

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® microAptiv™                                                               |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 200MHz                                                                            |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, SPI, SQI, UART/USART, USB OTG                 |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                      |
| Number of I/O              | 53                                                                                |
| Program Memory Size        | 2MB (2M x 8)                                                                      |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 512K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                       |
| Data Converters            | A/D 24x10b                                                                        |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 64-VFQFN Exposed Pad                                                              |
| Supplier Device Package    | 64-QFN (9x9)                                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ech064t-i-mr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

| s                          |                  | Bits      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      |            |
|----------------------------|------------------|-----------|-----------------|------------------------------------------------|-------|-------|-------|-------|----------|------------------|--------------|----------------|------|------|------|------|------|------|------------|
| Virtual Addres<br>(BFC6_#) | Register<br>Name | Bit Range | 31/15           | 30/14                                          | 29/13 | 28/12 | 27/11 | 26/10 | 25/9     | 24/8             | 23/7         | 22/6           | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets |
| <b>FF40</b>                | ABE2DEVCEG3      | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | XXXX       |
| FF44                       | ABF2DEVCEG2      | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | VVVV       |
| FF48                       | ABE2DEVCEG1      | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | VVVV       |
| FF4C                       | ABE2DEVCEG0      | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | VVVV       |
| FF50                       | ABE2DEVCP3       | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | VVVV       |
| FF54                       |                  | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | ~~~~       |
| FE58                       |                  | 31.0      |                 | Note: See Table 34-2 for the bit descriptions. |       |       |       |       |          |                  |              |                |      |      |      |      |      |      |            |
| EE6C                       |                  | 31.0      |                 | XXXX                                           |       |       |       |       |          |                  |              |                |      |      |      |      |      |      |            |
| FE60                       |                  | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | ****       |
| FF60                       | ABF2DEVSIGNS     | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | XXXX       |
| FE69                       | ABE2DEVSIGN2     | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | ****       |
| FE6C                       | ABI 2DE VSIGINI  | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | ****       |
| FFOC                       | ADF2DEV3IGINU    | 31.0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | XXXX       |
| FF70                       | ABF2SEQ3         | 31:16     |                 |                                                |       |       |       | _     |          |                  |              |                | _    |      | _    | _    | _    | _    | XXXX       |
|                            | -                | 15:0      |                 |                                                |       |       |       | _     |          |                  |              |                |      |      | _    | _    | _    | _    | XXXX       |
| FF74                       | ABF2SEQ2         | 31:16     |                 |                                                |       |       |       | —     |          | _                | _            |                | _    |      | —    | —    | —    |      | XXXX       |
|                            |                  | 15:0      | —               | —                                              | —     |       |       | —     |          | —                | —            | _              | —    | _    | —    | —    | —    | —    | XXXX       |
| FF78                       | ABE2SEO1         | 31:16     | _               | —                                              | —     | _     | _     | —     | _        | _                | _            | _              | _    | _    | —    | —    | —    | _    | XXXX       |
| 1170                       |                  | 15:0      |                 | —                                              | —     | _     | _     | —     | _        |                  |              |                | -    |      | —    | —    | —    | —    | xxxx       |
| EE7C                       |                  | 31:16     |                 |                                                |       |       |       |       |          | CSEQ             | <15:0>       |                |      |      |      |      |      |      | xxxx       |
| FFIC                       | ADF23EQU         | 15:0      |                 |                                                |       |       |       |       |          | TSEQ             | <15:0>       |                |      |      |      |      |      |      | xxxx       |
| FFC0                       | BF2DEVCFG3       | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFC4                       | BF2DEVCFG2       | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFC8                       | BF2DEVCFG1       | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFCC                       | BF2DEVCFG0       | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFD0                       | BF2DEVCP3        | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFD4                       | BF2DEVCP2        | 31:0      |                 |                                                |       |       |       |       | N        | <b>T</b> 1 1 0 4 |              |                |      |      |      |      |      |      | xxxx       |
| FFD8                       | BF2DEVCP1        | 31:0      |                 |                                                |       |       |       |       | Note: Se | e Table 34       | -1 for the b | it description | ons. |      |      |      |      |      | xxxx       |
| FFDC                       | BF2DEVCP0        | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFE0                       | BF2DEVSIGN3      | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFE4                       | BF2DEVSIGN2      | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFE8                       | BF2DEVSIGN1      | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | xxxx       |
| FFEC                       | BF2DEVSIGN0      | 31:0      |                 |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      | XXXX       |
|                            |                  | 31.16     |                 | _                                              | _     |       |       | _     |          |                  | _            |                |      |      | _    | _    | _    |      | vvvv       |
| FFF0                       | BF2SEQ3          | 15.0      | _               | _                                              | _     | _     | _     | _     | _        | _                | _            | _              | _    | _    |      |      |      |      | VVVV       |
|                            |                  | 21.16     | _               |                                                |       | _     | _     |       | _        | _                | _            | _              | _    | _    |      |      |      |      | *****      |
| FFF4                       | BF2SEQ2          | 15:0      | _               |                                                |       |       |       |       |          | _                | _            |                | _    |      |      |      |      |      | XXXX       |
|                            |                  | 01.10     | _               | _                                              | _     | _     | _     | _     | _        | _                | _            | _              | _    | _    | _    | _    | _    |      | XXXX       |
| FFF8                       | BF2SEQ1          | 31:16     | _               | _                                              | _     | —     | —     | _     | —        | _                | _            | _              | _    | _    | _    | _    | _    | _    | XXXX       |
|                            |                  | 15:0      | —               | —                                              | —     | —     | —     | —     | —        | —                | —            | —              | —    | —    | —    | —    | —    | _    | XXXX       |
| FFFC                       | BF2SEQ0          | 31:16     | CSEQ<15:0> xxxx |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      |            |
| 1                          |                  | 15:0      | TSEQ<15:0>      |                                                |       |       |       |       |          |                  |              |                |      |      |      |      |      |      |            |

#### TABLE 1-3. BOOT ELASH 2 SEQUENCE AND CONEICUEATION WORDS SUMMARY

x = unknown value on Reset; — = Reserved, read as '1'. Reset values are shown in hexadecimal. Legend:

PIC32MZ Embedded Connectivity (EC) Family

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 7.0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | R-0              | R-0              |
| 7:0          |                   | _                 | —                 | _                 | _                 | —                 | GROU             | P<1:0>           |

### **REGISTER 4-4:** SBTxELOG2: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 2 ('x' = 0-13)

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |
|-------------------|------------------|------------------------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               |

#### bit 31-3 Unimplemented: Read as '0'

- bit 1-0 GROUP<1:0>: Requested Permissions Group bits
  - 11 = Group 3
  - 10 = Group 2
  - 01 = Group 1
  - 00 = Group 0

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

#### REGISTER 4-5: SBTxECON: SYSTEM BUS TARGET 'x' ERROR CONTROL REGISTER ('x' = 0-13)

|              |                   | (*****)           |                   |                   |                   |                   |                  |                  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | R/W-0            |
| 31:24        | —                 | —                 | —                 | _                 | —                 | —                 | —                | ERRP             |
| 23:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
|              | —                 | —                 | —                 | _                 | —                 | —                 |                  | —                |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | —                 | —                 | —                 | -                 | —                 | -                | —                |
| 7.0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 7:0          | _                 | _                 | _                 | _                 | —                 | _                 |                  | _                |

| Legend:           |                  |                                    |
|-------------------|------------------|------------------------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               |

bit 31-25 Unimplemented: Read as '0'

bit 24 ERRP: Error Control bit

1 = Report protection group violation errors

0 = Do not report protection group violation errors

bit 23-0 Unimplemented: Read as '0'

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

| IAL                      | LL I - J.                       |              |       |       |       |       |       |       |      |           |      |      |      |      |      |      |        |       |           |
|--------------------------|---------------------------------|--------------|-------|-------|-------|-------|-------|-------|------|-----------|------|------|------|------|------|------|--------|-------|-----------|
| ess                      |                                 | <sup>c</sup> |       |       |       |       |       |       |      | B         | lits |      |      |      |      |      |        |       | s         |
| Virtual Addr<br>(BF81_#) | Register<br>Name <sup>(1)</sup> | Bit Range    | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8      | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1   | 16/0  | All Reset |
| 0569                     |                                 | 31:16        | —     | —     | —     | —     | —     | —     | —    | —         | —    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0508                     | OFFUIU                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0560                     | 055011                          | 31:16        | —     | —     | —     | —     | -     | —     | —    | —         |      | -    | _    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0500                     | OFFUII                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0570                     | OFE012                          | 31:16        | —     | —     | —     | —     | —     | _     | —    | —         | —    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0370                     | 011012                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0574                     | OFF013                          | 31:16        | —     | —     | -     | -     | -     | _     | —    | -         | —    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0374                     | 011013                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0578                     | OEE014                          | 31:16        | —     | —     | —     | —     | —     | _     | —    | —         | -    | —    | _    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0370                     | 011014                          | 15:0         |       | -     |       |       |       |       |      | VOFF<15:1 | >    | -    |      | -    |      |      |        | _     | 0000      |
| 057C                     | OFF015                          | 31:16        | —     | —     | -     | -     | -     | _     | —    | -         | —    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0370                     | 011013                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0580                     | OFE016                          | 31:16        | —     | —     | -     | -     | -     | _     | —    | -         | —    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0300                     | 011010                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    | -    |      | -    |      |      |        | _     | 0000      |
| 0584                     | OFF017                          | 31:16        | —     | —     | -     | -     | -     | _     | —    | -         | —    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0004                     | 011017                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0588                     | OFF018                          | 31:16        | —     | —     | —     | —     | —     | —     | —    | —         | _    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0000                     | 011010                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0580                     | OFE019                          | 31:16        | —     | —     | —     | —     |       | —     | —    | —         | —    | —    |      | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0000                     | 011013                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0590                     | OFF020                          | 31:16        | —     | —     | —     | _     | _     | —     |      | —         | _    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0000                     | 011020                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0594                     | OFF021                          | 31:16        | —     | —     | —     | —     | —     | —     | —    | —         | _    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0004                     | 011021                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0598                     | OFF022                          | 31:16        | —     | —     | —     | —     | —     | —     | —    | —         | —    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0000                     | 011022                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0590                     | OFF023                          | 31:16        | —     | —     | —     | —     | —     | —     | —    | —         | _    | -    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 3000                     | 511 020                         | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0540                     | OFF024                          | 31:16        | —     | —     | —     | —     | -     | —     | —    | -         | _    | -    | -    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 50/10                    | 511024                          | 15:0         |       |       |       |       |       |       |      | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |

#### TARIE 7-3. INTEDDUDT DECISTED MAD (CONTINUED)

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Note 1: **Registers**" for more information.

2:

This bit or register is not available on 64-pin devices. This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

This bit or register is not available on devices without a Crypto module. 7:

8: This bit or register is not available on 124-pin devices.

#### **TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)**

| ess                      |                                 | 6         |              | Bits         |            |              |                 |               |                |           |      |      |      |      |      |      |        |       |           |
|--------------------------|---------------------------------|-----------|--------------|--------------|------------|--------------|-----------------|---------------|----------------|-----------|------|------|------|------|------|------|--------|-------|-----------|
| Virtual Addr<br>(BF81_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15        | 30/14        | 29/13      | 28/12        | 27/11           | 26/10         | 25/9           | 24/8      | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1   | 16/0  | All Reset |
| 0710                     | 0000(2)                         | 31:16     | _            | -            | —          | —            | —               | -             | _              | —         | —    |      | _    | —    | —    | -    | VOFF<1 | 7:16> | 0000      |
| 0/18                     | OFF II 6                        | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0710                     | 055110                          | 31:16     | _            | _            | —          | —            | —               | —             | —              | —         | —    | _    | —    | —    | —    | -    | VOFF<1 | 7:16> | 0000      |
| 0/10                     | OFFII9                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0720                     | OFE120                          | 31:16     | _            |              | —          | —            | _               | —             | —              | —         | —    | _    | —    | _    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0720                     | UFF120                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0724                     | OFF121                          | 31:16     | _            | _            | —          | —            | —               | —             | —              | —         | —    | —    | —    | —    | —    | -    | VOFF<1 | 7:16> | 0000      |
| 0724                     | 011121                          | 15:0      |              |              |            |              | -               |               |                | VOFF<15:1 | >    |      | -    |      |      |      |        | _     | 0000      |
| 0728                     | OFF122                          | 31:16     | —            | —            | —          | —            | —               | —             | —              | —         | —    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0720                     | 011122                          | 15:0      |              |              |            |              | -               |               |                | VOFF<15:1 | >    |      | -    |      |      |      |        | _     | 0000      |
| 0720                     | OFE123                          | 31:16     | _            | -            | —          | —            | _               | —             | _              | —         | _    | —    | —    | _    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0720                     | 011123                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0730                     | OFE124                          | 31:16     | _            | -            | —          | —            | _               | —             | _              | —         | _    | —    | —    | _    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0/30                     | 011124                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| 0734                     | OFE125(2,4)                     | 31:16     | —            | _            | —          | —            | _               | —             | —              | _         | _    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0734                     | 011123                          | 15:0      |              |              |            |              | -               |               |                | VOFF<15:1 | >    |      | -    |      |      |      |        | _     | 0000      |
| 0738                     | OFE126(2,4)                     | 31:16     | —            | _            | —          | —            | _               | —             | —              | _         | _    | —    | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0730                     | OFF 120                         | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0720                     | 00002(2.4.8)                    | 31:16     | _            |              | —          | _            | _               | —             | —              | _         | _    | —    | —    | _    | —    | _    | VOFF<1 | 7:16> | 0000      |
| 0730                     | OFF 127,                        | 15:0      |              |              | -          | -            |                 | -             | -              | VOFF<15:1 | >    | -    | -    | -    | -    | -    |        | _     | 0000      |
| 0740                     | 055129                          | 31:16     | _            |              | —          | —            | _               | —             | —              | _         | _    | —    | —    | _    | —    | _    | VOFF<1 | 7:16> | 0000      |
| 0740                     | UFF120                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0744                     | OFE120                          | 31:16     | —            |              | —          | —            | —               | —             | —              | _         | —    | _    | —    | _    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0744                     | UFF129                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0749                     | 055120                          | 31:16     | —            |              | —          | —            | —               | —             | —              | _         | —    | _    | —    | _    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0748                     | OFF130                          | 15:0      |              |              | •          | •            |                 | •             |                | VOFF<15:1 | >    |      | •    |      | •    | •    |        | _     | 0000      |
| 0740                     | 055404                          | 31:16     | -            | _            | —          | -            | _               | —             | _              | _         | _    | _    | _    | _    | —    | -    | VOFF<1 | 7:16> | 0000      |
| 074C                     | UFF131                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | —     | 0000      |
| 0750                     | 055422                          | 31:16     | —            | —            | —          | —            | —               | _             | _              | —         | —    |      | —    | —    | —    | —    | VOFF<1 | 7:16> | 0000      |
| 0750                     | UFF132                          | 15:0      |              |              |            |              |                 |               |                | VOFF<15:1 | >    |      |      |      |      |      |        | _     | 0000      |
| Leger                    | <b>id:</b> x = ι                | unknow    | n value on F | Reset; — = ı | unimplemen | ted, read as | '0'. Reset valu | ues are showr | n in hexadecin | nal.      |      |      |      |      |      |      |        |       |           |

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Note 1: Registers" for more information. 2:

This bit or register is not available on 64-pin devices.

This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices. 5:

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

7: This bit or register is not available on devices without a Crypto module.

8: This bit or register is not available on 124-pin devices.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31.24        | _                 |                   | _                 | _                 | —                 |                   | —                |                  |  |  |  |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | _                |  |  |  |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | R-0               | R-0              | R-0              |  |  |  |
| 15:8         | —                 | —                 | —                 | —                 | —                 |                   | SRIPL<2:0>       |                  |  |  |  |
| 7.0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |  |  |  |
| 7:0          | SIRQ<7:0>         |                   |                   |                   |                   |                   |                  |                  |  |  |  |

## REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

# Legend:

| Legena:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as 'O'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-11 Unimplemented: Read as '0'

bit 10-8 **SRIPL<2:0>:** Requested Priority Level bits for Single Vector Mode bits 111-000 = The priority level of the latest interrupt presented to the CPU

- bit 7-6 Unimplemented: Read as '0'
- bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits 1111111-00000000 = The last interrupt request number serviced by the CPU

| Bit<br>Range | Bit<br>31/23/15/7  | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 04.04        | R/W-0              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 31:24        |                    |                   |                   | IPTMF             | R<31:24>          |                   |                  |                  |  |  |  |
| 22.16        | R/W-0              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 23.10        | IPTMR<23:16>       |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 15.0         | R/W-0              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 15.0         | ):8<br>IPTMR<15:8> |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 7:0          | R/W-0              | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7.0          |                    |                   |                   | IPTM              | R<7:0>            |                   |                  |                  |  |  |  |

#### REGISTER 7-4: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

# TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

| RPn Port Pin         | RPnR SFR              | RPnR bits                  | RPnR Value to Peripheral<br>Selection         |
|----------------------|-----------------------|----------------------------|-----------------------------------------------|
| RPD1                 | RPD1R                 | RPD1R<3:0>                 | 0000 = <u>No Con</u> nect                     |
| RPG9                 | RPG9R                 | RPG9R<3:0>                 | 0001 = U1RTS                                  |
| RPB14                | RPB14R                | RPB14R<3:0>                | 0010 = 021X<br>0011 = 05BTS                   |
| RPD0                 | RPD0R                 | RPD0R<3:0>                 | 0100 = U6TX                                   |
| RPB6                 | RPB6R                 | RPB6R<3:0>                 | 0101 = Reserved                               |
| RPD5                 | RPD5R                 | RPD5R<3:0>                 | 0110 = SS2<br>0111 = Reserved                 |
| RPB2                 | RPB2R                 | RPB2R<3:0>                 | 1000 = SDO4                                   |
| RPF3                 | RPF3R                 | RPF3R<3:0>                 | 1001 = Reserved                               |
| RPF13 <sup>(1)</sup> | RPF13R <sup>(1)</sup> | RPF13R<3:0> <sup>(1)</sup> | 1010 = SDO6''                                 |
| RPC2 <sup>(1)</sup>  | RPC2R <sup>(1)</sup>  | RPC2R<3:0> <sup>(1)</sup>  | 1100 = OC1                                    |
| RPE8 <sup>(1)</sup>  | RPE8R <sup>(1)</sup>  | RPE8R<3:0> <sup>(1)</sup>  | 1101 <b>= OC9</b>                             |
| RPF2 <sup>(1)</sup>  | RPF2R <sup>(1)</sup>  | RPF2R<3:0> <sup>(1)</sup>  | 1110 = Reserved<br>1111 = C2TX <sup>(3)</sup> |

Note 1: This selection is not available on 64-pin devices.

2: This selection is not available on 64-pin or 100-pin devices.

3: This selection is not available on devices without a CAN module.

# PIC32MZ Embedded Connectivity (EC) Family



DS60001191G-page 278

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | _                 |                   |                   |                   | -                 |                   | _                | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | -                 |                   | —                 | —                 | —                 | —                | —                |
| 45.0         | U-0               | U-0               | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 15:8         | —                 | _                 | _                 | —                 |                   | TRPD              | <11:8>           |                  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          |                   |                   |                   | TRPD              | <7:0>             |                   |                  |                  |

# REGISTER 24-4: EBIFTRPD: EXTERNAL BUS INTERFACE FLASH TIMING REGISTER

# Legend:

| Legenu.           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

### bit 31-12 Unimplemented: Read as '0'

## bit 11-0 TRPD<11:0>: Flash Timing bits

These bits define the number of clock cycles to wait after resetting the external Flash memory before any read/write access.

| Bit<br>Range | Bit<br>31/23/15/7               | Bit<br>30/22/14/6           | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3          | Bit<br>26/18/10/2 | Bit<br>25/17/9/1       | Bit<br>24/16/8/0                |
|--------------|---------------------------------|-----------------------------|-------------------|-------------------|----------------------------|-------------------|------------------------|---------------------------------|
| 24.24        | U-0                             | U-0                         | U-0               | U-0               | U-0                        | U-0               | R/W-0                  | R/W-0                           |
| 31:24        | —                               | —                           | —                 | —                 | —                          | —                 | CAI                    | _<9:8>                          |
| 00.40        | R/W-0                           | R/W-0                       | R/W-0             | R/W-0             | R/W-0                      | R/W-0             | R/W-0                  | R/W-0                           |
| 23:16        |                                 |                             |                   | CAL               | <7:0>                      |                   |                        |                                 |
|              | R/W-0                           | U-0                         | R/W-0             | U-0               | U-0                        | R/W-0             | R/W-0                  | R/W-0                           |
| 15:8         | ON <sup>(1)</sup>               | —                           | SIDL              | —                 | —                          | RTCCLK            | (SEL<1:0>              | RTC<br>OUTSEL<1> <sup>(2)</sup> |
|              | R/W-0                           | R-0                         | U-0               | U-0               | R/W-0                      | R-0               | R-0                    | R/W-0                           |
| 7:0          | RTC<br>OUTSEL<0> <sup>(2)</sup> | RTC<br>CLKON <sup>(5)</sup> |                   |                   | RTC<br>WREN <sup>(3)</sup> | RTC<br>SYNC       | HALFSEC <sup>(4)</sup> | RTCOE                           |

# REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

| Legend: |
|---------|
|---------|

| Legena.           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

#### bit 31-26 Unimplemented: Read as '0'

| bit 25-16 | CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value     |
|-----------|---------------------------------------------------------------------------------------------------|
|           | 0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute        |
|           | •                                                                                                 |
|           | •                                                                                                 |
|           | •<br>0000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute      |
|           | 000000000 = No adjustment                                                                         |
|           |                                                                                                   |
|           |                                                                                                   |
|           | •                                                                                                 |
|           | 1000000000 = Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute   |
| bit 15    | ON: RTCC On bit <sup>(1)</sup>                                                                    |
|           | 1 = RTCC module is enabled                                                                        |
|           | 0 = RTCC module is disabled                                                                       |
| bit 14    | Unimplemented: Read as '0'                                                                        |
| bit 13    | SIDL: Stop in Idle Mode bit                                                                       |
|           | 1 = Disables RTCC operation when CPU enters Idle mode                                             |
|           | 0 = Continue normal operation when CPU enters Idle mode                                           |
| bit 12-11 | Unimplemented: Read as '0'                                                                        |
|           |                                                                                                   |
| Note 1:   | The ON bit is only writable when RTCWREN = 1.                                                     |
| 2:        | Requires RTCOE = 1 (RTCCON<0>) for the output to be active.                                       |
| 3:        | The RTCWREN bit can be set only when the write sequence is enabled.                               |
| 4:        | This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). |
| 5:        | This bit is undefined when RTCCI KSEI $<1.0> = 0.0$ (I PRC is the clock source)                   |
| 0.        |                                                                                                   |

#### Note: This register is reset only on a Power-on Reset (POR).

٦

# REGISTER 28-11: AD1CMPCONn: ADC1 DIGITAL COMPARATOR CONTROL REGISTER 'n' ('n' = 1, 2, 3, 4, 5, OR 6)

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6       | Bit<br>29/21/13/5 | Bit<br>28/20/12/4     | Bit<br>27/19/11/3     | Bit<br>26/18/10/2     | Bit<br>25/17/9/1      | Bit<br>24/16/8/0      |
|-----------|-------------------|-------------------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 21.24     | U-0               | U-0                     | U-0               | U-0                   | U-0                   | U-0                   | U-0                   | U-0                   |
| 51.24     | —                 | —                       |                   | _                     | —                     | _                     | _                     |                       |
| 22.16     | U-0               | U-0                     | U-0               | U-0                   | U-0                   | U-0                   | U-0                   | U-0                   |
| 23.10     | _                 | —                       |                   | _                     | _                     | -                     | _                     | _                     |
| 15.9      | U-0               | U-0                     | U-0               | R-0, HS, HC           |
| 15.0      | —                 | —                       |                   |                       |                       | AINID<4:0>            |                       |                       |
| 7:0       | R/W-0             | R/W-0                   | R-0, HS, HC       | R/W-0                 | R/W-0                 | R/W-0                 | R/W-0                 | R/W-0                 |
| 7.0       | ENDCMP            | DCMPGIEN <sup>(1)</sup> | DCMPED            | IEBTWN <sup>(1)</sup> | IEHIHI <sup>(1)</sup> | IEHILO <sup>(1)</sup> | IELOHI <sup>(1)</sup> | IELOLO <sup>(1)</sup> |

| Legend:           | HS = Hardware Set | HC = Hardware Cleared                    |  |  |
|-------------------|-------------------|------------------------------------------|--|--|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit, read as '0'       |  |  |
| -n = Value at POR | '1' = Bit is set  | 0' = Bit is cleared $x = Bit is unknown$ |  |  |

| bit 31-13 | Unimplemented: Read as '( | h |
|-----------|---------------------------|---|
| 011 01-10 | ommplemented. Read as t   | , |

| bit 12-8 | AINID<4:0>: Analog Input Identification (ID) bits                                                                                                                                                                                                   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | When a digital comparator event occurs, these read-only bits contain the analog input identification                                                                                                                                                |
|          | number. AINID = ANx, where 'x' = $0-31$ .                                                                                                                                                                                                           |
| bit 7    | ENDCMP: Digital Comparator Enable bit                                                                                                                                                                                                               |
|          | 1 = Digital Comparator is enabled                                                                                                                                                                                                                   |
|          | 0 = Digital Comparator is not enabled, and the DCMPED status bit is cleared                                                                                                                                                                         |
| bit 6    | <b>DCMPGIEN:</b> Digital Comparator Global ADC Interrupt Enable bit <sup>(1)</sup>                                                                                                                                                                  |
|          | <ul> <li>1 = A Digital Comparator Event (DCMPED transitions from '0' to '1') will generate a Global ADC interrupt.</li> <li>0 = A Digital Comparator Event will not generate a Global ADC interrupt.</li> </ul>                                     |
| bit 5    | DCMPED: Digital Comparator Event Detected Status bit                                                                                                                                                                                                |
|          | 1 = This bit is set by the digital comparator hardware when a comparison event is detected. An interrupt will<br>be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt<br>in the DCMPGIEN bit. |
|          | 0 = This bit is cleared by reading the AINID<4:0> bits or when the ADC module is disabled                                                                                                                                                           |
| bit 4    | IEBTWN: Between Low/High Digital Comparator Event bit <sup>(1)</sup>                                                                                                                                                                                |
|          | 1 = Generate a digital comparator event when ADCMPLO<15:0> $\leq$ DATA<31:0> $<$ ADCMPHI<15:0> 0 = Do not generate a digital comparator event                                                                                                       |
| bit 3    | IEHIHI: High/High Digital Comparator Event bit <sup>(1)</sup>                                                                                                                                                                                       |
|          | 1 = Generate a Digital Comparator Event when ADCMPHI<15:0> $\leq$ DATA<31:0> 0 = Do not generate a digital comparator event when ADCMPHI<15:0> $\leq$ DATA<31:0>                                                                                    |
| bit 2    | IEHILO: High/Low Digital Comparator Event bit <sup>(1)</sup>                                                                                                                                                                                        |
|          | 1 = Generate a Digital Comparator Event when DATA<31:0> < ADCMPHI<15:0><br>0 = Do not generate a digital comparator event when DATA<31:0> < ADCMPHI<15:0>                                                                                           |
| bit 1    | IELOHI: Low/High Digital Comparator Event bit <sup>(1)</sup>                                                                                                                                                                                        |
|          | 1 = Generate a Digital Comparator Event when ADCMPLO<15:0> $\leq$ DATA<31:0><br>0 = Do not generate a digital comparator event when ADCMPLO<15:0> $\leq$ DATA<31:0>                                                                                 |
| bit 0    | IELOLO: Low/Low Digital Comparator Event bit <sup>(1)</sup>                                                                                                                                                                                         |
|          | 1 = Generate a Digital Comparator Event when DATA<31:0> < ADCMPLO<15:0><br>0 = Do not generate a digital comparator event when DATA<31:0> < ADCMPLO<15:0>                                                                                           |
| Note 1:  | Changing these bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.                                                                                                                                      |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2     | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|------------------|------------------|
| 04.04        | r-0               | R/P               | r-1               | r-1               | r-1               | r-1                   | r-1              | r-1              |
| 31:24        | —                 | EJTAGBEN          | —                 | —                 | —                 | —                     | —                | —                |
| 22.16        | r-1               | r-1               | r-1               | r-1               | r-1               | r-1                   | r-1              | r-1              |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                     | —                | —                |
| 45.0         | r-1               | R/P               | R/P               | R/P               | r-1               | R/P                   | R/P              | R/P              |
| 15:8         | —                 | DBGPER<2:0>       |                   |                   | —                 | FSLEEP                | FECCC            | ON<1:0>          |
| 7.0          | r-1               | R/P               | R/P               | R/P               | R/P               | R/P                   | R/P              | R/P              |
| 7:0          |                   | BOOTISA           | TRCEN             | ICESE             | L<1:0>            | JTAGEN <sup>(1)</sup> | DEBU             | G<1:0>           |

## REGISTER 34-3: DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0

| Legend:           | r = Reserved bit | P = Programmable bit     |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31 Reserved: Write as '0'

- bit 30 EJTAGBEN: EJTAG Boot Enable bit
  - 1 = Normal EJTAG functionality
  - 0 = Reduced EJTAG functionality
- bit 29-15 Reserved: Write as '1'
- bit 14-12 DBGPER<2:0>: Debug Mode CPU Access Permission bits
  - 1xx = Allow CPU access to Permission Group 2 permission regions
  - x1x = Allow CPU access to Permission Group 1 permission regions
  - xx1 = Allow CPU access to Permission Group 0 permission regions
  - 0xx = Deny CPU access to Permission Group 2 permission regions
  - ${\rm x0x}$  = Deny CPU access to Permission Group 1 permission regions
  - xx0 = Deny CPU access to Permission Group 0 permission regions

When the CPU is in Debug mode and the CPU1PG<1:0> bits (CFGPG<1:0>) are set to a denied permission group as defined by DBGPER<2:0>, the transaction request is assigned Group 3 permissions.

- bit 11 Reserved: Write as '1'
- bit 10 FSLEEP: Flash Sleep Mode bit
  - 1 = Flash is powered down when the device is in Sleep mode
  - 0 = Flash power down is controlled by the VREGS bit (PWRCON<1>)
- bit 9-8 **FECCCON<1:0>:** Dynamic Flash ECC Configuration bits

Upon a device Reset, the value of these bits is copied to the ECCCON<1:0> bits (CFGCON<5:4>).

- 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
- 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
- 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
- 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 7 Reserved: Write as '1'
- bit 6 BOOTISA: Boot ISA Selection bit
  - 1 = Boot code and Exception code is MIPS32<sup>®</sup>
  - (ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register) 0 = Boot code and Exception code is microMIPS<sup>™</sup>
    - (ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)
- bit 5 TRCEN: Trace Enable bit
  - 1 = Trace features in the CPU are enabled
  - 0 = Trace features in the CPU are disabled
- **Note 1:** This bit sets the value of the JTAGEN bit in the CFGCON register.

## REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
  - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
  - 110 = Reserved
  - 101 = LPRC
  - 100 **= S**OSC
  - 011 = Reserved
  - 010 = Posc (HS, EC)
  - 001 = SPLL
  - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

# **37.1 DC Characteristics**

### TABLE 37-1: OPERATING MIPS VS. VOLTAGE

|                                               | VDD Range Temp. Range |                    | Max. Frequency | <b>0</b> |
|-----------------------------------------------|-----------------------|--------------------|----------------|----------|
| Characteristic (in Volts) (in °C)<br>(Note 1) |                       | PIC32MZ EC Devices | Comment        |          |
| DC5                                           | 2.3V-3.6V             | -40°C to +85°C     | 200 MHz        | _        |

**Note 1:** Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

### TABLE 37-2: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                               | Symbol | Min. | Тур.        | Max. | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------------|------|------|
| Industrial Temperature Devices                                                                                                                                       |        |      |             |      |      |
| Operating Junction Temperature Range                                                                                                                                 | TJ     | -40  |             | +125 | °C   |
| Operating Ambient Temperature Range                                                                                                                                  | TA     | -40  |             | +85  | °C   |
| Power Dissipation:<br>Internal Chip Power Dissipation:<br>PINT = VDD x (IDD - S IOH)<br>I/O Pin Power Dissipation:<br>PI/O = S (({VDD - VOH} x IOH) + S (VOL x IOL)) | PD     |      | Pint + Pi/c | )    | W    |
| Maximum Allowed Power Dissipation                                                                                                                                    | PDMAX  | (    | ΓJ – ΤΑ)/θ. | JA   | W    |

### TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS

| Characteristics                                         | Symbol | Тур. | Max. | Unit | Notes |
|---------------------------------------------------------|--------|------|------|------|-------|
| Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)     | θJA    | 28   | —    | °C/W | 1     |
| Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)    | θJA    | 49   |      | °C/W | 1     |
| Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)   | θJA    | 43   | —    | °C/W | 1     |
| Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)   | θJA    | 40   | —    | °C/W | 1     |
| Package Thermal Resistance, 124-pin VTLA (9x9x0.9 mm)   | θJA    | 30   |      | °C/W | 1     |
| Package Thermal Resistance, 144-pin TQFP (16x16x1 mm)   | θJA    | 42   | —    | °C/W | 1     |
| Package Thermal Resistance, 144-pin LQFP (20x20x1.4 mm) | θJA    | 39   | —    | °C/W | 1     |

**Note 1:** Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

## TABLE 37-33: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

| AC CHARACTERISTICS |                      | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |      |                     |      |       |            |
|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|------|-------|------------|
| Param.<br>No.      | Symbol               | Characteristics <sup>(1)</sup>                                                                                                                    | Min. | Тур. <sup>(2)</sup> | Max. | Units | Conditions |
| SP51               | TssH2doZ             | SSx ↑ to SDOx Output<br>High-Impedance<br>(Note 4)                                                                                                | 2.5  | _                   | 12   | ns    | _          |
| SP52               | TscH2ssH<br>TscL2ssH | SSx ↑ after SCKx Edge                                                                                                                             | 10   | _                   |      | ns    | _          |
| SP60               | TssL2doV             | SDOx Data Output Valid after<br>SSx Edge                                                                                                          |      |                     | 12.5 | ns    |            |

**Note 1:** These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 20 ns.

4: Assumes 10 pF load on all SPIx pins.

# 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | N                | IILLIMETER | S        |      |
|------------------------|------------------|------------|----------|------|
| Dimension              | Dimension Limits |            | NOM      | MAX  |
| Number of Pins         | Ν                | 64         |          |      |
| Pitch                  | е                |            | 0.50 BSC |      |
| Overall Height         | Α                | 0.80       | 0.85     | 0.90 |
| Standoff               | A1               | 0.00       | 0.02     | 0.05 |
| Contact Thickness      | A3               | 0.20 REF   |          |      |
| Overall Width          | Е                | 9.00 BSC   |          |      |
| Exposed Pad Width      | E2               | 7.60       | 7.70     | 7.80 |
| Overall Length         | D                | 9.00 BSC   |          |      |
| Exposed Pad Length     | D2               | 7.60       | 7.70     | 7.80 |
| Contact Width          | b                | 0.20       | 0.25     | 0.30 |
| Contact Length         | L                | 0.30       | 0.40     | 0.50 |
| Contact-to-Exposed Pad | K                | 0.20       | -        | -    |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-213B Sheet 2 of 2

# 64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]





DETAIL 1

|                          | MILLIMETERS |               |          |      |  |
|--------------------------|-------------|---------------|----------|------|--|
| Dimension Limits         |             | MIN           | NOM      | MAX  |  |
| Number of Leads          | Ν           | 64            |          |      |  |
| Lead Pitch               | е           |               | 0.50 BSC |      |  |
| Overall Height           | Α           | -             | -        | 1.20 |  |
| Molded Package Thickness | A2          | 0.95          | 1.00     | 1.05 |  |
| Standoff                 | A1          | 0.05          | -        | 0.15 |  |
| Foot Length              | L           | 0.45          | 0.60     | 0.75 |  |
| Footprint                | L1          | 1.00 REF      |          |      |  |
| Foot Angle               | ø           | 0° 3.5° 7     |          |      |  |
| Overall Width            | E           | 12.00 BSC     |          |      |  |
| Overall Length           | D           | 12.00 BSC     |          |      |  |
| Molded Package Width     | E1          | 10.00 BSC     |          |      |  |
| Molded Package Length    | D1          | 10.00 BSC     |          |      |  |
| Lead Thickness           | С           | 0.09 - 0.20   |          |      |  |
| Lead Width               | b           | 0.17 0.22 0.2 |          |      |  |
| Mold Draft Angle Top     | α           | 11° 12° 13°   |          |      |  |
| Mold Draft Angle Bottom  | β           | 11° 12° 13°   |          |      |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body [LQFP] 2.00 mm Footprint





# RECOMMENDED LAND PATTERN

|                           | Units            |  | MILLIMETERS |      |  |
|---------------------------|------------------|--|-------------|------|--|
| Dimension                 | Dimension Limits |  | NOM         | MAX  |  |
| Contact Pitch             | E                |  | 0.50 BSC    |      |  |
| Contact Pad Spacing       | C1               |  | 21.40       |      |  |
| Contact Pad Spacing       | C2               |  | 21.40       |      |  |
| Contact Pad Width (X144)  | X1               |  |             | 0.30 |  |
| Contact Pad Length (X144) | Y1               |  |             | 1.55 |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2044B

# A.8 Flash Programming

The PIC32MZ family of devices incorporates a new Flash memory technology. Applications ported from PIC32MX5XX/6XX/7XX devices that take advantage of Run-time Self Programming will need to adjust the Flash programming steps to incorporate these changes.

| TABLE A-9: FI | ASH PROGRAMMING DIFFERENCES |
|---------------|-----------------------------|
|---------------|-----------------------------|

| PIC32MX5XX/6XX/7XX Feature                                                                                                                                                                                                                                                                                                                                                                 | PIC32MZ Feature                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Program Flash Write Protection                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| On PIC32MX devices, the Program Flash write-protect bits are part of the Flash Configuration words (DEVCFG0).                                                                                                                                                                                                                                                                              | On PIC32MZ devices, the write-protect register is contained separately as the NVMPWP register. It has been expanded to 24 bits, and now represents the address below, which all Flash memory is protected. Note that the lower 14 bits are forced to zero, so that all memory locations in the page are protected.                        |  |  |  |  |  |
| PWP< <b>7</b> :0> ( <b>DEVCFG0&lt;19:12&gt;</b> )                                                                                                                                                                                                                                                                                                                                          | PWP< <b>23</b> :0> ( <b>NVMPWP&lt;23:0&gt;</b> )                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| <pre>11111111 = Disabled<br/>1111111 = Disabled<br/>1111110 = 0xBD000FFF<br/>1111101 = 0xBD002FFF<br/>1111100 = 0xBD002FFF<br/>1111101 = 0xBD003FFF<br/>1111001 = 0xBD005FFF<br/>1111001 = 0xBD005FFF<br/>1111011 = 0xBD007FFF<br/>1111010 = 0xBD008FFF<br/>1111010 = 0xBD008FFF<br/>1111001 = 0xBD008FFF<br/>1111001 = 0xBD000FFF<br/>1111001 = 0xBD000FFF<br/>1111000 = 0xBD000FFF</pre> | Physical memory below address 0x1Dxxxxx is write protected,<br>where 'xxxxx' is specified by PWP<23:0>. When PWP<23:0><br>has a value of '0', write protection is disabled for the entire<br>program Flash. If the specified address falls within the page, the<br>entire page and all pages below the current page will be<br>protected. |  |  |  |  |  |
| Code Pr                                                                                                                                                                                                                                                                                                                                                                                    | rotection                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| On PIC32MX devices, code protection is enabled by the CP (DEVCFG<28>) bit.                                                                                                                                                                                                                                                                                                                 | On PIC32MZ devices, code protection is enabled by the CP (DEVCP0<28>) bit.                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Boot Flash Write Protection                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| On PIC32MX devices, Boot Flash write protection is enable by the <b>BWP (DEVCFG&lt;24&gt;)</b> bit and protects the entire Boot Flash memory.                                                                                                                                                                                                                                              | On PIC32MZ devices, Boot Flash write protection is divided into pages and is enable by the <b>LBWPx</b> and <b>UBWPx</b> bits in the <b>NVMBWP</b> register.                                                                                                                                                                              |  |  |  |  |  |
| Low-Voltage                                                                                                                                                                                                                                                                                                                                                                                | Low-Voltage Detect Status                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| LVDSTAT (NVMCON<11>)<br>1 = Low-voltage event is active<br>0 = Low-voltage event is not active                                                                                                                                                                                                                                                                                             | The LVDSTAT bit is not available in PIC32MZ devices.                                                                                                                                                                                                                                                                                      |  |  |  |  |  |

Table A-9 lists the differences (indicated by **Bold** type) that will affect software migration.

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
  intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1186-4