

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ech100-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: PIN NAMES FOR 144-PIN DEVICES (CONTINUED)

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EC(E/F/K)144 PIC32MZ1024EC(G/H/M)144 PIC32MZ1024EC(E/F/K)144 PIC32MZ2048EC(G/H/M)144

144

PhineFull Pin NamePhin73VeusRPD1/SCK1/RD174VUSBNV3FD1/SCK1/RD175VSSFD1/SCK1/RD176D-FD1/SCK1/RD177D-FD1/SCK1/RD1/SRD378RPF3USBID/RF3FD1/SCK1/RD1/SRD379SDA3/RPF2/RF2FD180SCL3/RPF3/RF8FD1/SCK1/RD181ERXD0/RH8FD1/SCK1/RD182ERXD3/RH9FD183ECOLRH10FD1/SCK1/RD484EBIN2Y/RD4/RA3FD185SCL2/RA2FD186EBIROY1/SDA2/RA3FD187EBIA3/RPF4/SDA5/PMA9/RF4FD188Vo0FD189VSSFD1/SCK1/RM14/RA490EBIA3/RPF4/SDA5/PMA9/RF4FD191EBIA3/RPF5/SCL5/PMA3/RF4FD192EBIA3/RPF5/SCL5/PMA3/RF4FD1/SCK1/RA693EBIA3/RK4FD1/SCK1/RA694FD1/SCK4/RD195RP11/SCK4/RD196RP11/SCK1/RA1597EBIA3/RK498RP10/SCK4/RD199EMOC/RPD1/RD199EMOC/RPD1/RD191EBIA3/RC1391EBICSS/RJ492EBIA3/RC1393RD10/SCK1/RD194EBIO/RPD1/RD195EBIO/RPD1/RD196RP11/SCC1/RD197EBIA3/RC1398RP10/SCK1/RD199EBIA3/RC13910EBIA3/RC13911EBIA3/RC				1
74 VUSB3V3 74 VUSB3V3 75 VSS 76 D- 77 D+ 78 RPF3/USBID/RF3 81 ERVD0/RF8 81 ERXD0/RF8 82 ECOL/RH10 83 ECOL/RH10 84 EBIRDY2/RH11 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA3/RPF4/RSA 88 VoD 89 VSS 80 CL2/RA2 81 ENXD/RM4 82 ECOL/RH10 84 EBIRDY1/SDA2/RA3 85 SCL2/RA2 86 VoD 87 EBIA3/RPF4/SDA5/PMA9/RF4 90 EBIA3/RPF4/SDA5/PMA9/RF4 91 EBIA3/RPF4/SDA5/PMA9/RF5 92 EBIA14/PMCS1/PMA14/RA4 93 EBIA14/RM4 94 EBIA2/RK4 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA15/RPD6/PMCS2/PMA15/RD9 98 RPD10/		Full Pin Name		Full Pin Name
75 Vss 76 D- 77 D+ 78 RPF3/USBID/RF3 79 SDA3/RPF2/RF2 80 SCL2/RPF3/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY/2/RH11 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA1/RA4 88 VoD 90 EBIA2/RK4 91 EBIA2/RK4 92 EBIA19/RK4 93 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA20/RK6 98 RPD10/SCK4/RD10 99 EBIC3/RL 91 EBIC3/RL 92 RH14 103 EBIC3/RL 104 RPD0/RCRD1/RD1 105 SOSCU/RPC13/RC13 106 SOSCO/RPC13/RC14 107 VoD 10	73	VBUS	109	RPD1/SCK1/RD1
76 D- 77 D+ 78 RPF3UUSBID/RF3 79 SDA3/RPF2/RF2 80 SCL3/RPF3/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY2/RPL3/RD4 85 SCL3/RPF2/RH1 86 EBIRDY2/RH11 87 EBIA14/PMCS1/PMA14/RA4 88 Vb0 87 EBIA14/PMCS1/PMA14/RA4 88 Vb0 89 Vss 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA9/RPF4/SDA5/PMA9/RF4 92 EBIA14/PMCS1/PMA14/RA4 93 EBIA19/RK5 94 EBIA20/RK6 93 EBIA14/RK15 94 EBIA20/RK6 95 RP10/SCK4/RD10 96 RPA14/SCD1/RA15 97 EBIA13/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 104 RPD0/RTCC/INT0/RD0 105 SOSCURPC13/RC13 106 SOSCO/RPC	74	VUSB3V3	110	EBID14/RPD2/PMD14/RD2
77 D+ 78 RPF3/USBID/RF3 79 SDA3/RP52/RF2 80 SCL3/RPF8/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY/SDA2/RA3 85 SCL2/RA2 86 EBIRDY/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 Vop 89 Vss 81 EBIA9/RPF4/SDA2/RA3 81 EBIA9/RPF4/SDA2/RA3 82 EBIA19/RK5 84 EBIA19/RF5/SCL5/PMA9/RF4 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA9/RF4/SDA5/PMA9/RF4 92 EBIA19/RK5 93 EBIA19/RK5 94 EBIA2/RK4 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA19/RK6 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EBID2/PMD1/RD11 100 ECS/R/H12 111 EBICS2/RJ6 113 EBICS2/RJ6	75	Vss	111	EBID15/RPD3/PMD15/RD3
78 RPF3/USBID/RF3 79 SDA3/RPF2/RF2 80 SCL3/RPF8/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH0 84 EBIRDY2/RH1 85 SCL2/RA2 86 EBIRDY2/RH11 87 EBIRDY2/RH11 88 Vob 89 Vss 89 Vss 81 EBIA9/2/RL3 81 EBIA9/2/RL3 82 ERXD3/RH4 84 EBIRDY2/RH1 85 SCL2/RA2 86 Vob 87 EBIA14/PMCS1/PMA9/RF4 88 Vob 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA9/RPF4/SDA5/PMA9/RF4 92 EBIA19/RK4 93 EBIA19/RK4 94 EBIA20/RK6 97 EBIA19/RK4 98 RPD10/SCK4/RD10 99 EMDC/RPD1/RD11 133 EBICS7/RJ6	76	D-	112	EBID12/RPD12/PMD12/RD12
79 SDA3/RPF2/RF2 81 SCL3/RPF3/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY2/RH1 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 90 EBIA9/RF4/SDA5/PMA9/RF4 91 EBIA9/RF5/SCL5/PMA9/RF4 92 EBIA18/RK4 93 EBIA20/RK6 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EMIC/RPD11/RD11 100 ECRS/RH12 1010 ECRS/RH12 102 RH4 103 EBICS/RA7 104 RPD0/RTCC/INT0/RD0 105 SOSC//RPC13/RC13 106 SOSC//RPC13/RC13 107 Vod	77	D+	113	EBID13/PMD13/RD13
80 SCL3/RPF8/RF8 81 ERXD0/RH8 82 ERXD3/RH9 83 ECOURH10 84 EBIRDY2/RH1 85 SCL3/RP5/RD5 84 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 Vob 87 EBIA14/PMCS1/PMA14/RA4 120 ETXELX/RPD7/RD7 88 Vob 90 EBIA9/RF5/SCL5/PMA9/RF4 91 EBIA9/RF5/SCL5/PMA8/RF5 92 EBIA19/RK5 93 EBIA19/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD1/RD11 136 VSS 100 ECRS/RH2 112 EBICS/R/A 133 EBICS/R/A 134 EBICS/R/A 135 EBID0/PMD0/RE0 136 VSS 10	78	RPF3/USBID/RF3	114	ETXERR/RJ0
81 ERXD0/RH8 82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY2/RH11 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EDIA14/PMCS1/PMA14/RA4 88 VoD 89 Vss 80 EBIA3/RPF4/SDA5/PMA9/RF4 90 EBIA3/RPF5/SCL5/PMA8/RF5 91 EBIA3/RPF5/SCL5/PMA8/RF5 92 EBIA19/RK5 93 EBIA3/RPF5/SCL5/PMA8/RF5 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMC/RPD11/RD11 100 ECRS3/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0//SCC/INT0/RD0 105 SOSC//RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VoD 106 SOSCO	79	SDA3/RPF2/RF2	115	EMDIO/RJ1
82 ERXD3/RH9 83 ECOL/RH10 84 EBIRDY/2/RH11 85 SCL2/RA2 86 EBIRDY/1/SDA2/RA3 87 EBIRDY1/SDA2/RA3 88 Vod 87 EBIRDY1/SDA2/RA3 88 Vod 87 EBIRDY1/SDA2/RA3 88 Vod 89 Vss 80 EBIA9//RP4/SDA5/PMA9/RF4 90 EBIA9/RP5/SCL5/PMA8/RF5 91 EBIA3/RP5/SCL5/PMA8/RF5 92 EBIA19/RK4 93 EBIA19/RK4 94 EBIA20/RK6 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 90 ERXDV/ECRSDV/RH13 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RCC/INT0/RD0 105 SOSC//RPC13/RC13 106 SOSC//RPC13/RC13 107 Vod	80	SCL3/RPF8/RF8	116	EBIRDY3/RJ2
83 ECOL/RH10 84 EBIRDY2/RH10 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 VoD 89 Vss 80 EBIA14/PMCS1/PMA14/RA4 90 EBIA14/PMCS1/PMA9/RF4 91 EBIA8/RPF4/SDA5/PMA9/RF4 92 EBIA18/RK4 93 EBIA19/RK5 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA15 97 EBIA15/RPD0/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VoD	81	ERXD0/RH8	117	EBIA22/RJ3
84 EBIRDY2/RH11 85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 Vob 88 Vob 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA9/RPF4/SDA5/PMA9/RF4 92 EBIA19/RK4 93 EBIA9/RPF5/SCL5/PMA8/RF5 94 EBIA20/RK6 93 EBIA19/RK4 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECGS/RH12 101 ERICS3/RJ4 102 RH14 103 EBIA23/RH15 104 RPD0/FCC/INT0/RD0 105 SOSCI/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 Vob	82	ERXD3/RH9	118	SQICS0/RPD4/RD4
85 SCL2/RA2 86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 Vob 88 Vob 89 Vss 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA8/RPF5/SCL5/PMA9/RF4 92 EBIA14/PMCS1/PMA9/RF4 93 EBIA9/RPF5/SCL5/PMA9/RF5 92 EBIA18/RK4 93 EBIA9/RP5/SCL5/PMA9/RF5 94 EBIA9/RK5 95 RPA14/SCL1/RA14 96 RPA14/SCL1/RA14 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA2/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCI/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 Vob 108 EBID2/PMD3/RE2 109 RD2/SQID0/RG13 106	83	ECOL/RH10	119	SQICS1/RPD5/RD5
86 EBIRDY1/SDA2/RA3 87 EBIA14/PMCS1/PMA14/RA4 88 Vob 88 Vob 89 Vss 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA8/RPF5/SCL5/PMA8/RF5 92 EBIA16/RK4 93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EBICS7/RJ3 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA2/RH12 104 RPD0//SCK4/RD10 105 SOSCI/RPC13/RC13 106 SOSC/RPC13/RC13 107 Vob 108 SSEO/RPC13/RC13 109 RDD0/RPC1/RD1/RD1 114 TRD0/SQLD0/RG14 1142 EBID2/PMD2/RE2 1107 Vob	84	EBIRDY2/RH11	120	ETXEN/RPD6/RD6
87 EBIA14/PMCS1/PMA14/RA4 123 Vss 88 Vod 124 EBID11/RPF0/PMD11/RF0 89 Vss 125 EBID10/RPF1/PMD10/RF1 90 EBIA9/RPF4/SDA5/PMA9/RF4 126 EBIA21/RK7 91 EBIA8/RPF5/SCL5/PMA8/RF5 127 EBID9/RPG1/PMD9/RG1 92 EBIA18/RK4 128 EBID9/RPG1/PMD9/RG1 93 EBIA20/RK6 129 TRCLK/SQICLK/RA6 94 EBIA20/RK6 130 TRD3/SQID3/RA7 95 RPA14/SCL1/RA14 131 EBICS0/RJ4 96 RPA15/SDA1/RA15 132 EBICS1/RJ5 97 EBIA15/RPD9/PMCS2/PMA15/RD9 133 EBICS2/RJ6 98 RPD10/SCK4/RD10 134 EBICS3/RJ7 99 EMDC/RPD11/RD11 135 EBID0/PMD0/RE0 100 ECRS/RH12 136 Vss 101 ERXDV/ECRSDV/RH13 137 Vod 102 RH14 138 EBID1/PMD1/RE1 103 EBIA3/RH15 139	85	SCL2/RA2	121	ETXCLK/RPD7/RD7
88 VDD 89 Vss 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA8/RPF5/SCL5/PMA8/RF5 92 EBIA18/RK4 93 EBIA20/RK6 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA2/RH15 104 RPD0/FTCC/INT0/RD0 105 SOSC/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VD	86	EBIRDY1/SDA2/RA3	122	VDD
89 Vss 90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA8/RPF5/SCL5/PMA8/RF5 92 EBIA18/RK4 93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSC//RPC14/T1CK/RC14 106 SOSCO/RPC14/T1CK/RC14 107 Vod	87	EBIA14/PMCS1/PMA14/RA4	123	Vss
90 EBIA9/RPF4/SDA5/PMA9/RF4 91 EBIA8/RPF5/SCL5/PMA8/RF5 92 EBIA18/RK4 93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA2/RC13 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC14/T1CK/RC14 106 SOSCO/RPC14/T1CK/RC14 107 Vod	88	Vdd	124	EBID11/RPF0/PMD11/RF0
91 EBIA8/RPF5/SCL5/PMA8/RF5 92 EBIA18/RK4 93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCI/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VDD	89	Vss	125	EBID10/RPF1/PMD10/RF1
92 EBIA18/RK4 93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 Vod	90	EBIA9/RPF4/SDA5/PMA9/RF4	126	EBIA21/RK7
93 EBIA19/RK5 94 EBIA20/RK6 94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC14/T1CK/RC14 106 SOSCO/RPC14/T1CK/RC14 107 VDD	91	EBIA8/RPF5/SCL5/PMA8/RF5	127	EBID9/RPG1/PMD9/RG1
94 EBIA20/RK6 95 RPA14/SCL1/RA14 96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSC//RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 Vod	92	EBIA18/RK4	128	EBID8/RPG0/PMD8/RG0
95 RPA14/SCL1/RA14 131 EBICS0/RJ4 96 RPA15/SDA1/RA15 132 EBICS1/RJ5 97 EBIA15/RPD9/PMCS2/PMA15/RD9 133 EBICS2/RJ6 98 RPD10/SCK4/RD10 134 EBICS3/RJ7 99 EMDC/RPD11/RD11 135 EBID0/PMD0/RE0 100 ECRS/RH12 136 Vss 101 ERXDV/ECRSDV/RH13 137 VDD 102 RH14 138 EBID1/PMD1/RE1 103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	93	EBIA19/RK5	129	TRCLK/SQICLK/RA6
96 RPA15/SDA1/RA15 97 EBIA15/RPD9/PMCS2/PMA15/RD9 98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC14/T1CK/RC14 106 SOSCO/RPC14/T1CK/RC14 107 Vod	94	EBIA20/RK6	130	TRD3/SQID3/RA7
97 EBIA15/RPD9/PMCS2/PMA15/RD9 133 EBICS2/RJ6 98 RPD10/SCK4/RD10 134 EBICS3/RJ7 99 EMDC/RPD11/RD11 135 EBID0/PMD0/RE0 100 ECRS/RH12 136 Vss 101 ERXDV/ECRSDV/RH13 137 VDD 102 RH14 138 EBID1/PMD1/RE1 103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCO/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	95	RPA14/SCL1/RA14	131	EBICS0/RJ4
98 RPD10/SCK4/RD10 99 EMDC/RPD11/RD11 100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VDD	96	RPA15/SDA1/RA15	132	EBICS1/RJ5
99 EMDC/RPD11/RD11 135 EBID0/PMD0/RE0 100 ECRS/RH12 136 Vss 101 ERXDV/ECRSDV/RH13 137 VDD 102 RH14 138 EBID1/PMD1/RE1 103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCO/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	97	EBIA15/RPD9/PMCS2/PMA15/RD9	133	EBICS2/RJ6
100 ECRS/RH12 101 ERXDV/ECRSDV/RH13 102 RH14 103 EBIA23/RH15 104 RPD0/RTCC/INT0/RD0 105 SOSCO/RPC13/RC13 106 SOSCO/RPC14/T1CK/RC14 107 VDD 108 EBID2/PMD2/RE2 107 VDD	98	RPD10/SCK4/RD10	134	EBICS3/RJ7
101 ERXDV/ECRSDV/RH13 137 VDD 102 RH14 138 EBID1/PMD1/RE1 103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCO/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	99	EMDC/RPD11/RD11	135	EBID0/PMD0/RE0
102 RH14 138 EBID1/PMD1/RE1 103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCI/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	100	ECRS/RH12	136	Vss
103 EBIA23/RH15 139 TRD2/SQID2/RG14 104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCI/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	101	ERXDV/ECRSDV/RH13	137	VDD
104 RPD0/RTCC/INT0/RD0 140 TRD1/SQID1/RG12 105 SOSCI/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	102	RH14	138	EBID1/PMD1/RE1
105 SOSCI/RPC13/RC13 141 TRD0/SQID0/RG13 106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	103	EBIA23/RH15	139	TRD2/SQID2/RG14
106 SOSCO/RPC14/T1CK/RC14 142 EBID2/PMD2/RE2 107 VDD 143 EBID3/RPE3/PMD3/RE3	104	RPD0/RTCC/INT0/RD0	140	TRD1/SQID1/RG12
107 VDD 143 EBID3/RPE3/PMD3/RE3	105	SOSCI/RPC13/RC13	141	TRD0/SQID0/RG13
	106	SOSCO/RPC14/T1CK/RC14	142	EBID2/PMD2/RE2
108 Vss 144 EBID4/AN18/PMD4/RE4	107	Vdd	143	EBID3/RPE3/PMD3/RE3
	108	Vss	144	EBID4/AN18/PMD4/RE4

Note

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.

2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.

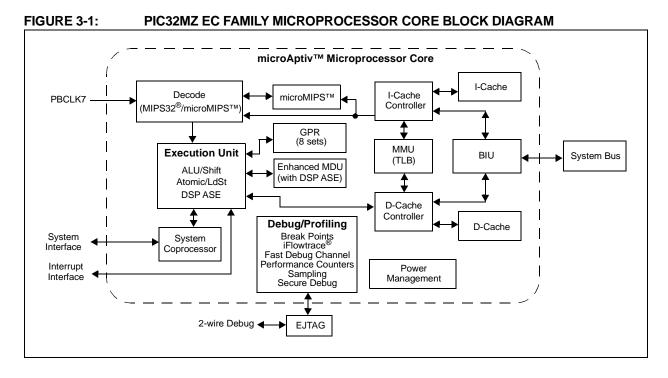
3: Shaded pins are 5V tolerant.

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
CLKI	31	49	B28	71	Ι	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	31	49	B28	71	Ι	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	32	50	A33	72	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	72	B41	105	Ι	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	73	A49	106	0	—	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	PPS	Ι	_	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	PPS	Ι	—	
REFCLKI4	PPS	PPS	PPS	PPS	Ι	—	
REFCLKO1	PPS	PPS	PPS	PPS	0	_	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	PPS	0	—	
REFCLKO4	PPS	PPS	PPS	PPS	0	_	

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output PPS = Peripheral Pin Select


P = Power I = Input

IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS TABLE 1-3:

		Pin Nu	mber									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description					
Input Capture												
IC1	PPS	PPS	PPS	PPS	I	ST	Input Capture Inputs 1-9					
IC2	PPS	PPS	PPS	PPS	I	ST	1					
IC3	PPS	PPS	PPS	PPS	I	ST						
IC4	PPS	PPS	PPS	PPS	I	ST						
IC5	PPS	PPS	PPS	PPS	I	ST						
IC6	PPS	PPS	PPS	PPS	I	ST						
IC7	PPS	PPS	PPS	PPS	I	ST						
IC8	PPS	PPS	PPS	PPS	I	ST	1					
IC9	PPS	PPS	PPS	PPS	I	ST	1					
Legend:	CMOS = Cl ST = Schm	•	•		s	Analog = O = Outp	Analog input P = Power ut I = Input					

Schmitt Trigger input with CIVIOS levels TTL = Transistor-transistor Logic input buffer

Output PPS = Peripheral Pin Select A block diagram of the PIC32MZ EC family processor core is shown in Figure 3-1.

TABLE 4-21: SYSTEM BUS TARGET 13 REGISTER MAP

IAD																			
ess											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	—	—		CODE	<3:0>		_	—	-		—		—		0000
B420	SBT13ELOG1	15:0				INI	ΓID<7:0>				•	REGIO	N<3:0>		_	С	MD<2:0>		0000
D404	SBT13ELOG2	31:16	_	_	—	—	_	_	_	_	—	_	—	_	_	_	_	_	0000
B424	SB113ELUG2	15:0	—	_	_	_	_	_	_	_		_	_	_	_	_	GROU	P<1:0>	0000
D 400		31:16	—	_	_	_	_	_	_	ERRP		_	_	_	_	_	_	_	0000
B428	SBT13ECON 1	15:0		-	_	_	—	_		_	_	_			—	_	—	_	0000
P420	SBT13ECLRS	31:16		-	_	_	—	_		_	_	_			—	_	—	_	0000
D430	SBI ISECLKS	15:0			_	—	—				_	_			_		_	CLEAR	0000
D120	SBT13ECLRM	31:16			_	—	—				_	_			_		_		0000
D430	SBITSECLKI	15:0			_	—	—				_	_			_		_	CLEAR	0000
B440	SBT13REG0	31:16								BA	SE<21:6>								xxxx
D440	SBITSREGU	15:0			BA	ASE<5:0>			PRI				SIZE<4:0:	>			_		xxxx
B450	SBT13RD0	31:16			_	—	_				_	—					-		xxxx
5450	3BT I3RD0	15:0		-	—	—	_				_	_			GROUP3	GROUP2	GROUP1	GROUP0	xxxx
B458	SBT13WR0	31:16		-	—	—	_				_	_			—		_		xxxx
5400	GBTTSWRU	15:0			_	_	—				_	—			GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

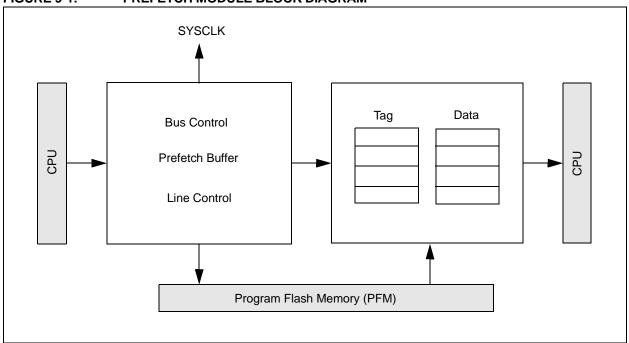
Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

REGISTE	ER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER
bit 10-8	NOSC<2:0>: New Oscillator Selection bits
	111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	110 = Reserved
	101 = Internal Low-Power RC (LPRC) Oscillator
	100 = Secondary Oscillator (Sosc) 011 = Reserved
	010 = Primary Oscillator (Posc) (HS or EC)
	001 = System PLL (SPLL)
	000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
	On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>).
bit 7	CLKLOCK: Clock Selection Lock Enable bit
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified
bit 6	ULOCK: USB PLL Lock Status bit
	1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied
	0 = Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled
bit 5	SLOCK: System PLL Lock Status bit
	1 = System PLL module is in lock or module start-up timer is satisfied
	0 = System PLL module is out of lock, start-up timer is running or system PLL is disabled
bit 4	SLPEN: Sleep Mode Enable bit
	1 = Device will enter Sleep mode when a WAIT instruction is executed
1.11.0	0 = Device will enter Idle mode when a WAIT instruction is executed
bit 3	CF: Clock Fail Detect bit
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	Unimplemented: Read as '0'
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
DICT	1 = Enable Secondary Oscillator
	0 = Disable Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit ⁽¹⁾
	1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
	0 = Oscillator switch is complete
Note 1:	The reset value for this bit depends on the setting of the IESO (DEVCFG1<7>) bit. When IESO = 1, the
	reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

9.0 PREFETCH MODULE

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).


The Prefetch module is a performance enhancing module that is included in PIC32MZ EC family devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.

The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

9.1 Features

- 4x16 byte fully-associative lines
- One line for CPU instructions
- One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 23:16	_	—		—	—	—	—	—
22.16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23.10				CHAIRQ<	<7:0> ⁽¹⁾		U-0	
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8				CHSIRQ<	<7:0> ⁽¹⁾		25/17/9/1 U-0 R/W-1 R/W-1	
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31

bit 31-24	Unimplemented: Read as '0'
	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
511 20 10	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	 1 = A DMA transfer is aborted when this bit is written to a '1' 0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	 1 = Abort transfer and clear CHEN on pattern match 0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	 1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit

- 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
- 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-2: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

PIC32MZ Embedded Connectivity (EC) Family

REGISTER 11-7: USBIE0CSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 0)

		(==	/					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R-x	R-x	R-0	R-x	R-x	R-x	R-1	R-0
31:24	MPRXEN	MPTXEN	BIGEND	HBRXEN	HBTXEN	DYNFIFOS	SOFTCONE	UTMIDWID
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	_	_	_	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_		_	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 MPRXEN: Automatic Amalgamation Option bit

- 1 = Automatic amalgamation of bulk packets is done
- 0 = No automatic amalgamation
- bit 30 **MPTXEN:** Automatic Splitting Option bit 1 = Automatic splitting of bulk packets is done
 - Automatic splitting of bulk packets
 - 0 = No automatic splitting
- bit 29 BIGEND: Byte Ordering Option bit
 - 1 = Big Endian ordering
 - 0 = Little Endian ordering
- bit 28 **HBRXEN:** High-bandwidth RX ISO Option bit 1 = High-bandwidth RX ISO endpoint support is selected 0 = No High-bandwidth RX ISO support
- bit 27 **HBTXEN:** High-bandwidth TX ISO Option bit 1 = High-bandwidth TX ISO endpoint support is selected 0 = No High-bandwidth TX ISO support
- bit 26 **DYNFIFOS:** Dynamic FIFO Sizing Option bit 1 = Dynamic FIFO sizing is supported 0 = No Dynamic FIFO sizing
- bit 25 SOFTCONE: Soft Connect/Disconnect Option bit 1 = Soft Connect/Disconnect is supported 0 = Soft Connect/Disconnect is not supported
- bit 24 UTMIDWID: UTMI+ Data Width Option bit Always '0', indicating 8-bit UTMI+ data width
- bit 23-0 Unimplemented: Read as '0'

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

- bit 18 **OVERRUN:** Data Overrun Status bit (*Device mode*)
 - 1 = An OUT packet cannot be loaded into the RX FIFO.
 - 0 = Written by software to clear this bit

This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)

- 1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit.

This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.

- bit 17 FIFOFULL: FIFO Full Status bit
 - 1 = No more packets can be loaded into the RX FIFO
 - 0 = The RX FIFO has at least one free space
- bit 16 **RXPKTRDY:** Data Packet Reception Status bit
 - 1 = A data packet has been received. An interrupt is generated.
 - 0 = Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
- bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 **RXMAXP<10:0>:** Maximum RX Payload Per Transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

			/					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
31:24		RXFIFC)SZ<3:0>			TXFIFO	SZ<3:0>	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—		—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				RXINTE	RV<7:0>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SPEE	D<1:0>	PROTO	COL<1:0>		TEP	<3:0>	

Legend:

bit 27-24

bit 23-16

zogonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

1111 = Reserved

1110 = Reserved
1101 = 8192 bytes
1100 = 4096 bytes
•
•
•
0011 = 8 bytes
0010 = Reserved
0001 = Reserved
0000 = Reserved or endpoint has not been configured
This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
TXFIFOSZ<3:0>: Transmit FIFO Size bits
1111 = Reserved
1110 = Reserved
1101 = 8192 bytes
1100 = 4096 bytes
•
•
•
0011 = 8 bytes
0010 = Reserved
0001 = Reserved
0000 = Reserved or endpoint has not been configured
This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
Unimplemented: Read as '0'

TABLE 12-15: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										Bi	ts								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	ANSELG	31:16	—	—	_		_	—	—		_	—		_	—	—	—	—	0000
0000	ANGLEG	15:0	_	_	_	_		_	ANSG9	ANSG8	ANSG7	ANSG6	_	-	—	_	_	_	03C0
0610	TRISG	31:16	_	_	_	-		-	_			-	-				_	_	0000
0010	TRIBG	15:0	_	_	_	_		_	TRISG9	TRISG8	TRISG7	TRISG6	_	-	—	_	_	_	03C0
0620	PORTG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0020	FORIG	15:0	_	_	-	-		_	RG9	RG8	RG7	RG6	_		-	-	_	_	xxxx
0630	LATG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0030	LAIG	15:0	_	_	-	-		_	LATG9	LATG8	LATG7	LATG6	_		-	-	_	_	xxxx
0640	ODCG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0040	ODCG	15:0	—	—	-	Ι		—	ODCG9	ODCG8	ODCG7	ODCG6			_	_	_	—	0000
0650	CNPUG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0030	CINFUG	15:0	_	_	-	-		_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_		-	-	_	_	0000
0660	CNPDG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0000	CINFDG	15:0	_	_	-	-		_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_		-	-	_	_	0000
0670	CNCONG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0070	CINCONG	15:0	ON	_	SIDL	-		_	_			_	_		-	-	_	_	0000
0680	CNENG	31:16	_	_	-	-		_	_			_	_		-	-	_	_	0000
0000	CINEING	15:0	—	—	-	-	—	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	—	—	—	_	_	0000
		31:16	—	—	—	_		—	—		_	—	_		—	—	—		0000
0690	CNSTATG	15:0	—	—	—	—	-	—	CN STATG9	CN STATG8	CN STATG7	CN STATG6	_	_	—	—	—	—	0000

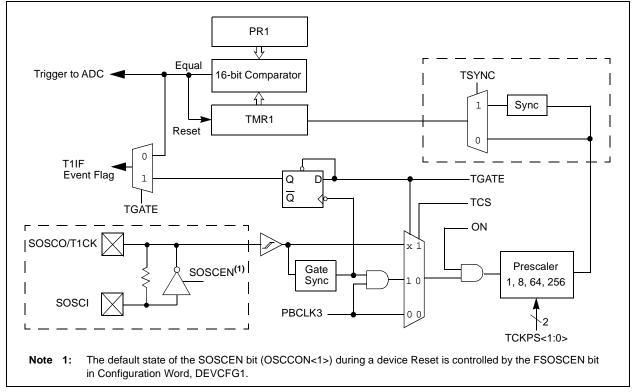
Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

13.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14.** "Timers" (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ EC devices feature one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for real-time clock applications.


FIGURE 13-1: TIMER1 BLOCK DIAGRAM

The following modes are supported by Timer1:

- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

13.1 Additional Supported Features

- Selectable clock prescaler
- Timer operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers
- Asynchronous mode can be used with the Sosc to function as a real-time clock
- ADC event trigger

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24		_	_	—	_	-	_	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	_	_	-	—	—	_	—				
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	—	_	_	_	DEVSEL<1:0>		MODEBY	TES<1:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		MODECODE<7:0>										

REGISTER 20-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

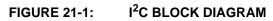
Legend:

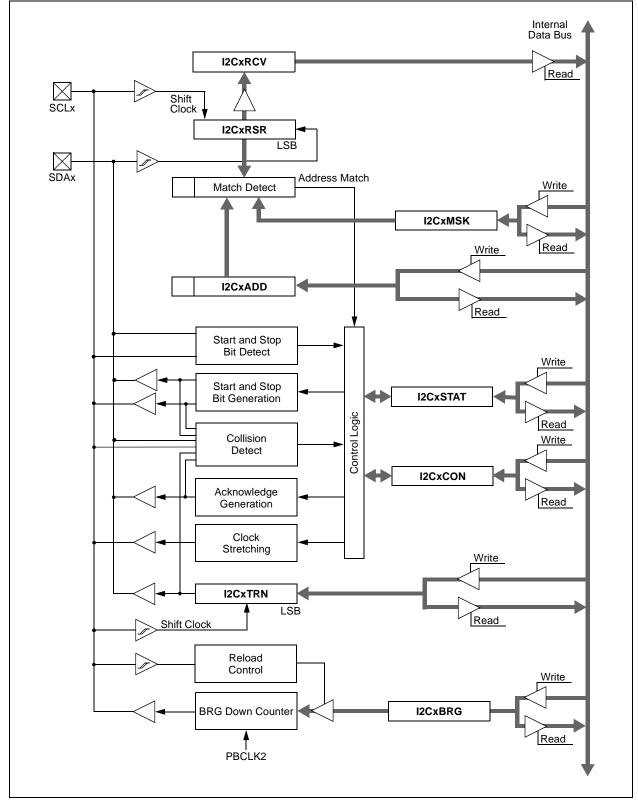
0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-12 Unimplemented: Read as '0'

bit 11-10 **DEVSEL<1:0>:** Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Device 1 is selected
- 00 = Device 0 is selected


bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits


- 11 = Three cycles
- 10 = Two cycles
- 01 = One cycle
- 00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

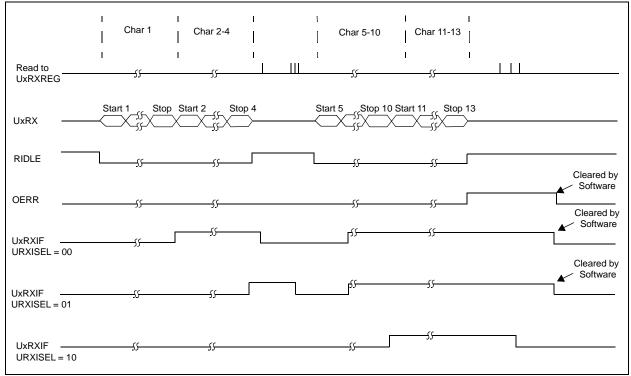
These bits contain the 8-bit code value for the mode bits.

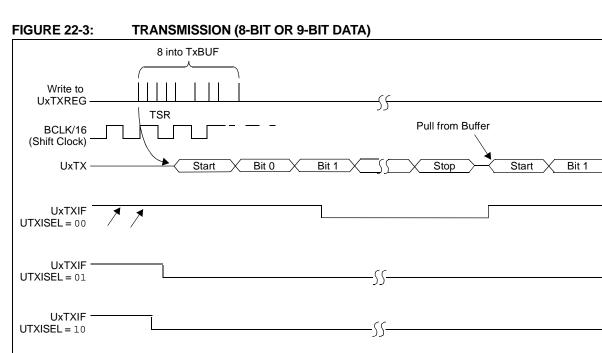
PIC32MZ Embedded Connectivity (EC) Family

TABLE 22-1:	UART1 THROUGH UART6 REGISTER MAP (CONTINUED)
		CONTINUED	,

ess		0								Bi	ts								
Virtual Address (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	U4MODE ⁽¹⁾	31:16	—	—	_		—	—		—	—		—		—	—		_	0000
2000		15:0	ON	—	SIDL	IREN	RTSMD	_	UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2610	U4STA ⁽¹⁾	31:16	—	—	—	—	—	—	—	ADM_EN				ADDR					0000
2010		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2620	U4TXREG	31:16	_	—	—	_	—	_	_	—	—	—	—	—	—	—	—	—	0000
2020	OTIXILEO	15:0	—	—	—	—	—	—	—	TX8		-		Transmit	Register	-	-		0000
2630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2000	OHIVINEO	15:0	—	—	—	—	—	—	—	RX8		-	-	Receive	Register	-	-		0000
2640	U4BRG ⁽¹⁾	31:16	—	—	_	_	—	—	—	—	—	—	—	-	—	—	—	_	0000
2040	0401(0)	15:0		Baud Rate Generator Prescaler 0000								0000							
2800	U5MODE ⁽¹⁾	31:16	_	_	_		_	_	_	—	_	_	_		_	_	_		0000
2000	03WODL V	15:0	ON	_	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2810	U5STA ⁽¹⁾	31:16	_	-	-	_		_	—	ADM_EN				ADDR	R<7:0>				0000
2010	0331A. /	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2820	U5TXREG	31:16	_	_	—	—	-	_	_	_	_	—	_	—	—	_	—	_	0000
2020	USIAREG	15:0	_	-	-	_		_	—	TX8				Transmit	Register				0000
2830	U5RXREG	31:16	—	—	—	_	—	—	—		—	—	—	—	—	—	—	—	0000
2830	USKAREG	15:0	_	_	—	_	—	_	—	RX8				Receive	Register				0000
2840	U5BRG ⁽¹⁾	31:16	_	_	_	-	—	—	_	—	—	—	—	—	—	_	—	_	0000
2840	USBKG'	15:0							Bau	d Rate Gene	erator Pres	caler							0000
0 4 00	U6MODE ⁽¹⁾	31:16	_	_	_	—	_	_	_	—	_	—	—	—	_	_	—	—	0000
2A00	UGINIODE	15:0	ON	_	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0.40	U6STA ⁽¹⁾	31:16	_	_	_	_	_	—	—	ADM_EN				ADDR	R<7:0>				0000
2A10	USTA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
		31:16	_	—	—	_	_	_	—	—	_	—	—	-	_	—	—	-	0000
2A20	U6TXREG	15:0	— — — — — — TX8 Transmit Register							0000									
						—	—	0000											
2A30	U6RXREG	15:0 — — — — — RX8 Receive Register								0000									
0.4.45		31:16	_	_	_	_	_	_	_						_				0000
2A40	U6BRG ⁽¹⁾	15:0							Bau	d Rate Gene	erator Pres	caler							0000
Leger	· . · ·	· · ·		Reset:			(-1 B												

Le


Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MZ Embedded Connectivity (EC) Family

Figure 22-2 and Figure 22-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 22-2: UART RECEPTION

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0									
31.24				CiFIFOB	٩<31:24>						
22:46	R/W-0	R/W-0									
23:16	CiFIFOBA<23:16>										
15:8	R/W-0	R/W-0									
0.61				CiFIFOB	A<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7:0	CiFIFOBA<7:0>										

REGISTER 29-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

33.3.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EC devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

33.3.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

33.3.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

DC CHA	RACTE	ERISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. No.	Sym.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions				
D130a	Ер	Cell Endurance	10,000	_	_	E/W	Without ECC				
D130b			20,000	—	—	E/W	With ECC				
D131	Vpr	VDD for Read	VDDMIN	_	VDDMAX	V	—				
D132	VPEW	VDD for Erase or Write	VDDMIN	_	VDDMAX	V	—				
D134a	Tretd	Characteristic Retention	10			Year	Without ECC				
D134b			20			Year	With ECC				
D135	Iddp	Supply Current during Programming	—	—	30	mA	_				
D136	Trw	Row Write Cycle Time (Notes 2, 4)		66813		FRC Cycles					
D137	Tqww	Quad Word Write Cycle Time (Note 4)	—	773	_	FRC Cycles	_				
D138	Tww	Word Write Cycle Time (Note 4)	_	383	_	FRC Cycles	—				
D139	TCE	Chip Erase Cycle Time (Note 4)	_	515373	_	FRC Cycles	—				
D140	TPFE	All Program Flash (Upper and Lower regions) Erase Cycle Time (Note 4)		256909	_	FRC Cycles	_				
D141	Трве	Program Flash (Upper or Lower regions) Erase Cycle Time (Note 4)	—	128453	—	FRC Cycles	—				
D142	TPGE	Page Erase Cycle Time (Note 4)		128453	_	FRC Cycles	_				

TABLE 37-12: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: The minimum PBCLK5 for row programming is 4 MHz.

- **3:** Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.
- 4: This parameter depends on FRC accuracy (see Table 37-20) and FRC tuning values (see the OSCTUN register: Register 8-2).

TABLE 37-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

DC CHARACTERISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Required Flash Wait States ⁽¹⁾	SYSCLK	Units	Conditions				
With ECC:							
0 Wait states 1 Wait state 2 Wait states	0 < SYSCLK ≤ 66 66 < SYSCLK ≤ 133 133 < SYSCLK ≤ 200	MHz	—				
Without ECC:							
0 Wait states 1 Wait state 2 Wait states	0 < SYSCLK ≤ 83 83 < SYSCLK ≤ 166 166 < SYSCLK ≤ 200	MHz	—				

Note 1: To use Wait states, the PFMWS<2:0> bits must be written with the desired Wait state value.

Table A-10 lists the differences (indicated by **Bold** type) that will affect software and hardware migration.

A.9 Other Peripherals and Features

Most of the remaining peripherals on PIC32MZ devices act identical to their counterparts on PIC32MX5XX/ 6XX/7XX devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources.

TABLE A-10: PERIPHERAL DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
ľ	² C
On PIC32MX devices, all pins are 5V-tolerant.	On PIC32MZ devices, the I2C4 port uses non-5V tolerant pins, and will have different VOL/VOH specifications.
	The Baud Rate Generator register has been expanded from 12 bits to 16 bits.
I2CxBRG< 11 :0>	I2CxBRG<15:0>
Watchd	og Timer
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a '1' to the WDTCLR bit.	On PIC32MZ devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a specific value (0x5743) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming.
WDTCLR (WDTCON<0>)	WDTCLRKEY<15:0> (WDTCON<31:16>)
RI	rcc
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse.	On PIC32MZ devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits.
RTCSECSEL (RTCCON<7>) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin	RTCOUTSEL<1:0> (RTCCON<8:7>) 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module.	On PIC32MZ devices, an additional clock source, LPRC, is available as a choice for the input clock.
	RTCCLKSEL<1:0> (RTCCON<10:9>) 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Sosc 00 = RTCC uses the internal 32 kHz oscillator (LPRC)