

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ech100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: **PIN NAMES FOR 144-PIN DEVICES**

144-PIN LQFP AND TQFP (TOP VIEW)

PIC32MZ0512EC(E/F/K)144 PIC32MZ1024EC(G/H/M)144 PIC32MZ1024EC(E/F/K)144 PIC32MZ2048EC(G/H/M)144

144

Pin umber	Full Pin Name	Pin Number	Full Pin Name
1	AN23/RG15	37	PGEC2/AN46/RPB6/RB6
2	EBIA5/AN34/PMA5/RA5	38	PGED2/AN47/RPB7/RB7
3	EBID5/AN17/RPE5/PMD5/RE5	39	VREF-/CVREF-/AN27/RA9
4	EBID6/AN16/PMD6/RE6	40	VREF+/CVREF+/AN28/RA10
5	EBID7/AN15/PMD7/RE7	41	AVDD
6	EBIA6/AN22/RPC1/PMA6/RC1	42	AVss
7	AN35/ETXD0/RJ8	43	AN38/ETXD2/RH0
8	AN36/ETXD1/RJ9	44	AN39/ETXD3/RH1
9	EBIBS0/RJ12	45	EBIRP/RH2
10	EBIBS1/RJ10	46	RH3
11	EBIA12/AN21/RPC2/PMA12/RC2	47	EBIA10/AN48/RPB8/PMA10/RB8
12	EBIWE/AN20/RPC3/PMWR/RC3	48	EBIA7/AN49/RPB9/PMA7/RB9
13	EBIOE/AN19/RPC4/PMRD/RC4	49	CVREFOUT/AN5/RPB10/RB10
14	AN14/C1IND/RPG6/SCK2/RG6	50	AN6/RB11
15	AN13/C1INC/RPG7/SDA4/RG7	51	EBIA1/PMA1/RK1
16	AN12/C2IND/RPG8/SCL4/RG8	52	EBIA3/PMA3/RK2
17	Vss	53	EBIA17/RK3
18	VDD	54	Vss
19	EBIA16/RK0	55	VDD
20	MCLR	56	TCK/AN29/RA1
21	EBIA2/AN11/C2INC/RPG9/PMA2/RG9	57	TDI/AN30/RPF13/SCK5/RF13
22	TMS/AN24/RA0	58	TDO/AN31/RPF12/RF12
23	AN25/RPE8/RE8	59	AN7/RB12
24	AN26/RPE9/RE9	60	AN8/RB13
25	AN45/C1INA/RPB5/RB5	61	AN9/RPB14/SCK3/RB14
26	AN4/C1INB/RB4	62	AN10/RPB15/OCFB/RB15
27	AN37/ERXCLK/EREFCLK/RJ11	63	Vss
28	EBIA13/PMA13/RJ13	64	VDD
29	EBIA11/PMA11/RJ14	65	AN40/ERXERR/RH4
30	EBIA0/PMA0/RJ15	66	AN41/ERXD1/RH5
31	AN3/C2INA/RPB3/RB3	67	AN42/ERXD2/RH6
32	Vss	68	EBIA4/PMA4/RH7
33	Vdd	69	AN32/RPD14/RD14
34	AN2/C2INB/RPB2/RB2	70	AN33/RPD15/SCK6/RD15
35	PGEC1/AN1/RPB1/RB1	71	OSC1/CLKI/RC12
36	PGED1/AN0/RPB0/RB0	72	OSC2/CLKO/RC15

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.

Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more 2: information.

3: Shaded pins are 5V tolerant.

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
				Ti	imer1 thr	ough Timer	9
T1CK	48	73	A49	106	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	PPS	I	ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS	PPS	I	ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS	PPS	I	ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS	PPS	I	ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS	PPS	I	ST	Timer9 External Clock Input
	•	•	•	Real-	Time Clo	ck and Cale	endar
RTCC	46	71	A48	104	0	—	Real-Time Clock Alarm/Seconds Output
Legend: CMOS = CMOS-compatible input or output Analog = Analog input P = Power							

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levelsO = OutputTTL = Transistor-transistor Logic input bufferPPS = Peripl

Analog = Analog input

PPS = Peripheral Pin Select

I = Input

DS60001191G-page 24

		Pin Nu	mber				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP	Pin Type	Buffer Type	Description
			Unive	ersal Asyn	chronou	IS Receive	r Transmitter 1
U1RX	PPS	PPS	PPS	PPS	I	ST	UART1 Receive
U1TX	PPS	PPS	PPS	PPS	0		UART1 Transmit
U1CTS	PPS	PPS	PPS	PPS	Ι	ST	UART1 Clear to Send
U1RTS	PPS	PPS	PPS	PPS	0		UART1 Ready to Send
Universal As				rsal Asyn	chronou	s Receive	r Transmitter 2
U2RX	PPS	PPS	PPS	PPS	I	ST	UART2 Receive
U2TX	PPS	PPS	PPS	PPS	0		UART2 Transmit
U2CTS	PPS	PPS	PPS	PPS	Ι	ST	UART2 Clear To Send
U2RTS	PPS	PPS	PPS	PPS	0		UART2 Ready To Send
Universal As				ersal Asyn	chronou	Is Receive	r Transmitter 3
U3RX	PPS	PPS	PPS	PPS	I	ST	UART3 Receive
U3TX	PPS	PPS	PPS	PPS	0		UART3 Transmit
U3CTS	PPS	PPS	PPS	PPS	Ι	ST	UART3 Clear to Send
U3RTS	PPS	PPS	PPS	PPS	0		UART3 Ready to Send
			Unive	ersal Asyn	chronou	Is Receive	r Transmitter 4
U4RX	PPS	PPS	PPS	PPS	I	ST	UART4 Receive
U4TX	PPS	PPS	PPS	PPS	0		UART4 Transmit
U4CTS	PPS	PPS	PPS	PPS	Ι	ST	UART4 Clear to Send
U4RTS	PPS	PPS	PPS	PPS	0		UART4 Ready to Send
			Unive	ersal Asyn	chronou	Is Receive	r Transmitter 5
U5RX	PPS	PPS	PPS	PPS	I	ST	UART5 Receive
U5TX	PPS	PPS	PPS	PPS	0		UART5 Transmit
U5CTS	PPS	PPS	PPS	PPS	I	ST	UART5 Clear to Send
U5RTS	PPS	PPS	PPS	PPS	0	—	UART5 Ready to Send
		•	Unive	ersal Asyn	chronou	s Receive	r Transmitter 6
U6RX	PPS	PPS	PPS	PPS	I	ST	UART6 Receive
U6TX	PPS	PPS	PPS	PPS	0	_	UART6 Transmit
U6CTS	PPS	PPS	PPS	PPS	I	ST	UART6 Clear to Send
U6RTS	PPS	PPS	PPS	PPS	0	_	UART6 Ready to Send
Legend: (CMOS = CI	MOS-compa	atible input	or output		Analog =	Analog input P = Power

TABLE 1-8: UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

I = Input

© 2013-2016 Microchip Technology Inc.

IAB	LE 7-3:	11	NIERR		EGISTE	R MAP	(CONTI	NUED)											
ess.		۵								В	its								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
05E0	OFF040	31:16	_	—	—	—	_	—		—	—	_	_	_	—	_	VOFF<	17:16>	0000
0020	011040	15:0				•				VOFF<15:1	>							—	0000
05E4	OFF041	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	VOFF<	1	0000
		15:0			1					VOFF<15:1	>								0000
05E8	OFF042	31:16			—	—	—	—	_	—	_		_	—		_	VOFF<		0000
		15:0 VOFF<15:1>										0000							
05EC	OFF043	31:16 - - - - - - VOFF 0000 15:0 VOFF 15:1> - 0000																	
		31:16						_		VUFF<15.1	>	_					VOFF<	17:16	0000
05F0	OFF044	15:0								VOFF<15:1	、 、						VOITS		0000
		31:16	_			_	_			_		_	_	_	_	_	VOFF<		0000
05F8	OFF046	15:0								VOFF<15:1	>							_	0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<	17:16>	0000
05FC	OFF047	15:0								VOFF<15:1	>							—	0000
0600	OFF048	31:16	_	_	_	—	—	_	—	_	_	_	—	—	—	—	VOFF<	17:16>	0000
0600	OFF046	15:0								VOFF<15:1	>							_	0000
0604	OFF049	31:16	_	—	_	—	_	—	_	—	_	—	_	_	—	_	VOFF<	17:16>	0000
0004	011043	15:0								VOFF<15:1	>							—	0000
0608	OFF050	31:16	—	—	-	—	—	—	—	—	—	—	—	—	—	—	VOFF<	17:16>	0000
	011000	15:0			1					VOFF<15:1	>						1	—	0000
060C	OFF051	31:16			_	—	_	_	—	—	—	—	_	—	—	—	VOFF<		0000
		15:0								VOFF<15:1	>							—	0000
0610	OFF052	31:16	—		_	—	—	—	_	—	—	—	_	_	—	—	VOFF<		0000
		15:0 31:16		_	_	_	_	_	_	VOFF<15:1	>			_			VOFF<	-	0000
0614	OFF053	15:0	_							— VOFF<15:1			_		_	_	VUFF<	-	0000
		31:16				_	_	_	_	VUFF<15.1							VOFF<		0000
0618	OFF054	15:0									>								0000
		31:16						_		_			_				VOFF<	17:16>	0000
061C	OFF055	15:0								VOFF<15:1	>							_	0000
			VOFF<15:1>0000																

TARIE 7-3. INTEDDUDT DECISTED MAD (CONTINUED)

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Note 1: **Registers**" for more information.

2:

This bit or register is not available on 64-pin devices. This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

This bit or register is not available on devices without a Crypto module. 7:

8: This bit or register is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	31:24 DATA<31:24>											
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	DATA<23:16>											
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15.6	DATA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0		DATA<7:0>										

REGISTER 11-12: USBFIFOX: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 2
 TSYNC: Timer External Clock Input Synchronization Selection bit

 When TCS = 1:
 1 = External clock input is synchronized

 0 = External clock input is not synchronized
 When TCS = 0:

 When TCS = 0:
 This bit is ignored.

 bit 1
 TCS: Timer Clock Source Select bit
- 1 = External clock from T1CKI pin 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	—	_	_	_	—			
00.40	U-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	_	DASSERT	DEVSE	:L<1:0>	LANEMO	DDE<1:0>	CMDINIT<1:0>				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	TXRXCOUNT<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				TXRXCOU	NT<7:0>						

REGISTER 20-4: SQI1CON: SQI CONTROL REGISTER

Legend:

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 Unimplemented: Read as '0'

bit 22 DASSERT: Chip Select Assert bit

1 = Chip Select is deasserted after transmission or reception of the specified number of bytes
 0 = Chip Select is not deasserted after transmission or reception of the specified number of bytes

bit 21-20 DEVSEL<1:0>: SQI Device Select bits

- 11 = Reserved
- 10 = Reserved
- 01 = Select Device 1
- 00 = Select Device 0

bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits

- 11 = Reserved
- 10 = Quad Lane mode
- 01 = Dual Lane mode
- 00 = Single Lane mode

bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits

If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX FIFO. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX FIFO availability.

- 11 = Reserved
- 10 = Receive
- 01 = Transmit
- 00 = Idle

bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits

These bits specify the total number of bytes to transmit or received (based on CMDINIT)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	TXDATA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	TXDATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	TXDATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				TXDATA	<7:0>						

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, I	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Just prior to the beginning of a data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur even while a transfer is already in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24	RXDATA<31:24>											
22:46	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	RXDATA<23:16>											
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	RXDATA<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				RXDATA	<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words. These bits indicate the starting write block address for an erase operation.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—	—	—	—
	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	-		—	—	PKT DONEISE	BD DONEISE	CON THRISE
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CON	CON	RX	RX	RX	TX	TX	TX
	EMPTYISE	FULLISE	THRISE	FULLISE	EMPTYISE	THRISE	FULLISE	EMPTYISE

REGISTER 20-22: SQI1INTSEN: SQI INTERRUPT SIGNAL ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bi

R = Read	able bit	vv = vvritable bit	U = Unimplemented
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared
bit 31-11	Unimplemented: Read a	s '0'	
bit 10	PKTDONEISE: Receive E	Error Interrupt Signal Enab	le bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 9		rror Interrupt Signal Enable	e bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 8		ffer Threshold Interrupt Sig	nal Enable bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 7		Buffer Empty Interrupt Sig	nal Enable bit
	1 = Interrupt signal is ena		
bit 6	0 = Interrupt signal is disa		nabla bit
DILO		uffer Full Interrupt Signal E	
	 1 = Interrupt signal is ena 0 = Interrupt signal is disa 		
bit 5		er Threshold Interrupt Sigr	nal Enable bit
bit 0	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 4		ffer Full Interrupt Signal Er	nable bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 3	RXEMPTYISE: Receive E	Buffer Empty Interrupt Sign	al Enable bit
	1 = Interrupt signal is ena	abled	
	0 = Interrupt signal is disa	abled	
bit 2	TXTHRISE: Transmit Buff	er Threshold Interrupt Sig	nal Enable bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa	abled	
bit 1		ffer Full Interrupt Signal E	nable bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa		
bit 0		Buffer Empty Interrupt Sigr	nal Enable bit
	1 = Interrupt signal is ena		
	0 = Interrupt signal is disa	adied	

	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		FI	LTRDLY<4:0	>		S	TRGSRC<4:	2>
00.46	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	STRGSF	RC<1:0>	—	—	—		EIE<2:0> ⁽¹⁾	
15:8	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0
10.0	ADCEN ^(2,4)	—	ADSIDL	—	FRACT		—	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0			_	—	—		_	-
Legend:								
R = Readal	ole bit	W = Writable	bit	U = Unimple	mented bit, r	ead as '0'		
-n = Value		'1' = Bit is se		'0' = Bit is clo		x = Bit is unk	nown	
			1.5 TAD					
	00001 = Sar 00000 = Sar	-	.5 Tad					

00101 = TMR1 match 00100 = INTO 00011 = Reserved 00010 = Reserved 00001 = Global software trigger (GSWTRG) 00000 = No trigger

- The early interrupt feature should not be used if polling any of the ARDY bits to determine if the Note 1: conversion is complete. Early interrupts should be used only when all results from the ADC module are retrieved using an individual interrupt routine to fetch ADC results.
 - The ADCEN bit should be set only after the ADC module has been configured. Changing ADC Configura-2: tion bits when ADCEN = 1, will result in unpredictable behavior. When ADCEN = 0, the ADC clocks are disabled, the internal control logic is reset, and all status flags used by the module are cleared. However, the SFRs are available for reading and writing.
 - The rising edge of the module output signal triggers an ADC conversion. See Figure 18-1 in Section 18.0 3: "Output Compare" and Figure 31-1 in Section 31.0 "Comparator" for more information.
 - See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information. 4:

Note: The ADC module is not available for normal operations until the ADCRDY bit (AD1CON2<31>) is set.

REGISTER 28-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 21-19	Unimplemented: Read as '0'
bit 18-16	EIE<2:0>: Early Interrupt Enable bits ⁽¹⁾ These bits select the number of clocks prior to the actual arrival of valid data when the associated ARDYx bit is set. Since the ARDYx bit triggers an interrupt, these bits allow for early interrupt generation. 111 = The data ready bit, ARDYx, is set 7 TAD clocks prior to when the data is ready 100 = The data ready bit, ARDYx, is set 6 TAD clocks prior to when the data is ready 101 = The data ready bit, ARDYx, is set 5 TAD clocks prior to when the data is ready 100 = The data ready bit, ARDYx, is set 4 TAD clocks prior to when the data is ready 111 = The data ready bit, ARDYx, is set 3 TAD clocks prior to when the data is ready 112 = The data ready bit, ARDYx, is set 3 TAD clocks prior to when the data is ready 113 = The data ready bit, ARDYx, is set 2 TAD clocks prior to when the data is ready 114 = The data ready bit, ARDYx, is set 1 TAD clocks prior to when the data is ready 115 = The data ready bit, ARDYx, is set 1 TAD clock prior to when the data is ready 116 = The data ready bit, ARDYx, when the data is ready
bit 15	ADCEN: ADC Operating Mode bit ^(2,4) 1 = ADC module is enabled 0 = ADC module is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	Unimplemented: Read as '0'
bit 11	FRACT: Fractional Data Output Format bit 1 = Fractional 0 = Integer
bit 10-0	Unimplemented: Read as '0'
Note 1:	The early interrupt feature should not be used if polling any of the ARDY bits to determine if the conversion is complete. Early interrupts should be used only when all results from the ADC module are retrieved using an individual interrupt routine to fetch ADC results.
2:	The ADCEN bit should be set only after the ADC module has been configured. Changing ADC Configura- tion bits when $ADCEN = 1$, will result in unpredictable behavior. When $ADCEN = 0$, the ADC clocks are disabled, the internal control logic is reset, and all status flags used by the module are cleared. However, the SFRs are available for reading and writing.
3:	The rising edge of the module output signal triggers an ADC conversion. See Figure 18-1 in Section 18.0 "Output Compare" and Figure 31-1 in Section 31.0 "Comparator" for more information.
4:	See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.

Note: The ADC module is not available for normal operations until the ADCRDY bit (AD1CON2<31>) is set.

REGISTER 28-4: AD1IMOD: ADC1 INPUT MODE CONTROL REGISTER (CONTINUED)

bit 11-10	SH5MOD<1:0>: Input Configuration for S&H 5 (SH5) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 9-8	SH4MOD<1:0>: Input Configuration for S&H 4 (SH4) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 7-6	SH3MOD<1:0>: Input Configuration for S&H 3 (SH3) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 5-4	SH2MOD<1:0>: Input Configuration for S&H 2 (SH2) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 3-2	SH1MOD<1:0>: Input Configuration for S&H 1 (SH1) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output
bit 1-0	SHOMOD<1:0>: Input Configuration for S&H 0 (SH0) Select bits 11 = Differential inputs, two's complement (signed) data output 10 = Differential inputs, unipolar encoded (unsigned) data output 01 = Single ended inputs, two's complement (signed) data output 00 = Single ended inputs, unipolar encoded (unsigned) data output

- **Note 1:** Alternate inputs are only available for Class 1 Inputs.
 - 2: When an alternate input is selected (SHxALT<1:0> ≠ 0), the data, status, and control registers for the default Class 1 input are still used. Selecting an alternate input changes the physical input source only.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	DATA<31:24>							
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	DATA<23:16>							
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	DATA<15:8>							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				DATA	<7:0>			

REGISTER 28-18: AD1DATAn: ADC1 DATA OUTPUT REGISTER ('n' = 0 through 44)

I	Legend:			
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **DATA<31:0>:** Data Output Value bits (formatted as specified by the SHxMOD<1:0> bits for the associated S&H circuits and the FRACT bit)

Note: AD1DATAn = ANx, where 'x' and 'n' =0-42, AD1DATA 43 = IVREF, and AD1DATA44 = IVTEMP.

34.3 On-Chip Voltage Regulator

The core and digital logic for all PIC32MZ EC devices is designed to operate at a nominal 1.8V. To simplify system designs, devices in the PIC32MZ EC family incorporate an on-chip regulator providing the required core logic voltage from VDD.

34.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

34.3.2 ON-CHIP REGULATOR AND BOR

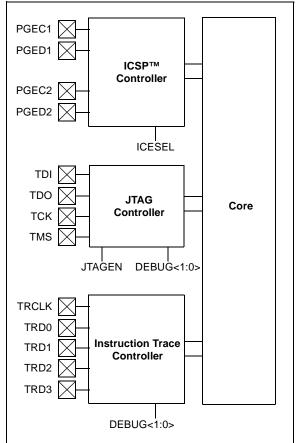
PIC32MZ EC devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 37.1** "**DC Characteristics**".

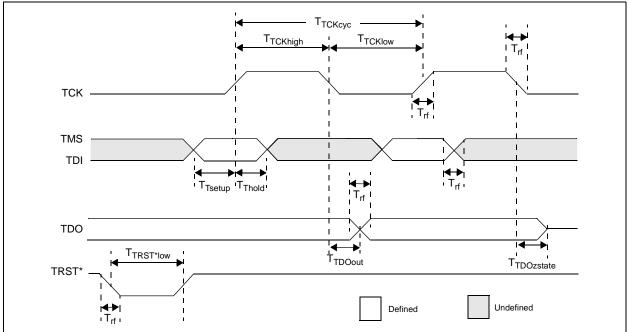
34.4 On-chip Temperature Sensor

PIC32MZ EC devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 37.2 "AC Characteristics and Timing Parameters" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see Section 28.0 "Pipelined Analog-to-Digital Converter (ADC)" for more information).

34.5 Programming and Diagnostics


PIC32MZ EC devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:


- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

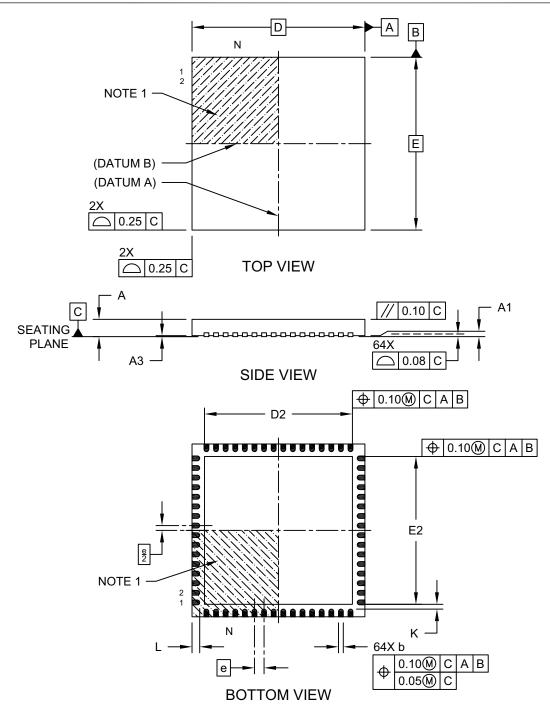
PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 34-1:

BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

FIGURE 37-30: EJTAG TIMING CHARACTERISTICS

TABLE 37-48: EJTAG TIMING REQUIREMENTS

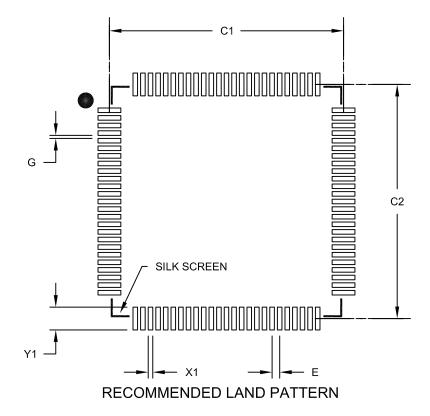

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria			
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions	
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns		
EJ2	Ттскнідн	TCK High Time	10	—	ns	—	
EJ3	TTCKLOW	TCK Low Time	10		ns	_	
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_	
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_	
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns	_	
EJ8	TTRSTLOW	TRST Low Time	25		ns	—	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

39.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-213B Sheet 1 of 2

PIC32MZ Embedded Connectivity (EC) Family

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

A.2 Analog-to-Digital Converter (ADC)

The PIC32MZ family of devices has a new Pipelined ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of **Bold** type to show differences is *not* used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3: ADC DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Clock Selection and Op	erating Frequency (TAD)
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK.	On PIC32MZ devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.
ADRC (AD1CON3<15>) 1 = FRC clock 0 = Clock derived from Peripheral Bus Clock (PBCLK)	ADCSEL<1:0> (AD1CON1<9:8>) 11 = FRC 10 = REFCLKO3 01 = SYSCLK 00 = Reserved
On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512, and a minimum divisor of two.	On PIC32MZ devices, any ADC clock source can be divided down, with a maximum divisor of 254. The input clock can also be fed directly to the ADC.
ADCS<7:0> (AD1CON3<7:0>) 11111111 = 512 * TPB = TAD • • 00000001 = 4 * TPB = TAD 00000000 = 2 * TPB = TAD	ADCDIV<6:0> (AD1CON1<6:0>) 1111111 = 254 * TQ = TAD • • 0000011 = 6 * TQ = TAD 0000010 = 4 * TQ = TAD 0000001 = 2 * TQ = TAD 0000000 = TQ = TAD
Scan Trigg	ger Source
On PIC32MX devices, there are four sources that can trigger a scan conversion in the ADC module: Auto, Timer3, INT0, and clearing the SAMP bit.	On PIC32MZ devices, the list of sources for triggering a scan conversion has been expanded to include the comparators, Out- put Compare, and two additional Timers. In addition, trigger sources can be simulated by setting the RQCNVRT (AD1CON3<29>) bit.
SSRC<2:0> (AD1CON1<7:5>) 111 = Auto convert 110 = Reserved 101 = Reserved 011 = Reserved 010 = Timer3 period match 001 = Active transition on INTO pin 000 = Clearing SAMP bit	STRGSRC<4:0> (AD1CON1<26:22>) 11111 = Reserved • • • • • • • • • • • • •

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2016, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1186-4