_		—	—			—	—	—	—	0000
0210	onconc	15:0	ON	—	SIDL	—	—	_	—	_	—	—	_	_	—	—	—	—	0000
0280	CNENC	31:16		_		_	_	_	_	_	—	—	_		—	—	—	—	0000
0200	ONENO	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	—	-	—	—	-	_	—	—	—	—	0000
0200	CNSTATC	31:16	_	_	_	—	—		—		_	_			—	—	_	_	0000
0290	CHOIRIC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	_	-	_	_	_	_	_	_		0000

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED) Virtual Address (BF84_#) Bits Bit Range Register Name⁽¹⁾ 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 31:16 _ — _ — _ — — _ — — _ _ _ 4A00 OC6CON 15:0 ON _ SIDL _ _ _ _ _ _ _ OC32 OCFLT OCTSEL OCM<2:0> 31:16 OC6R OC6R<31:0> 4A10 15:0 31:16 4A20 OC6RS OC6RS<31:0> 15:0

4000	OC7CON	31:16	_	—	—	—	—	-	_	_	—	_	—	—	—		—	_	0000
4000		15:0	ON	—	SIDL	—	—	-	_	_	—	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4C10	OC7R	31:16								OC7R-	~21.0>								xxxx
4010	0078	15:0								00714	<31.0>								xxxx
4020	OC7RS	31:16								OC7RS	-21.0								xxxx
4020	00783	15:0													xxxx				
4500	OC8CON	31:16	_	_	—	_	_	-	—	—	_	_	—	_	_	-	—	_	0000
4E00		15:0	ON	—	SIDL	_	_		_	—	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
4E10	OC8R	31:16	16OC8R<31:0>														xxxx		
4110	OCOR	15:0	000R<31.0>													xxxx			
4520	OC8RS	31:16								OC8RS	-31.0~								xxxx
4620	000100	15:0								OCONC	0<01.02								xxxx
5000	OC9CON	31:16	_	_	_	_	—	-	—	—	_	_	—	_	_	-	—	-	0000
3000	OCSCON	15:0	ON	_	SIDL		_		_	_		-	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
5010	OC9R	31:16 OC9R<31:0>											xxxx						
3010	OCar											xxxx							
5020	OC9RS	31:16								OC9RS	S<31:0>								xxxx
		15:0																	

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

All Resets

0000

0000

xxxx

xxxx

xxxx

xxxx

16/0

_

REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)

bit 5-4 TYPEMODE<1:0>: SQI Type Mode Enable bits

- The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.
 - 11 = Reserved
 - 10 = Quad Lane mode is enabled
 - 01 = Dual Lane mode is enabled
 - 00 = Single Lane mode is enabled
- bit 3-2 **TYPEADDR<1:0>:** SQI Type Address Enable bits

The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode address is enabled
- 01 = Dual Lane mode address is enabled
- 00 = Single Lane mode address is enabled

bit 1-0 TYPECMD<1:0>: SQI Type Command Enable bits

The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 =Quad Lane mode command is enabled
- 01 = Dual Lane mode command is enabled
- 00 = Single Lane mode command is enabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	—	_	—	—
45-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<	:15:14>			PTEN-	<13:8>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				PTEN	<7:0>			

REGISTER 23-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 PTEN<15:14>: PMCS1 Strobe Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS1 and PMCS2⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits
 - 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- **Note 1:** The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_	-	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—			-			—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—	_	_	_	_	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0		—		_	AREIF	PKTIF	CBDIF	PENDIF

REGISTER 26-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

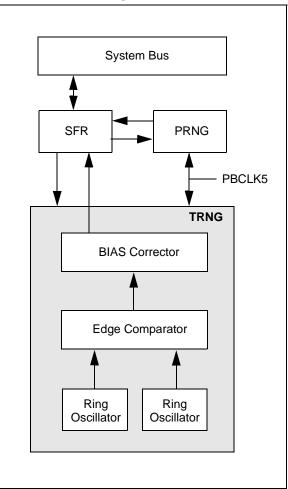
bit 31-4 Unimplemented: Read as '0'

- bit 3 AREIF: Access Response Error Interrupt bit
 - 1 = Error occurred trying to access memory outside the Crypto Engine
 - 0 = No error has occurred
- bit 2 **PKTIF:** DMA Packet Completion Interrupt Status bit
 - 1 = DMA packet was completed
 - 0 = DMA packet was not completed
- bit 1 CBDIF: BD Transmit Status bit
 - 1 = Last BD transmit was processed
 - 0 = Last BD transmit has not been processed
- bit 0 **PENDIF:** Crypto Engine Interrupt Pending Status bit
 - 1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)
 - 0 = Crypto Engine interrupt is not pending

27.0 RANDOM NUMBER GENERATOR (RNG)

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246), which is available from the Documentation > Reference Manual section of the PIC32 Microchip web site (www.microchip.com/pic32).

The Random Number Generator (RNG) core implements a thermal noise-based, True Random Number Generator (TRNG) and a cryptographically secure Pseudo-Random Number Generator (PRNG).


The TRNG uses multiple ring oscillators and the inherent thermal noise of integrated circuits to generate true random numbers that can initialize the PRNG.

The PRNG is a flexible LSFR, which is capable of manifesting a maximal length LFSR of up to 64-bits.

The following are some of the key features of the Random Number Generator:

- TRNG:
 - Up to 25 Mbps of random bits
 - Multi-Ring Oscillator based design
 - Built-in Bias Corrector
- PRNG:
 - LSFR-based
 - Up to 64-bit polynomial length
 - Programmable polynomial
 - TRNG can be seed value

TABLE 27-1: RANDOM NUMBER GENERATOR BLOCK DIAGRAM

	(')	k' = 1 OR 2)									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
31:24	POLY<31:24>										
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23:16	POLY<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	POLY<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				POLY<	:7:0>						

REGISTER 27-3: RNGPOLYx: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 POLY<31:0>: PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
31:24	RNG<31:24>											
22.46	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16	RNG<23:16>											
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
15:8	RNG<15:8>											
7.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
7:0		RNG<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

Bit Range	Bit Bit Bit 31/23/15/7 30/22/14/		Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	_	-	_			_		_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	_	-	_			_		_	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
10.0	_	-	_	AGIEN44	AGIEN43	AGIEN42	AGIEN41	AGIEN40	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	AGIEN39	AGIEN38	AGIEN37	AGIEN36	AGIEN35	AGIEN34	AGIEN33	AGIEN32	

REGISTER 28-6: AD1GIRQEN2: ADC1 GLOBAL INTERRUPT ENABLE REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 **AGIENx:** Global ADC Interrupt Enable bits ('x' = 32-44)

1 = A data ready event (transition from 0 to 1 of the ARDYx bit) will generate a Global ADC interrupt

0 = No global interrupt is generated on a data ready event

Note 1: The enable bits do not affect assertion of the individual interrupt output. Interrupts generated for individual ARDYx events are enabled in the IECx register.

2: AGIENx = ANx, where 'x' = 32-42, AGIEN43 = IVREF, and AGIEN44 = IVTEMP.

Bit Range	Bit Bit 31/23/15/7 30/22/14		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	FLTEN15	MSEL1	5<1:0>		F	SEL15<4:0>	EL15<4:0>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	FLTEN14	MSEL1	4<1:0>	FSEL14<4:0>						
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	FLTEN13	MSEL1	3<1:0>	FSEL13<4:0>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	FLTEN12 MSEL12<1:0>			FSEL12<4:0>						

REGISTER 29-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN15: Filter 15 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL15<1:0>: Filter 15 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL15<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN14: Filter 14 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL14<1:0>: Filter 14 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL14<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

34.2 Registers

TABLE 34-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess)		c)								Bit	S								s
Virtual Address (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FFC0	DEVCFG3	31:16		FUSBIDIO	IOL1WAY	PMDL1WAY	PGL1WAY	_	FETHIO	FMIIEN	_	_	_		_	—		_	xxxx
1100	DE VOI 00	15:0								USERID	<15:0>								xxxx
FFC4	DEVCFG2	31:16	—	UPLLFSEL	—	—	—	—	—	—	—	—	—	—	—		PLLODIV<2:	-	xxxx
1104	DE VOI 02	15:0	—				LMULT<6:0	>			FPLLICLK		PLLRNG<2:0	>	—		PLLIDIV<2:)>	xxxx
FFC8	DEVCFG1		FDMTEN			DMTCNT<4:0:			FWDTWI		FWDTEN	WINDIS	WDTSPGM			WDTPS<4:0			xxxx
11 00	DEVOIOT	15:0	FCKS	SM<1:0>	—	—	_	OSCIOFNC	POSCM	OD<1:0>	IESO	FSOSCEN	DM	TINTV<2:0	>	F	NOSC<2:0	>	xxxx
FFCC	DEVCFG0	31:16	_	EJTAGBEN	_	—	_		_	—	—	_	_	_	—	—	_	—	xxxx
	5210.00	15:0	_	C	BGPER<2:)>	_	FSLEEP	FECCCO	ON<1:0>	-	BOOTISA	TRCEN	ICESE	L<1:0>	JTAGEN DEBUG<1:0>		xxxx	
FFD0	DEVCP3	31:16	—	_	—	—	_	—	—			_	—	_	_	—	_	—	xxxx
		15:0	—	_	—	—	_	—	—			_	—	_	_	—	_	—	xxxx
FFD4	DEVCP2	31:16	—	_	—	—	_	—	—			_	—	_	_	—	_	—	xxxx
		15:0	_	_	_	-	_	-	_	_		_	_	_	—	-	_	_	xxxx
FFD8	DEVCP1	31:16	_	_	_	-	_	-	_	_		_	_	_	—	-	_	_	xxxx
		15:0	_	_	_	-	_	-	_	_		_	_	_	—	-	_	_	xxxx
FFDC	DEVCP0	31:16	_	_	_	CP		_	_				_	_		_			XXXX
		15:0				_			_				_		_	_			xxxx
FFE0	DEVSIGN3	31:16	_	_		_		_	_				_	_	_	_			xxxx
		15:0	—	_	_	_	_	_	_	_	_		_	_	_	_	_	—	XXXX
FFE4	DEVSIGN2	31:16	_	—	_	_	_	_	—	_			_	_	_	_			XXXX
\vdash		15:0 31:16			—	_	_			—			_		—			_	XXXX
FFE8	DEVSIGN1	31:16 15:0			—	_				—									XXXX
			0		_	_				_					_	-		_	XXXX
FFEC	DEVSIGN0	31:16 15:0	-		_	_				_						-		_	xxxx
Legen		1				las '1' Reset	. —	—		—	—	_		_	_	—	—	_	XXXX

Legend: x = unknown value on Reset; - = Reserved, read as '1'. Reset values are shown in hexadecimal

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
31:24	—	_	—	—	_	—	DMAPRI ⁽¹⁾	CPUPRI ⁽¹⁾	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
23:16	—	_					ICACLK ⁽¹⁾	OCACLK ⁽¹⁾	
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
15:8	—	_	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	PGLOCK ⁽¹⁾	—	_	USBSSEN ⁽¹⁾	
7.0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0	R/W-1	
7:0			ECCC	ON<1:0>	JTAGEN	TROEN	_	TDOEN	

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 31-26	Unimplemented: Read as '0'
bit 25	DMAPRI: DMA Read and DMA Write Arbitration Priority to SRAM bit ⁽¹⁾
	1 = DMA gets High Priority access to SRAM
	0 = DMA uses Least Recently Serviced Arbitration (same as other initiators)
bit 24	CPUPRI: CPU Arbitration Priority to SRAM When Servicing an Interrupt bit ⁽¹⁾
	1 = CPU gets High Priority access to SRAM
1 1 00 40	0 = CPU uses Least Recently Serviced Arbitration (same as other initiators)
	Unimplemented: Read as '0'
bit 17	ICACLK: Input Capture Alternate Clock Selection bit ⁽¹⁾
	 1 = Input Capture modules use an alternative Timer pair as their timebase clock 0 = All Input Capture modules use Timer2/3 as their timebase clock
bit 16	OCACLK: Output Compare Alternate Clock Selection bit ⁽¹⁾
	 1 = Output Compare modules use an alternative Timer pair as their timebase clock 0 = All Output Compare modules use Timer2/3 as their timebase clock
bit 15-14	Unimplemented: Read as '0'
bit 13	IOLOCK: Peripheral Pin Select Lock bit ⁽¹⁾
	 1 = Peripheral Pin Select is locked. Writes to PPS registers are not allowed 0 = Peripheral Pin Select is not locked. Writes to PPS registers are allowed
bit 12	PMDLOCK: Peripheral Module Disable bit ⁽¹⁾
	 1 = Peripheral module is locked. Writes to PMD registers are not allowed 0 = Peripheral module is not locked. Writes to PMD registers are allowed
bit 11	PGLOCK: Permission Group Lock bit ⁽¹⁾
	 1 = Permission Group registers are locked. Writes to PG registers are not allowed 0 = Permission Group registers are not locked. Writes to PG registers are allowed
bit 10-9	Unimplemented: Read as '0'
bit 8	USBSSEN: USB Suspend Sleep Enable bit ⁽¹⁾
	Enables features for USB PHY clock shutdown in Sleep mode.
	1 = USB PHY clock is shut down when Sleep mode is active
1 1 7 0	0 = USB PHY clock continues to run when Sleep is active
bit 7-6	Unimplemented: Read as '0'
Note 1:	To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the <i>"PIC32 Family Reference Manual"</i> for details.

REGISTER 34-8: CFGEBIA: EXTERNAL BUS INTERFACE ADDRESS PIN CONFIGURATION REGISTER

	=							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	EBIPINEN	_	_	_	—	—	-	_
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EBIA23EN	EBIA22EN	EBIA21EN	EBIA20EN	EBIA19EN	EBIA18EN	EBIA17EN	EBIA16EN
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	EBIA15EN	EBIA14EN	EBIA13EN	EBIA12EN	EBIA11EN	EBIA10EN	EBIA9EN	EBIA8EN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	EBIA7EN	EBIA6EN	EBIA5EN	EBIA4EN	EBIA3EN	EBIA2EN	EBIA1EN	EBIA0EN

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 EBIPINEN: EBI Pin Enable bit

1 = EBI controls access of pins shared with PMP

0 = Pins shared with EBI are available for general use

- bit 30-24 Unimplemented: Read as '0'
- bit 23-0 EBIA23EN:EBIA0EN: EBI Address Pin Enable bits
 - 1 = EBIAx pin is enabled for use by EBI
 - 0 = EBIAx pin has is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

36.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V

TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

-20⁽⁶⁾

2: VIL source < (VSS - 0.3). Characterized but not tested.

Total Input Injection

and control pins)

Current (sum of all I/O

DI60c

ΣIICT

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

+20(6)

mΑ

all I/O pins

- 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss 0.3) VIL source) / Rs). If Note 3, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

tolerant pins, OSC1, OSC2, SOSCI, SOSCO, D+, D-, and RB10. Maximum IICH current for these exceptions is 0 mA.

Absolute instantaneous sum of

all ± input injection currents from

 $(| \text{IICL} + | \text{IICH} |) \leq \sum \text{IICT}$