

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	53
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ecm064t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. This document is not intended to be a comprehensive reference source. For detailed information, refer to Section 48. "Memory Organization and Permissions" (DS60001214), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ EC microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs) and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EC devices allow execution from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- · Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read-Write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EC microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ EC devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for SFRs.

				SBTxREG	Gy Register				SBTxRD	y Register	SBTxWR	y Register
Target Number	Target Description ⁽⁵⁾	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0)	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
0	System Bus	SBT0REG0	R	0x1F8F0000	R	64 KB	_	0	SBT0RD0	R/W ⁽¹⁾	SBT0WR0	R/W ⁽¹⁾
0		SBT0REG1	R	0x1F8F8000	R	32 KB		3	SBT0RD1	R/W ⁽¹⁾	SBT0WR1	R/W ⁽¹⁾
	Flash Memory ⁽⁶⁾ :	SBT1REG0	R	0x1D000000	R ⁽⁴⁾	R ⁽⁴⁾		0	SBT1RD0	R/W ⁽¹⁾	SBT1WR0	0, 0, 0, 0
	Program Flash Boot Flash	SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
	Prefetch Module	SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ⁽¹⁾	SBT1WR3	0, 0, 0, 0
1		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ⁽¹⁾	SBT1WR4	0, 0, 0, 0
I		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ⁽¹⁾	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ⁽¹⁾	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ⁽¹⁾	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ⁽¹⁾	SBT1WR8	0, 0, 0, 0
	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	R ⁽⁴⁾	R ⁽⁴⁾	_	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
2		SBT2REG1	R/W	R/W	R/W	R/W	_	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	R ⁽⁴⁾	-	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
3		SBT3REG1	R/W	R/W	R/W	R/W	_	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via EBI and EBI Module ⁽⁶⁾	SBT4REG0	R	0x20000000	R	64 MB	—	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
4	Module	SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
	Peripheral Set 1: System Control	SBT5REG0	R	0x1F800000	R	128 KB	_	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	Flash Control	SBT5REG1	R/W	R/W	R/W	R/W	_	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
5	DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾

Note 1: Reset values for these bits are '0', '1', '1', '1', respectively.

2:

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset. The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. 3:

4: Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.

5: See Table 4-1for information on specific target memory size and start addresses.

6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

7.2 Interrupts

The PIC32MZ EC family uses variable offsets for vector spacing. This allows the interrupt vector spacing to be configured according to application needs. A unique interrupt vector offset can be set for each vector using its associated OFFx register.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION

For details on the Variable Offset feature, refer to **8.5.2 "Variable Offset"** in **Section 8. "Interrupt Controller"** (DS60001108) of the *"PIC32 Family Reference Manual"*.

IC32MZ

Π

mbedded

onnectivity

Π

Family

Table 7-2 provides the Interrupt IRQ, vector and bit location information.

(1)		IRQ			Interru	upt Bit Location		Persistent
Interrupt Source ⁽¹⁾	XC32 Vector Name	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
	Highest N	latura	Order Priority					
Core Timer Interrupt	_CORE_TIMER_VECTOR	0	OFF000<17:1>	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
Core Software Interrupt 0	_CORE_SOFTWARE_0_VECTOR	1	OFF001<17:1>	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
Core Software Interrupt 1	_CORE_SOFTWARE_1_VECTOR	2	OFF002<17:1>	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
External Interrupt	_EXTERNAL_0_VECTOR	3	OFF003<17:1>	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
Timer1	_TIMER_1_VECTOR	4	OFF004<17:1>	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
Input Capture 1 Error	_INPUT_CAPTURE_1_ERROR_VECTOR	5	OFF005<17:1>	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
Input Capture 1	_INPUT_CAPTURE_1_VECTOR	6	OFF006<17:1>	IFS0<6>	IEC0<6>	IPC1<20:18>	IPC1<17:16>	Yes
Output Compare 1	_OUTPUT_COMPARE_1_VECTOR	7	OFF007<17:1>	IFS0<7>	IEC0<7>	IPC1<28:26>	IPC1<25:24>	No
External Interrupt 1	_EXTERNAL_1_VECTOR	8	OFF008<17:1>	IFS0<8>	IEC0<8>	IPC2<4:2>	IPC2<1:0>	No
Timer2	_TIMER_2_VECTOR	9	OFF009<17:1>	IFS0<9>	IEC0<9>	IPC2<12:10>	IPC2<9:8>	No
Input Capture 2 Error	_INPUT_CAPTURE_2_ERROR_VECTOR	10	OFF010<17:1>	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>	Yes
Input Capture 2	_INPUT_CAPTURE_2_VECTOR	11	OFF011<17:1>	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>	Yes
Output Compare 2	_OUTPUT_COMPARE_2_VECTOR	12	OFF012<17:1>	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>	No
External Interrupt 2	_EXTERNAL_2_VECTOR	13	OFF013<17:1>	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>	No
Timer3	_TIMER_3_VECTOR	14	OFF014<17:1>	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>	No
Input Capture 3 Error	_INPUT_CAPTURE_3_ERROR_VECTOR	15	OFF015<17:1>	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>	Yes
Input Capture 3	_INPUT_CAPTURE_3_VECTOR	16	OFF016<17:1>	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>	Yes
Output Compare 3	_OUTPUT_COMPARE_3_VECTOR	17	OFF017<17:1>	IFS0<17>	IEC0<17>	IPC4<12:10>	IPC4<9:8>	No
External Interrupt 3	_EXTERNAL_3_VECTOR	18	OFF018<17:1>	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>	No
Timer4	_TIMER_4_VECTOR	19	OFF019<17:1>	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>	No
Input Capture 4 Error	_INPUT_CAPTURE_4_ERROR_VECTOR	20	OFF020<17:1>	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals.

2: This interrupt source is not available on 64-pin devices.

3: This interrupt source is not available on 100-pin devices.

4: This interrupt source is not available on 124-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	_	—	—	—	—	—	—	—		
22.46	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
23:16	—						VOFF<17:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		•		VOFF	<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
7:0	VOFF<7:1>									

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

bit 17-1 VOFF<17:1>: Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	—	—	_	_	F	RCDIV<2:0>	
00.40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	DRMEN	SOSCRDY	—	_	_	—	—	—
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		_		NOSC<2:0>	
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y
7:0	CLKLOCK	ULOCK	SLOCK	SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Co	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-27 Unimplemented: Read as '0'

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2
- 000 = FRC divided by 1 (default setting)
- bit 23 DRMEN: Dream Mode Enable bit
 - 1 = Dream mode is enabled
 - 0 = Dream mode is disabled
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - 110 = Back-up Fast RC (BFRC) Oscillator
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO (DEVCFG1<7>) bit. When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

ess										Bit	s								
VII LUAI AULIESS (BF81_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
	DCH1SSIZ	31:16	_		—			_		—		—	_	_	_		_		00
170	DOITISSIZ	15:0								CHSSIZ	<15:0>								00
180	DCH1DSIZ	31:16	_	_	—	_	—	_	—	_	_	—	—	—	—	—	—	—	0
100	DCITIDOIZ	15:0								CHDSIZ	<15:0>	-	-	-			-		0
100	DCH1SPTR	31:16	—	—	—	_	—	_	—	—	—				_	—	—	—	0
190		15:0								CHSPTR	<15:0>								0
140	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0
/ 10		15:0								CHDPTR	<15:0>								(
B0	DCH1CSIZ	31:16	_		—	_		_	_	_	—	—	_	—	—	—	—	—	(
50		15:0								CHCSIZ	<15:0>								(
CO	DCH1CPTR	31:16	_		—	_		_	_	_	—	—	_	—	—	—	—	—	(
		15:0								CHCPTR	<15:0>								(
D0	DCH1DAT	31:16	—	_	—	_	—	_	—	—	—	—	—	—	—	—	—	—	(
		15:0								CHPDAT	<15:0>						-		(
IE0	DCH2CON	31:16				CHPIG					-	—	—	—	_	—	—	—	(
		15:0	CHBUSY	—	CHPIGNEN	—	CHPATLEN	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	21<1:0>	(
IF0	DCH2ECON	31:16	—	—	—	—	—	—	—	—		-	-	CHAIR					(
		15:0				CHSIR	Q<7:0>				CFORCE		PATEN	SIRQEN	AIRQEN	—	-	—	I
200	DCH2INT	31:16	—		—	_	—	_	—	_	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	(
		15:0	—	_	—	_	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	_
210	DCH2SSA	31:16								CHSSA-	<31:0>								(
-		15:0																	(
220	DCH2DSA	31:16								CHDSA-	<31:0>								(
		15:0																	(
230	DCH2SSIZ	31:16	—	_	—	_	_	_	_	-	-	—	_	_	—	_	—	_	(
		15:0								CHSSIZ	<15:0>						r		(
240	DCH2DSIZ	31:16	—	_	—	_	_	_	_		-	_	_	_	_	_	—	_	(
		15:0 31:16	_							CHDSIZ	<15:0>					_			0
250	DCH2SPTR		_	_	_	_		_				_	_	_	_	_	_	_	0
		15:0 31:16					_			CHSPTR	<10:0>		_	_	_	_			0
260	DCH2DPTR		—		—	_				CHDPTR						_	—	—	0
		15:0									<10:0>								0
270	DCH2CSIZ	31:16	_	_	_	_	_	_	_			_		_	_		_	—	C
		15:0					s '0'. Reset v			CHCSIZ	<15:0>								0

PIC32MZ Embedded Connectivity (EC) Family

All registers in this table have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TAE	BLE 11-	1:	USB R	EGISTER	R MAP	(CONT	NUED)												- 1
					r	1	1	r	r —		Bits	1		r	1	1	т		_
Virtual Address	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	USB	31:16								D	ATA<31:16>							<u> </u>	000
3028	FIFO2	15:0									DATA<15:0>								0000
	USB	31:16								D	ATA<31:16>								0000
302C	FIFO3	15:0								[DATA<15:0>								0000
	USB	31:16								D	ATA<31:16>								0000
3030	FIFO4	15:0								[DATA<15:0>								0000
3034	USB	31:16								D	ATA<31:16>								0000
3034	FIFO5	15:0								[DATA<15:0>								0000
3038	USB	31:16									ATA<31:16>								0000
0000	FIFO6	15:0									DATA<15:0>								0000
303C	USB	31:16									ATA<31:16>								0000
	FIF07	15:0			1	1	r			[DATA<15:0>	0		r	1				0000
3060	USBOTG	31:16	—	_	—	RXDPB		RXFIFC	OSZ<3:0>		—	—	_	TXDPB		TXFIFOSZ			0000
		HOSTMODE	HOSTREQ	SESSION	-														
3064	USB FIFOA	31:16 — — — RXFIFOAD<12:0>								0000									
		15:0							1			TXFIFOAD<1	2:0>						0000
306C	USB HWVER	31:16	-	-		-		—	_	_	_	—	-	-	_	-	—		0000
		15:0	RC		VEI	RMAJOR<4:					1	MEO	VERMINO	VK<9:0>			.0		0800
3078	USB INFO	31:16 15:0		DMACHAN	S -2.0-	VPLEN	<7:0>	DAMD	TS<3:0>				DN<3:0> PTS<3:0>			WTID<3: TXENDPTS			3C5C 8C77
		31:16	_	DIVIACHAN	3<3.0>			KAIVIDI	NRSTX	NRST		KAEND	F13<3.0>	LSEOF<7:	0>	TAENDFTS	S<3.0>		0072
307C	USB EOFRST	15:0	_	_	_	FSEOF	<7:0>	_	INKOTA	INKOT				HSEOF<7:					7780
		31:16	_				UBPRT<6	·0>			MULTTRAN				BADD<6:0>				0000
3080	USB E0TXA	15:0		_		_	_		_	_					DDR<6:0>				0000
	USB	31:16	_			RX	HUBPRT<6				MULTTRAN				BADD<6:0>				0000
3084	EORXA	15:0	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	0000
	USB	31:16				TX	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
3088	E1TXA	15:0	_	_		_		_	_	_	_			TXFA	DDR<6:0>				0000
	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000
308C	E1RXA	15:0	—	-	—	—	_	—	_	-	—			RXFA	DDR<6:0>				0000
2000	USB	31:16	_			TX	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
3090	E2TXA	15:0	_		—	_	_	—	_	—	—			TXFA	DDR<6:0>				0000
3094	USB	31:16	_			RX	HUBPRT<6	:0>			MULTTRAN			RXHU	BADD<6:0>				0000
3094	E2RXA	15:0	_		—	_	_	—	_	—	—			RXFA	DDR<6:0>				0000
3098	USB	31:16	_			ТХ	HUBPRT<6	:0>			MULTTRAN			TXHU	BADD<6:0>				0000
3030	E3TXA	15:0	_	_	—	_	_	-	-	-	—			TXFA	DDR<6:0>				0000

TADIE 44 4 DECISTED MAD (CONTINUED)

Legend:

Note 1: 2: Device mode.

Host mode.

3:

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). 4:

PIC32MZ Embedded Connectivity (EC) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	_			_	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	_	—	_	_	—	_	_	—			
15:8	R-0	R-0	R-0	R-0	R-1	R-0	R-0	R-0			
10.0	RC		VE	RMAJOR<4:	0>		VERMIN	OR<9:8>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0	VERMINOR<7:0>										

REGISTER 11-15: USBHWVER: USB HARDWARE VERSION REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 RC: Release Candidate bit

1 = USB module was created using a release candidate

- 0 = USB module was created using a full release
- bit 14-10 **VERMAJOR<4:0>:** USB Module Major Version number bits This read-only number is the Major version number for the USB module.
- bit 9-0 VERMINOR<9:0>: USB Module Minor Version number bits This read-only number is the Minor version number for the USB module.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1			
31:24	THHSRTN<15:8>										
00.40	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0			
23:16	THHSRTN<7:0>										
45.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				TUCH	<15:8>						
7.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0			
7:0		TUCH<7:0>									

REGISTER 11-26: USBTMCON1: USB TIMING CONTROL REGISTER 1

Legend:

Ecgena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 THHSRTN:<15:0>: Hi-Speed Resume Signaling Delay bits

These bits set the delay from the end of Hi-Speed resume signaling (acting as a Host) to enable the UTM normal operating mode.

bit 15-0 **TUCH<15:0>:** Chirp Time-out bits

These bits set the chirp time-out. This number, when multiplied by 4, represents the number of USB module clock cycles before the time-out occurs.

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—			—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10		_						—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
10.0		_						—	
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0						THBS	Г<3:0>		

REGISTER 11-27: USBTMCON2: USB TIMING CONTROL REGISTER 2

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **THBST<3:0>:** High Speed Time-out Adder bits

These bits represent the value to be added to the minimum high speed time-out period of 736 bit times. The time-out period can be increased in increments of 64 Hi-Speed bit times (133 ns).

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_		_		—		
45.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	-			LPMFADDR<6:0>		0>		
7:0	U-0	U-0	R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
7.0	_	_	LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Legend:	HS = Hardware Settable		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits These bits contain the address of the LPM payload function.
- bit 7-6 Unimplemented: Read as '0'
- bit 5 **LPMERRIF:** LPM Error Interrupt Flag bit (*Device mode*)
 - 1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.
 - 0 = No error condition
- bit 4 LPMRESIF: LPM Resume Interrupt Flag bit
 - 1 = The USB module has resumed (for any reason)
 - 0 = No Resume condition
- bit 3 LPMNCIF: LPM NC Interrupt Flag bit
 - When in Device mode:
 - 1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.
 - 0 = No NC interrupt condition

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an ACK
- 0 = No NC interrupt condition
- bit 2 LPMACKIF: LPM ACK Interrupt Flag bit
 - When in Device mode:
 - 1 = A LPM transaction was received and the USB Module responded with an ACK
 - 0 = No ACK interrupt condition

When in Host mode:

- 1 = The LPM transaction is transmitted and the device responds with an ACK
- 0 = No ACK interrupt condition
- bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction is received and the USB Module responded with a NYET
- 0 = No NYET interrupt flag

When in Host mode:

- 1 = A LPM transaction is transmitted and the device responded with an NYET
- 0 = No NYET interrupt flag

16.1 Watchdog Timer Control Registers

TABLE 16-1: WATCHDOG TIMER REGISTER MAP

ess		e	Bits								s								
Virtual Addres (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	WDTCON ⁽¹⁾	31:16		WDTCLRKEY<15:0> 0.00							0000								
0800	WDTCON()	15:0	ON		_	_	_						SM	/DTPS<4:0	>		WDTWINEN	_	x0xx

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_		—	—	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	—	_	_	_	—
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

REGISTER 21-2: I2CxSTAT: I²C STATUS REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit	

bit 31-16	Unimplemented: Read as '0'							
bit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C master, applicable to master transmit operation)							
	1 = NACK received from slave							
	0 = ACK received from slave							
	Hardware set or clear at end of slave Acknowledge.							
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)							
	 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 							
bit 13	ACKTIM: Acknowledge Time Status bit (Valid in I ² C Slave mode only)							
	$1 = I^2C$ bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock							
bit 12-11	Unimplemented: Read as '0'							
bit 10	BCL: Master Bus Collision Detect bit							
	 1 = A bus collision has been detected during a master operation 0 = No collision 							
	Hardware set at detection of bus collision.							
bit 9	GCSTAT: General Call Status bit							
	1 = General call address was received							
	0 = General call address was not received							
	Hardware set when address matches general call address. Hardware clear at Stop detection.							
bit 8	ADD10: 10-bit Address Status bit							
	1 = 10-bit address was matched							
	0 = 10-bit address was not matched							
	Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.							
bit 7	IWCOL: Write Collision Detect bit							
	 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision 							
	Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).							
bit 6	I2COV: Receive Overflow Flag bit							
	 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow 							
	Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).							

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	_	—	_	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0			•	ARPT<7:0	RPT<7:0> ⁽²⁾					

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Legend:

Logonal					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled
- bit 14 CHIME: Chime Enable bit⁽²⁾
 - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
 - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31.24				SID<	10:3>				
00.40	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x	
23:16	SID<2:0>			_	EXID	—	EID<1	ID<17:16>	
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8				EID<	15:8>				
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
7:0				EID<	:7:0>				

REGISTER 29-18: CiRXFn: CAN ACCEPTANCE FILTER N REGISTER 7 (n = 0 THROUGH 31)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

- 1 = Message address bit SIDx must be '1' to match filter
- 0 = Message address bit SIDx must be '0' to match filter
- bit 20 Unimplemented: Read as '0'
- bit 19 **EXID:** Extended Identifier Enable bits
 - 1 = Match only messages with extended identifier addresses
 - 0 = Match only messages with standard identifier addresses
- bit 18 Unimplemented: Read as '0'
- bit 17-0 EID<17:0>: Extended Identifier bits
 - 1 = Message address bit EIDx must be '1' to match filter
 - 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	-	—	—	-	—	—
23:16	U-0	U-0						
23.10	—	—	-	—	—	-	—	—
15:8	U-0	U-0						
10.0	—	—	_	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7.0						TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

REGISTER 30-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Legend:

Logonan						
R = Readable bit	eadable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-3 Unimplemented: Read as '0'

- bit 2 TESTBP: Test Backpressure bit
 - 1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
 0 = Normal operation

bit 1 **TESTPAUSE:** Test PAUSE bit⁽¹⁾

- 1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received
- 0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾

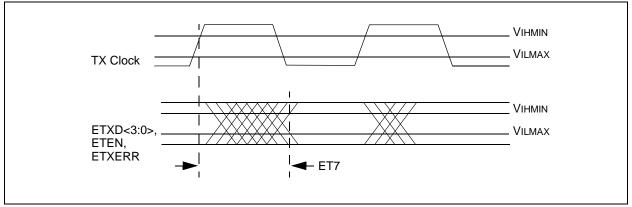
- 1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time
- 0 = Normal operation
- **Note 1:** This bit is only used for testing purposes.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

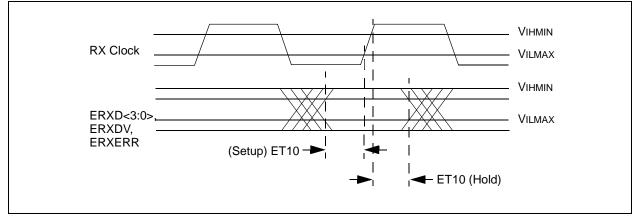
DC CHARAG	CTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽³⁾	Maximum	Units Conditions				
Operating C	urrent (IDD) ⁽¹)					
DC20	8	25	mA	4 MHz (Note 4,5)			
DC21	10	30	mA	10 MHz (Note 5)			
DC22	32	65	mA	60 MHz (Note 2,4)			
DC23	40	75	mA	80 MHz (Note 2,4)			
DC25	61	95	mA	130 MHz (Note 2,4)			
DC26	72	110	mA	160 MHz (Note 2,4)			
DC28	81	120	mA	180 MHz (Note 2,4)			
DC27a	92	130	mA	200 MHz (Note 2)			
DC27b	78	100	mA	200 MHz (Note 4,5)			

TABLE 37-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.


- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to two
 - L1 Cache and Prefetch modules are enabled
 - No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - $\overline{\text{MCLR}}$ = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- **5:** Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
Low-Spe	ed and Fu	ull-Speed Modes					
USB315	VILUSB	Input Low Voltage for USB Buffer			0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0		—	V	—
USB318	VDIFS	Differential Input Sensitivity	0.2		_	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	_	2.5	V	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	_	3.6	V	14.25 k Ω load connected to ground
Hi-Speed	d Mode						
USB323	VHSDI	Differential input signal level	150		—	mV	—
USB324	VHSSQ	SQ detection threshold	100		150	mV	—
USB325	VHSCM	Common mode voltage range	-50		500	mV	—
USB326	Vhsoh	Data signaling high	360		440	mV	—
USB327	VHSOL	Data signaling low	-10		10	mV	—
USB328	VCHIRPJ	Chirp J level	700		1100	mV	—
USB329	VCHIRPK	Chirp K level	-900		-500	mV	
USB330	ZHSDRV	Driver output resistance	_	45	_	Ω	—


TABLE 37-44: USB OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Flash Pro	gramming
	The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW from 128 IW. The page size has changed to 16 KB (4K IW) from 4 KB (1K IW). Note that the NVMOP register is now protected and requires the WREN bit be set to enable modification.
NVMOP<3:0> (NVMCON<3:0>)	NVMOP<3:0> (NVMCON<3:0>)
1111 = Reserved	1111 = Reserved
•	•
•	
0111 = Reserved	1000 = Reserved
0110 = No operation	0111 = Program erase operation
0101 = Program Flash (PFM) erase operation	0110 = Upper program Flash memory erase operation
0100 = Page erase operation	0101 = Lower program Flash memory erase operation
0011 = Row program operation	0100 = Page erase operation
0010 = No operation	0011 = Row program operation
0001 = Word program operation	0010 = Quad Word (128-bit) program operation
0000 = No operation	0001 = Word program operation
	0000 = No operation
PIC32MX devices feature a single NVMDATA register for word programming.	On PIC32MZ devices, to support quad word programming, the NVMDATA register has been expanded to four words.
NVMDATA	NVMDATA x , where 'x' = 0 through 3
Flash Endurance	e and Retention
PIC32MX devices support Flash endurance and retention of up	On PIC32MZ devices, ECC must be enabled to support the
to 20K E/W cycles and 20 years.	same endurance and retention as PIC32MX devices.
Configura	tion Words
On PIC32MX devices, Configuration Words can be programmed	On PIC32MZ devices, all Configuration Words must be
with Word or Row program operation.	programmed with Quad Word operation.
Configuration We	ords Reserved Bit
On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to '0'.	On PIC32MZ devices, this bit is DEVSIGN0<31> .

TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)

PIC32MZ Embedded Connectivity (EC) Family

DMASTAT (DMA Status) 174
DMSTAT (Deadman Timer Status)
DMTCLR (Deadman Timer Clear)
DMTCNT (Deadman Timer Count)
DMTCON (Deadman Timer Control)
DMTPRECLR (Deadman Timer Preclear)
EBICSx (External Bus Interface Chip Select) 367, 370,
551, 552
EBIMSKx (External Bus Interface Address Mask) 368
EBISMCON (External Bus Interface Static Memory Con-
trol)
EBISMTx (External Bus Interface Static Memory Timing)
369
EMAC1CFG1 (Ethernet Controller MAC Configuration 1)
504
EMAC1CFG2 (Ethernet Controller MAC Configuration 2)
505
EMAC1CLRT (Ethernet Controller MAC Collision Win-
dow/Retry Limit)
EMAC1IPGR (Ethernet Controller MAC Non-Back-to-
Back Interpacket Gap)
EMAC1IPGT (Ethernet Controller MAC Back-to-Back In-
terpacket Gap)
EMAC1MADR (Ethernet Controller MAC MII Manage-
ment Address)
EMAC1MAXF (Ethernet Controller MAC Maximum
Frame Length)
EMAC1MCFG (Ethernet Controller MAC MII Manage-
ment Configuration)
EMAC1MCMD (Ethernet Controller MAC MII Manage-
ment Command) 514
EMAC1MIND (Ethernet Controller MAC MII Manage-
ment Indicators)517
EMAC1MRDD (Ethernet Controller MAC MII Manage-
ment Read Data)516
EMAC1MWTD (Ethernet Controller MAC MII Manage-
ment Write Data)516
EMAC1SA0 (Ethernet Controller MAC Station Address
0)
EMAC1SA1 (Ethernet Controller MAC Station Address
1)519
EMAC1SA2 (Ethernet Controller MAC Station Address
2)
EMAC1SUPP (Ethernet Controller MAC PHY Support).
511
EMAC1TEST (Ethernet Controller MAC Test)512
ETHALGNERR (Ethernet Controller Alignment Errors
Statistics)503
ETHCON1 (Ethernet Controller Control 1)482
ETHCON2 (Ethernet Controller Control 2)
ETHFCSERR (Ethernet Controller Frame Check Se-
quence Error Statistics)502
ETHFRMRXOK (Ethernet Controller Frames Received
OK Statistics)
ETHFRMTXOK (Ethernet Controller Frames Transmit-
ted OK Statistics) 498
ETHHT0 (Ethernet Controller Hash Table 0)
ETHHT1 (Ethernet Controller Hash Table 1)
ETHIEN (Ethernet Controller Interrupt Enable) 492
ETHIRQ (Ethernet Controller Interrupt Request) 493
ETHMCOLFRM (Ethernet Controller Multiple Collision
Frames Statistics)
ETHPM0 (Ethernet Controller Pattern Match Offset) 488
ETHPMCS (Ethernet Controller Pattern Match Check-
sum)

ETHRXFC (Ethernet Controller Receive Filter Configura- tion)
ETHRXOVFLOW (Ethernet Controller Receive Overflow
Statistics) 497
ETHRXST (Ethernet Controller RX Packet Descriptor Start Address)
ETHRXWM (Ethernet Controller Receive Watermarks). 491
ETHSCOLFRM (Ethernet Controller Single Collision Frames Statistics)
ETHSTAT (Ethernet Controller Status)
ETHTXST (Ethernet Controller TX Packet Descriptor
Start Address)
12CxCON (12C Control)
I2CxSTAT (I2C Status)
ICxCON (Input Capture x Control)
IFSx (Interrupt Flag Status) 145
INTCON (Interrupt Control) 141
INTSTAT (Interrupt Status) 144
IPCx (Interrupt Priority Control) 146
IPTMR Interrupt Proximity Timer) 144
NVMADDR (Flash Address) 101
NVMBWP (Flash Boot (Page) Write-protect) 104
NVMCON (Programming Control)
NVMDATA (Flash Data) 102
NVMKEY (Programming Unlock) 101
NVMPWP (Program Flash Write-Protect) 103
NVMSRCADDR (Source Data Address) 102
OCxCON (Output Compare x Control) 303
OSCCON (Oscillator Control) 153
OSCTUN (FRC Tuning) 155
PMADDR (Parallel Port Address) 361
PMAEN (Parallel Port Pin Enable) 362
PMCON (Parallel Port Control)
PMMODE (Parallel Port Mode) 359
PMSTAT (Parallel Port Status (Slave Modes Only) . 363
PRECON (Prefetch Module Control) 163
PRISS (Priority Shadow Select) 142
PSCNT (Post Status Configure DMT Count Status) 288
PSINTV (Post Status Configure DMT Interval Status) 289
REFOCON (Reference Oscillator Control) 158
REFOTRIM (Reference Oscillator Trim) 159
RPnR (Peripheral Pin Select Output) 270
RSWRST (Software Reset) 110, 111, 112
RTCCON (RTCC Control)
RTCDATE (RTC Date Value)
RTCTIME (RTC Time Value)
SBTxECLRM (System Bus Target 'x' Multiple Error Clear
93 SBTxECLRS (System Bus Target 'x' Single Error Single) 93
SBTxECON (System Bus Target 'x' Error Control) 92
SBTxELOG1 (System Bus Target 'x' Error Log 1) 90 SBTxELOG2 (System Bus Target 'x' Error Log 2)
SBTxELOG2 (System Bus Target 'x' Error Log 2) 92 SBTxRDy (System Bus Target 'x' Region 'y' Read Per-
missions)
SBTxREGy (System Bus Target 'x' Region 'y')
SBTxWRy (System Bus Target 'x' Region 'y' Write Per-
missions)
SPIxCON (SPI Control)
SPIxCON2 (SPI Control 2)
SPIxSTAT (SPI Status)
SQI1XCON1 (SQI XIP Control 1)