

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ech100t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 microAptiv[™] Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the microAptiv core, which is included on PIC32MZ EC family devices.

INE OISTE													
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0					
31:24		—	_	_	—		_	ISP					
00.40	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0					
23:16	DSP	UDI	SB	MDU	—	MM<	BM						
15.0	R-0 R-0		R-0	R-0 R-0		R-1 R-0		R-0					
15:8	BE	AT<	1:0>		AR<2:0>		<2:1>						
7.0	R-1	U-0	U-0	U-0 U-0		R/W-0	R/W-1	R/W-0					
7:0	MT<0>	—	_	_	—		K0<2:0>						

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.

bit 30-25	Unimplemented: Read as '0'
bit 24	ISP: Instruction Scratch Pad RAM bit 0 = Instruction Scratch Pad RAM is not implemented
bit 23	DSP: Data Scratch Pad RAM bit 0 = Data Scratch Pad RAM is not implemented
bit 22	UDI: User-defined bit 0 = CorExtend User-Defined Instructions are not implemented
bit 21	SB: SimpleBE bit 1 = Only Simple Byte Enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit 0 = Fast, high-performance MDU
bit 19	Unimplemented: Read as '0'
bit 18-17	MM<1:0>: Merge Mode bits 10 = Merging is allowed
bit 16	BM: Burst Mode bit 0 = Burst order is sequential
bit 15	BE: Endian Mode bit 0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits 00 = MIPS32
bit 12-10	AR<2:0>: Architecture Revision Level bits 001 = MIPS32 Release 2
bit 9-7	MT<2:0>: MMU Type bits 001 = microAptiv MPU Microprocessor core uses a TLB-based MMU
bit 6-3	Unimplemented: Read as '0'
bit 2-0	K0<2:0>: Kseg0 Coherency Algorithm bits 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached

000 = Cacheable, non-coherent, write-through, no write allocate

All other values are not used and are mapped to other values. Values 100, 101, and 110 are mapped to 010. Value 111 is mapped to 010.

bit 31

FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 2048 KB OF PROGRAM MEMORY^(1,2)

	Virtual Memory Map		Physical Memory Map	
0xFFFFFFF	Reserved		Reserved	0xFFFFFFF
0xF4000000	F			
0xF3FFFFFF 0xF0000000	External Memory via SQI	(not cacheable)		0x34000000
02F000000	50			0x34000000 0x33FFFFFF
0xE4000000	Reserved		External Memory via	0,00111111
0xE3FFFFF	External Memory via	Ê	SQI	0x30000000
0xE0000000	EBI			
			Reserved	0x24000000
0xD4000000	Reserved			0x23FFFFFF
0xD3FFFFF	External Memory via	e e	External Memory via EBI	
0xD0000000	SQI	as (LDI	0x20000000
	Reserved	KSEG2 ⁽⁴⁾ (cacheable)	Reserved	
0xC4000000		Ϋ́	noconvou	0x1FC74000
0xC3FFFFF	External Memory via		Boot Flash	0x1FC73FFF
0xC0000000	EBI		(see Figure 4-5)	
0xBFFFFFF	Reserved			0x1FC00000
0xBFC74000 0xBFC73FFF		4	Reserved	0x1F900000
UXBFC/3FFF	Boot Flash			0x1F8FFFF
0xBFC00000	(see Figure 4-5)		SFRs	
			(see Table 4-1)	0x1F800000
0xBF900000	Reserved			
0xBF8FFFFF			Reserved	
	SFRs			0x1D200000
0xBF800000	(see Table 4-1)	head		0x1D1FFFFF
	Deserved	KSEG	Program Flash	
0xBD200000	Reserved	KSEG (not cacheable)		0x1D000000
0xBD1FFFFF		「 E	Reserved	
	Program Flash		Reserved	0x00080000
0xBD000000			RAM ⁽³⁾	0x0007FFF
01.0000000	Reserved			0x0000000
0xA0080000				
0xA007FFFF	RAM ⁽³⁾			
0xA000000				
024000000		\leq		
0x9FC74000	Reserved			
0x9FC73FFF		1 /		
	Boot Flash (see Figure 4-5)			
0x9FC00000	(See Figure 4-5)			
	Reserved	0 ple)		
0x9D200000		KSEG0 (cacheable)		
0x9D1FFFF		act		
	Program Flash	9		
0x9D000000				
0.480080000	Reserved			
0x80080000 0x8007FFFF		-		
0000071111	RAM ⁽³⁾			
0x80000000	TO UN			
0x00000000	Reserved			
		_		
	Memory areas are not s			
		TLB are initialized by compil		
	-	d into two equal banks: RAM		-
4:	I ne MMU must be ena	bled and the TLB must be se	et up to access this segme	ent.

Bit Range	Bit Bit e 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—		_	—	—	
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—		_	—	—	
45.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	—	—	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV	
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	T0PGV	

REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-14 Unimplemented: Read as '0'

bit 13-0 **TxPGV:** Target 'x' Permission Group Violation Status bits ('x' = 0-13)

Refer to Table 4-6 for the list of available targets and their descriptions.

- 1 = Target is reporting a Permission Group (PG) violation
- 0 = Target is not reporting a PG violation

Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

		$(\mathbf{X} = 0 - 13)$						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6			Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—		_	—	_		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	_	—	_	-	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0 U-0		R-0
7:0		_			_	_		CLEAR

REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_			_	_	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_			_		—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
7:0								CLEAR

Legend:

_ogonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-6 for the list of available targets and their descriptions.

© 2013-2016 Microchip Technology Inc.

NOTES:

	BLE 7-3:	II	NIERR		EGISTE		(CONTI	NUED)											
ess	_	æ								В	its								s
Virtual Address (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0660	OFF072	31:16	_	_	—	—	_	—	_	—			—	—	_		VOFF<1	7:16>	0000
0000	011072	15:0								VOFF<15:1	>							_	0000
0664	OFF073	31:16	_	_	—	—	_		—	—	_	_	—	—	—	_	VOFF<1		0000
		15:0			1					VOFF<15:1									0000
0668	OFF074	31:16	—	—	_	—	_	—	—	-	_	_	_	—		_	VOFF<1	7:16>	0000
		15:0			1	1		i		VOFF<15:1	>	i	i	i	i		VOFF<1		0000
066C	OFF075	31:16 15:0	—		_	_		—	—				_	_		_	VUFF<1	7:16>	0000
		31:16	_					_	_	VUFF<15.1	<u> </u>					_	VOFF<1	7:16>	0000
0670	OFF076	15:0								VOFF<15:1							VOITS		0000
	(1)	31:16	_	_	_		_	_	_	_	_	_	_	_	_		VOFF<1		0000
0674	OFF077 ⁽²⁾	15:0								VOFF<15:1	>							-	0000
	. (2)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	VOFF<1	7:16>	0000
0678	OFF078 ⁽²⁾	15:0								VOFF<15:1	>							_	0000
0670	OFF079 ⁽²⁾	31:16	_	_	—	_	—	—	—	_	_	_	—	—	_	_	VOFF<1	7:16>	0000
067C	OFF0/9 /	15:0								VOFF<15:1	>							_	0000
0680	OFF080 ⁽²⁾	31:16	_	_	—	—	_	—	—	—	_	—	—	—	—	_	VOFF<1	7:16>	0000
0000	011000	15:0								VOFF<15:1	>							_	0000
0684	OFF081 ⁽²⁾	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	VOFF<1	7:16>	0000
	0.1.001	15:0								VOFF<15:1	>							_	0000
0688	OFF082 ⁽²⁾	31:16	—	—	—	—	—	—	_	—		—	_	—	_		VOFF<1	7:16>	0000
		15:0								VOFF<15:1								_	0000
068C	OFF083 ⁽²⁾	31:16	—	—	—	—	—	—	_		_	_	—	—	—		VOFF<1		0000
		15:0 31:16	_	_	_					VOFF<15:1			_	_	_		VOFF<1		0000
0690	OFF084 ⁽²⁾	15:0	_		_	—	_	—	—	— VOFF<15:1	_	_					V0FF<1		0000
		31:16					_	_	_	VUFF<15.1	<u> </u>						VOFF<1		0000
0694	OFF085 ⁽²⁾	15:0								VOFF<15:1				1			0.10		0000
		31:16	_	—	_	—	_	_	_	_			_	—	—	_	VOFF<1	7:16>	0000
0698	OFF086 ⁽²⁾	15:0						1		VOFF<15:1		1		1	1			_	0000
	l								in have de sin										

TARIE 7-3. INTEDDUDT DECISTED MAD (CONTINUED)

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1: All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV **Registers**" for more information.

2:

This bit or register is not available on 64-pin devices. This bit or register is not available on devices without a CAN module. 3:

This bit or register is not available on 100-pin devices. 4:

5: Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64-pin devices.

6: Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 31 is not available on 124-pin devices; bit 22 is not available on 64-pin devices.

This bit or register is not available on devices without a Crypto module. 7:

This bit or register is not available on 124-pin devices. 8:

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER (CONTINUED)

- bit 4 **CHAEN:** Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 **CHEDET:** Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	—	—	_	_	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	_	_	—	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23	CHSDIE: Channel Source Done Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 22	CHSHIE: Channel Source Half Empty Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	 1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ) 0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2) 0 = No interrupt is pending

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to the pin name tables (Table 2 through Table 5) for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MZ EC devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change
	notification pins should always be
	disabled when the port pin is configured as
	a digital output.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

TABLE 12-11: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY

ess										E	Bits								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0400	ANSELE	31:16	—	—	_	_	—		—	—		—	_	_	—	—	—	—	0000
0400	ANGELE	15:0		-		-	_		—	—	ANSE7	ANSE6	ANSE5	ANSE4	—	—	—	—	00F0
0410	TRISE	31:16	-	-	_	-	—	_	_	_	_	—	-	-	_	_	_	_	0000
0410	TRISE	15:0	-	-	_		_		_	_	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	OOFF
0420	PORTE	31:16			_		_		_	_		_			-	_	_	_	0000
0420	PORTE	15:0			_	—	_	—	—	—	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
0430	LATE	31:16			_		_		_	_		_			-	_	_	_	0000
0430	LAIL	15:0	-	-	_		_		-	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
0440	ODCE	31:16	-	-	_		_		-	_	_	_			_	_	_	-	0000
0440	ODCL	15:0	-	-	_		_		-	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	0000
0450	CNPUE	31:16	_	_	_		—		_	_	_	-			—		_	-	0000
0430		15:0	—	—	—	—	—	—	—	—	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
0460	CNPDE	31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	_	—	—	0000
0400		15:0	—	—	—	—	—	-	—	—	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
0470	CNCONE	31:16	—	—	—	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0470	CINCOINE	15:0	ON	—	SIDL	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0480	CNENE	31:16	—	—	—	—	—	-	—	—	—	—	_	_	—	_	—	—	0000
0400	CINEME	15:0	—	—	—	—	—	-	—	—	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
		31:16	_	_	_		—		—	—	—	-		1	—	—	—	—	0000
0490	CNSTATE	15:0	_	_	_	-	_	_	_	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	0000

Legend: x = Unknown value on Reset; -- = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register. The available configurations are shown in Table 18-1.

TABLE 18-1:	TIMER SOURCE
	CONFIGURATIONS

Output Compare Module	Timerx	Timery
OCACLK (CFGC	ON<16>) = 0	
OC1	Timer2	Timer3
•	•	•
•	•	•
OC9	• Timer 2	• Timer 3
OCACLK (CFGC	ON<16>) = 1	
OC1	Timer4	Timer5
OC2	Timer4	Timer5
OC3	Timer4	Timer5
OC4	Timer2	Timer3
OC5	Timer2	Timer3
OC6	Timer2	Timer3
OC7	Timer6	Timer7
OC8	Timer6	Timer7
OC9	Timer6	Timer7

25.1 RTCC Control Registers

TABLE 25-1: RTCC REGISTER MAP

ess		6									Bits								s
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0C00	RTCCON	31:16	_	—	—	—							CAL	<9:0>					0000
0000	RICCON	15:0	ON		SIDL	—	—	RTCCLK	SEL<1:0>	RTCOUT	SEL<1:0>	RTCCLKON		—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0010	RTCALRM	31:16	-	_	_	—	—	_	_	_	-	_	_	_	-		—	_	0000
0010	RICALINI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	<<3:0>					ARPT	<7:0>				0000
0000	RTCTIME	31:16	-		HR1	0<1:0>		HR01	<3:0>		—	N	1IN10<2:0>			MIN01	<3:0>		xxxx
0020	RICTIME	15:0	_		SEC10<2:0)>		SEC0 ²	<3:0>		_	_	_	_	_	_	—	_	xx00
0000		31:16		YEAR	10<3:0>			YEAR0	1<3:0>		_	_	_	MONTH10		MONTH	01<3:0>		xxxx
0030	RTCDATE	15:0	_	_	DAY1	0<1:0>		DAY0'	<3:0>		_	_	_	_	_	W	/DAY01<2:0	>	xx00
		31:16	_	_	HR1	0<1:0>		HR01	<3:0>		_	N	1IN10<2:0>			MIN01	<3:0>		xxxx
0C40	ALRMTIME	15:0	_		SEC10<2:0)>		SEC0 ²	<3:0>		_	—	—		_	_	_	_	xx00
0050		31:16	_	_	—	—	_	_	_	_	_	_	_	MONTH10		MONTH	01<3:0>		00xx
0050	ALRMDATE	15:0	_	_	DAY1	0<1:0>		DAY0'	<3:0>		—	—		—	—	W	/DAY01<2:0	>	xx0x

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	-	_	-	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16			-		-			—
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8		_	_	LOAD	_	CONT	PRNGEN	TRNGEN
7.0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
7:0				PLEN<	:7:0>			

REGISTER 27-2: RNGCON: RANDOM NUMBER GENERATOR CONTROL REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 **Unimplemented:** Read as '0'

bit 12 LOAD: Device Select bit

This bit is self-clearing and is used to load the seed from the TRNG (i.e., the random value) as a seed to the PRNG.

- bit 11 Unimplemented: Read as '0'
- bit 10 CONT: PRNG Number Shift Enable bit
 - 1 = The PRNG random number is shifted every cycle
 - 0 = The PRNG random number is shifted when the previous value is removed
- bit 9 PRNGEN: PRNG Operation Enable bit
 - 1 = PRNG operation is enabled
 - 0 = PRNG operation is not enabled
- bit 8 TRNGEN: TRNG Operation Enable bit

1 = TRNG operation is enabled

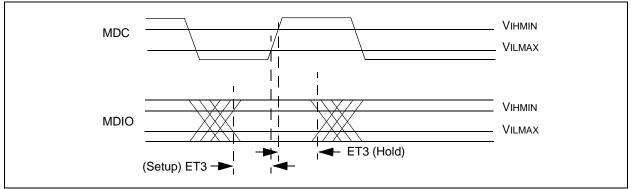
- 0 = TRNG operation is not enabled
- bit 7-0 **PLEN<7:0>:** PRNG Polynomial Length bits These bits contain the length of the polynomial used for the PRNG.

TABLE 28-1: ADC REGISTER MAP (CONTINUED)

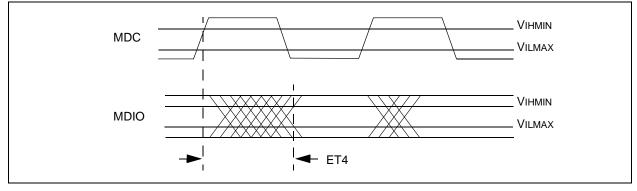
ess										Bits									
Virtual Address (BF84_#)	Register Name			27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets			
D040	AD1CMPEN5	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	000
B048	AD1CMPEN5	15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B04C	AD1CMP5	31:16								ADCMPHI<15:	0>								000
D040	AD ICIMI 3	15:0						-		ADCMPLO<15				-		-			000
B050	AD1CMPEN6	31:16		CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20		CMPE18	CMPE17	CMPE16	_
2000		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	000
B054	AD1CMP6	31:16								ADCMPHI<15:									000
		15:0								ADCMPLO<15	1								000
B058	AD1FLTR1	31:16	AFEN	_	_	(OVRSAM<2:	0>	AFGIEN	AFRDY	_	_			CHNLI	D<5:0>			000
		15:0								LTRDATA<15	-								000
B05C	AD1FLTR2	31:16	AFEN	_	_	(OVRSAM<2:	0>	AFGIEN	AFRDY		_			CHNLI	D<5:0>			000
		15:0								LTRDATA<15	:0>								000
B060	AD1FLTR3	31:16	AFEN	_	—	(OVRSAM<2:	0>	AFGIEN	AFRDY		—			CHNLI	D<5:0>			000
		15:0								LTRDATA<15	:0>								000
B064	AD1FLTR4	31:16	AFEN	_	—	(OVRSAM<2:	0>	AFGIEN	AFRDY		—			CHNLI	D<5:0>			
		15:0				FLTRDATA<15:0>								000					
B068	AD1FLTR5	31:16	AFEN	—	—	(OVRSAM<2:	0>	AFGIEN	AFRDY	—	—			CHNLI	D<5:0>			000
		15:0				1				LTRDATA<15			1						000
B06C	AD1FLTR6	31:16	AFEN	—	—	(OVRSAM<2:	0>	AFGIEN	AFRDY	—	—			CHNLI	D<5:0>			000
		15:0								FLTRDATA<15	:0>		-						000
B070	AD1TRG1	31:16	—	_	_			TRGSRC3<			—	_	—			GSRC2<4			000
		15:0	_	—	_			TRGSRC1<			_	_	_			GSRC0<4			000
B074	AD1TRG2	31:16	—	-	-			TRGSRC7<			-	_	_			GSRC6<4			000
	-	15:0						TRGSRC5<			_					GSRC4<4			000
B078	AD1TRG3	31:16	_	_	_	_		TRGSRC11			_	—	—			GSRC10<			000
		15:0 31:16	_	_				TRGSRC9<	4:0>		_		_			GSRC8<4	:0>		000
B090	AD1CMPCON1	15:0				_	_	AINID<4:0				— DCMPGIEN		IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
		31:16					_	AINID<4.	J>	_								IELOLO	000
B094	AD1CMPCON2	15:0						AINID<4:0				DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
		31:16	_	_		_				_									000
B098	AD1CMPCON3	15:0	_	_	_			AINID<4:0)>		ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
		31:16	_	_	_		_		_	_					—				000
B09C	AD1CMPCON4	15:0		_	_			AINID<4:0	0>		ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000
-		31:16	_	_	_		_	_	_	_	_	_	_	_	_	-	_	_	000
B0A0	AD1CMPCON5	15:0	_	_	_					IELOLO	000								
B 4 • •		31:16	_	_	_		—	—	—	_	—	_	—	_	_	_	—	—	000
B0A4	AD1CMPCON6	15:0	_	_	_			AINID<4:0)>		ENDCMP	DCMPGIEN		IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO	000

PIC32MZ Embedded Connectivity (EC) Family

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)


- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Reserved
 - 101 = LPRC
 - 100 **= S**OSC
 - 011 = Reserved
 - 010 = Posc (HS, EC)
 - 001 = SPLL
 - 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

NOTES:


TABLE 37-45: ETHERNET MODULE SPECIFICATIONS

АС СНА	RACTERISTICS	(unless	d Operatin otherwise g temperati	stated)		to 3.6V 85°C for Industrial
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions
MIIM Tin	ning Requirements		•		•	
ET1	MDC Duty Cycle	40	—	60	%	—
ET2	MDC Period	400	—	—	ns	—
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 37-24
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 37-25
MII Timi	ng Requirements					
ET5	TX Clock Frequency	_	25	—	MHz	—
ET6	TX Clock Duty Cycle	35	—	65	%	—
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 37-26
ET8	RX Clock Frequency		25	—	MHz	—
ET9	RX Clock Duty Cycle	35	—	65	%	—
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 37-27
RMII Tin	ning Requirements					
ET11	Reference Clock Frequency	_	50	—	MHz	_
ET12	Reference Clock Duty Cycle	35	—	65	%	—
ET13	ETXDx, ETEN, Setup and Hold	2	—	16	ns	—
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	16	ns	—

FIGURE 37-24: MDIO SOURCED BY THE PIC32 DEVICE

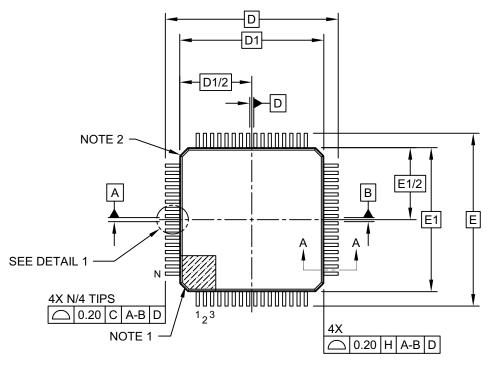
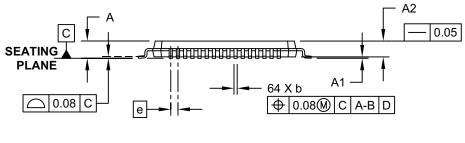


FIGURE 37-25: MDIO SOURCED BY THE PHY



64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Fail-Safe Clock Monitor (FSCM)	
On PIC32MX devices, the internal FRC became the clock source on a failure of the clock source.	On PIC32MZ devices, a separate internal Backup FRC (BFRC) becomes the clock source upon a failure at the clock source.
On PIC32MX devices, a clock failure resulted in the triggering of a specific interrupt when the switchover was complete.	On PIC32MZ devices, a NMI is triggered instead, and must be handled by the NMI routine.
FSCM generates an interrupt.	FSCM generates a NMI.
	The definitions of the FCKSM<1:0> bits has changed on PIC32MZ devices.
FCKSM<1:0> (DEVCFG1<15:14>)	FCKSM<1:0> (DEVCFG1<15:14>)
1x = Clock switching is disabled, FSCM is disabled	11 = Clock switching is enabled and clock monitoring
01 = Clock switching is enabled, FSCM is disabled	is enabled
00 = Clock switching is enabled, FSCM is enabled	10 = Clock switching is disabled and clock monitoring
	is enabled 01 = Clock switching is enabled and clock monitoring is disabled 00 = Clock switching is disabled and clock monitoring is disabled
On PIC32MX devices, the CF (OSCCON<3>) bit indicates a clock failure. Writing to this bit initiates a FSCM event.	On PIC32MZ devices, the CF (OSCCON<3>) bit has the same functionality as that of PIC32MX device; however, an additional CF(RNMICON<1>) bit is available to indicate a NMI event. Writing to this bit causes a NMI event, but not a FSCM event.
On PIC32MX devices, the CLKLOCK (OSCCON<7>) bit is controlled by the FSCM.	On PIC32MZ devices, the CLKLOCK (OSCCON<7>) bit is not impacted by the FSCM.
CLKLOCK (OSCCON<7>)	CLKLOCK (OSCCON<7>)
If clock switching and monitoring is disabled (FCKSM<1:0> = $1x$):	1 = Clock and PLL selections are locked
1 = Clock and PLL selections are locked	0 = Clock and PLL selections are not locked and may be modified
0 = Clock and PLL selections are not locked and may be modified	
If clock switching and monitoring is enabled (FCKSM<1:0> = $0x$): Clock and PLL selections are never locked and may be modified.	

Table A-2 illustrates the difference in code setup of the respective parts for maximum speed using an external 24 MHz crystal.

TABLE A-2: CODE DIFFERENCES FOR MAXIMUM SPEED USING AN EXTERNAL 24 MHz CRYSTAL

PIC32MX5XX/6XX/7XX at 80 MHz	PIC32MZ at 200 MHz
<pre>#include <xc.h></xc.h></pre>	<pre>#include <xc.h></xc.h></pre>
#pragma config POSCMOD = HS	#pragma config POSCMOD = HS
<pre>#pragma config FNOSC = PRIPLL</pre>	<pre>#pragma config FNOSC = SPLL</pre>
	<pre>#pragma config FPLLICLK = PLL_POSC</pre>
<pre>#pragma config FPLLIDIV = DIV_6</pre>	<pre>#pragma config FPLLIDIV = DIV_3</pre>
	<pre>#pragma config FPLLRNG = RANGE_5_10_MHZ</pre>
<pre>#pragma config FPLLMUL = MUL_20</pre>	<pre>#pragma config FPLLMULT = MUL_50</pre>
<pre>#pragma config FPLLODIV = DIV_1</pre>	<pre>#pragma config FPLLODIV = DIV_2</pre>
<pre>#define SYSFREQ (8000000L)</pre>	<pre>#define SYSFREQ (20000000L)</pre>

A.3 CPU

The CPU in the PIC32MZ family of devices has been changed to the MIPS microAptivTM MPU architecture. This CPU includes DSP ASE, internal data and instruction L1 caches, and a TLB-based MMU.

Table A-4 summarizes some of the key differences (indicated by **Bold** type) in the internal CPU registers.

TABLE A-4: CPU DIFFERENCES

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
L1 Data and Instruction Cache and Prefetch Wait States	
On PIC32MX devices, the cache was included in the prefetch module outside the CPU.	On PIC32MZ devices, the CPU has a separate L1 instruction and data cache in the core. The PREFEN<1:0> bits still enable the prefetch module; however, the K0<2:0> bits in the CP0 registers controls the internal L1 cache for the designated regions.
 PREFEN<1:0> (CHECON<5:4>) 11 = Enable predictive prefetch for both cacheable and non-cacheable regions 10 = Enable predictive prefetch for non-cacheable regions only 01 = Enable predictive prefetch for cacheable regions only 00 = Disable predictive prefetch 	PREFEN<1:0> (PRECON<5:4>) 11 = Enable predictive prefetch for any address 10 = Enable predictive prefetch for CPU instructions and CPU data 01 = Enable predictive prefetch for CPU instructions only 00 = Disable predictive prefetch
DCSZ<1:0> (CHECON<9:8>) Changing these bits causes all lines to be reinitialized to the "invalid" state. 11 = Enable data caching with a size of 4 lines 10 = Enable data caching with a size of 2 lines 01 = Enable data caching with a size of 1 line 00 = Disable data caching CHECOH (CHECON<16>) 1 = Invalidate all data and instruction lines 0 = Invalidate all data and instruction lines 0 = Invalidate all data and instruction lines	K0<2:0> (CP0 Reg 16, Select 0) 011 = Cacheable, non-coherent, write-back, write allocate 010 = Uncached 001 = Cacheable, non-coherent, write-through, write allocate 000 = Cacheable, non-coherent, write-through, no write allocate
	The Program Flash Memory read wait state frequency points have changed in PIC32MZ devices. The register for accessing the PFMWS field has changed from CHECON to PRECON.
PFMWS<2:0> (CHECON<2:0>) 111 = Seven Wait states 110 = Six Wait states 101 = Five Wait states 100 = Four Wait states 011 = Three Wait states 010 = Two Wait states (61-80 MHz) 001 = One Wait state (31-60 MHz) 000 = Zero Wait state (0-30 MHz)	PFMWS<2:0> (PRECON<2:0>) 111 = Seven Wait states • • • • • • • • • • • • •