

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, SPI, SQI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	78
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 40x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mz2048ecm100t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer
	to the Documentation > Reference
	Manuals section of the Microchip PIC32
	website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 18. "12-bit Pipelined Analog-to-Digital Converter (ADC)" (DS60001194)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)
- Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 46. "Serial Quad Interface (SQI)" (DS60001244)
- Section 47. "External Bus Interface (EBI)" (DS60001245)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246)
- Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192)
- Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001326)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)

TABLE 4-19: SYSTEM BUS TARGET 11 REGISTER MAP

sss											Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
AC20	SBT11ELOG1	31:16	MULTI	—	_			CODE	<3:0>					—	-	_	_	0000	
7020	SBIIIEE001	15:0		-		INI	TID<7:0>		-			REGIO	N<3:0>		—	C	MD<2:0>	-	0000
AC24	SBT11ELOG2	31:16	_	_	—	-	-	-	—	-	_	_	_	_	—	-	—	—	0000
A024	3BTTTEE002	15:0	_	_	—	-	-	-	—	-	_	_	_	_	—	-	GROU	P<1:0>	0000
AC28	SBT11ECON	31:16	_	_	—	-	-	-	—	ERRP	_	_	_	_	—	-	—	—	0000
AC20	SBITTLEON	15:0	_	_	—	-	-	-	—	-	_	_	_	_	—	-	—	—	0000
AC30	SBT11ECLRS	31:16	_	_	—	_	_	_	—	_	_	_	—	_	—	_		—	0000
7030	SBITTECERS	15:0	_	—	—	_	_	_	—	_	—	_	—	_	—	_		CLEAR	0000
AC38	SBT11ECLRM	31:16	_	—	—	_	_	_	—	_	—	_	—	_	—	_		—	0000
AC30	SBITTECERM	15:0	_	_		—	—	_	—	—	_	_		_	_	_	—	CLEAR	0000
AC40	SBT11REG0	31:16							-	BA	SE<21:6>							-	xxxx
7040	SBITIKEOU	15:0		-	BA	SE<5:0>			PRI	_			SIZE<4:0	>		_		—	xxxx
AC50	SBT11RD0	31:16	_	—	—	_	_	_	—	_	—	_	—	_	—	_		—	xxxx
7000	SETTINED	15:0	_	—	—	_	_	_	—	_	—	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC58	SBT11WR0	31:16	_	—	—	_	_	_	—	_	—	_	—	_	—	_		—	xxxx
7000	OBTITWING	15:0	_		_	—	—	—	—	—	—	—		—	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC60	SBT11REG1	31:16							-	BA	BASE<21:6> x						xxxx		
7000	SBITIKEOT	15:0		-	BA	SE<5:0>			PRI	_	SIZE<4:0>				—	xxxx			
AC70	SBT11RD1	31:16	_	_	_	_	_	_	_	_	—	_	_	_	_	_			xxxx
7010		15:0	_	_	_	_	_	_	_	_	—	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
AC78	SBT11WR1	31:16	_	_	_	_	_	_	_	_	—	_	_	_	_	_		—	xxxx
7010	Continued	15:0			—		-	-	—	-	_	_	—	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

DS60001191G-page 86

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

TABLE 4-20: SYSTEM BUS TARGET 12 REGISTER MAP

17 ()				000															
ess						_					Bits								
Virtual Address (BF8F_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	MULTI	—	-			CODE	<3:0>		_	_	—	—	—		—		0000
B020	SBT12ELOG1	15:0				INI	ΓID<7:0>					REGIO	N<3:0>		_	С	MD<2:0>		0000
DO04		31:16	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
B024	SBT12ELOG2	15:0	—	_	_	_	_	_	_	_	-	_	_	_	_	_	GROU	P<1:0>	0000
B028	SBT12ECON	31:16	—	_	_	_	_	_	_	ERRP	-	_	_	_	_	_	_	_	0000
DU20	SBITZECON	15:0	—	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
P020	SBT12ECLRS	31:16		-	—	_	—	—		-	_	—	_	—	—	_	_		0000
Б030	SBI IZECLKS	15:0		—	_		—	—			_	—	—	_	_		—	CLEAR	0000
D020	SBT12ECLRM	31:16		—	_		—	—			_	—	—	_	_		—		0000
DU30	3BT 12ECLRIVI	15:0		—	_		—	—			_	—	—	_	_		—	CLEAR	0000
B040	SBT12REG0	31:16								BA	SE<21:6>								xxxx
D040	SBITZREGU	15:0			BA	SE<5:0>			PRI				SIZE<4:0	>			—		xxxx
B050	SBT12RD0	31:16		—	_		—	—			_	—	—	_	_		—		xxxx
D030	SB112KD0	15:0		-	—			-			_	—	—	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
B058	SBT12WR0	31:16		-	—			-			_	—	—	-			_	_	xxxx
6056	3BT12WR0	15:0			_		-	-			_	_	_	-	GROUP3	GROUP2	GROUP1	GROUP0	xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note: For reset values listed as 'xxxx', please refer to Table 4-6 for the actual reset values.

5.1 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		đ		Bits										s					
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	NVMCON ⁽¹⁾	31:16	—										0000						
0000	NUMCON	15:0	WR	WREN	WRERR	LVDERR	—	—	—	_	SWAP	_	—	—		NVMO	P<3:0>		0000
0610	NVMKEY	31:16		NVMKEY<31:0>															
		15:0		0000															
0620	NVMADDR ⁽¹⁾	31:16								NVMAD	DR<31:0>								0000
		15:0																	0000
0630	NVMDATA0	31:16 15:0								NVMDA	TA0<31:0>								0000
		31:16																	0000
0640	NVMDATA1	15:0								NVMDA	TA1<31:0>								0000
		31:16																	0000
0650	NVMDATA2	15:0								NVMDA	TA2<31:0>								0000
0660	NVMDATA3	31:16									TA3<31:0>								0000
0000	NVINDATA3	15:0								INVIVIDA	TA3<31.0>								0000
0670	NVMSRC	31:16								NVMSRC									0000
0070	ADDR	15:0		NVMSRCADDR<31:0> 0000															
0680	NVMPWP ⁽¹⁾	31:16	PWPULOCK																
		15:0		PWP<15:0> 0000															
0690	NVMBWP ⁽¹⁾	31:16		—	—	—		—			—	_	—	—		—	—	—	0000
		15:0	LBWPULOCK	- <u>- LBWP4</u> LBWP3 LBWP2 LBWP1 LBWP0 UBWPULOCK <u>-</u> <u>-</u> UBWP4 UBWP3 UBWP2 UBWP1 UBWP0 9FDF															

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
31:24 NVMKEY<31:24>											
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
23:16	NVMKEY<23:16>										
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
15:8		•		NVMK	EY<15:8>						
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0			
7:0	NVMKEY<7:0>										

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

8				
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **NVMKEY<31:0>:** Unlock Register bits These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	1:24 NVMADDR<31:24> ⁽¹⁾									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMADDR<23:16> ⁽¹⁾									
45-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		•		NVMADE	DR<15:8> ⁽¹⁾					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	NVMADDR<7:0>(1)									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits⁽¹⁾

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)					
Page Erase	Address identifies the page to erase (NVMADDR<13:0> are ignored).					
Row Program	Address identifies the row to program (NVMADDR<11:0> are ignored).					
Word Program	Address identifies the word to program (NVMADDR<1:0> are ignored).					
Quad Word Program	Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are ignored).					
Note 1: For all other NVMOP<3:0> bit settings, the Flash address is ignored. See the NVMCON register (Register 5-1) for additional information on these bits.						

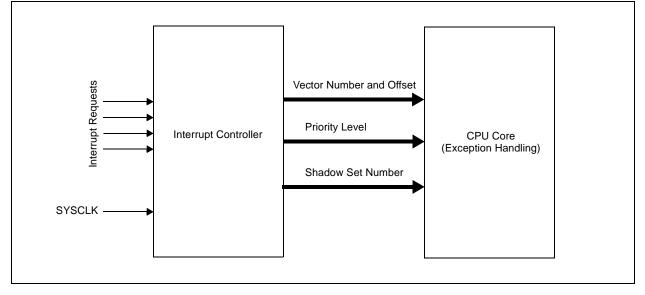
Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

NOTES:

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192), which are available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ EC devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.


The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 190 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

PIC32MZ Embedded Connectivity (EC) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	_	_	—	—	_				
00.40	R-0, HS	R-0, HS	R-0, HS									
23:16	EP7TXIF	EP6TXIF	EP5TXIF	EP4TXIF	EP3TXIF	EP2TXIF	EP1TXIF	EP0IF				
	R/W-0	R/W-0	R/W-1	R-0, HS	R-0	R/W-0	R-0, HC	R/W-0				
15:8	ISOUPD	SOFTCONN	HSEN	HSMODE	RESET	RESUME	SUSPMODE	SUSPEN				
	_	—										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0					FUNC<6:0>							
	_	—	_	_	_	—	—	_				

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0

Legend:	HS = Hardware Settable	HC = Hardware Clearable				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-24 Unimplemented: Read as '0'

bit 23-17 EP7TXIF: Endpoint 'n' TX Interrupt Flag bit

- 1 = Endpoint has a transmit interrupt to be serviced
- 0 = No interrupt event

bit 16 **EP0IF:** Endpoint 0 Interrupt bit

- 1 = Endpoint 0 has an interrupt to be serviced
- 0 = No interrupt event

All EPxTX and EP0 bits are cleared when the byte is read. Therefore, these bits must be read independently from the remaining bits in this register to avoid accidental clearing.

bit 15 **ISOUPD:** ISO Update bit (*Device mode only; unimplemented in Host mode*)

- 1 = USB module will wait for a SOF token from the time TXPKTRDY is set before sending the packet
- 0 = No change in behavior

This bit only affects endpoints performing isochronous transfers when in *Device mode*. This bit is unimplemented in *Host mode*.

bit 14 SOFTCONN: Soft Connect/Disconnect Feature Selection bit

- 1 = The USB D+/D- lines are enabled and active
- 0 = The USB D+/D- lines are disabled and are tri-stated

This bit is only available in Device mode.

bit 13 **HSEN:** Hi-Speed Enable bit

- 1 = The USB module will negotiate for Hi-Speed mode when the device is reset by the hub
- 0 = Module only operates in Full-Speed mode

bit 12 HSMODE: Hi-Speed Mode Status bit

- 1 = Hi-Speed mode successfully negotiated during USB reset
- 0 = Module is not in Hi-Speed mode

In *Device mode*, this bit becomes valid when a USB reset completes. In *Host mode*, it becomes valid when the RESET bit is cleared.

bit 11 **RESET:** Module Reset Status bit

- 1 = Reset signaling is present on the bus
- 0 = Normal module operation

In Device mode, this bit is read-only. In Host mode, this bit is read/write.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

			••••					
Bit Range			Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	AUTOSET	ISO	MODE			DMAREQMD	—	—
	AUTOSET	—	MODE	DIMAREQUIN	FREDATIG	DIVIAREQIVID	DATAWEN	DATATGGL
	R/W-0, HS	R/W-0, HC R/W-0, HS R/W-0		R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC
23:16	INCOMPTX	CLRDT	SENTSTALL	SENDSTALL	FLUSH	UNDERRUN	FIFONE	TXPKTRDY
	NAKTMOUT	GLRDT	RXSTALL	SETUPPKT	FLUSH	ERROR	FIFONE	INPKIRUT
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8			MULT<4:0>			T	XMAXP<10:8	>
7:0	R/W-0	R/W-0	R/W-0					
7.0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- bit 30 **ISO:** Isochronous TX Endpoint Enable bit (Device mode)
 - 1 = Enables the endpoint for Isochronous transfers
 - 0 = Disables the endpoint for lsochronous transfers and enables it for Bulk or Interrupt transfers. This bit only has an effect in Device mode. In Host mode, it always returns '0'.
- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX
 - 0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint
- bit 27 **FRCDATTG:** Force Endpoint Data Toggle Control bit
 - 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
 - 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.

- bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

TABLE 12-12: PORTF REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

ess										Bit	S								
Virtual Address (BF86_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0500	ANSELF	31:16	_	-	—	—	_	—	—	—	_	-	—	-	_	_	_	—	0000
0000	, TOLEI	15:0	—	—	ANSF13	ANSF12	—	—	—	—	—	_	—	—	_		_	—	3000
0510	TRISF	31:16	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	0000
0010	Indi	15:0	—	—	TRISF13	TRISF12	—	—	_	TRISF8	—	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
0520	PORTF	31:16	—	—	—	—	—	—	-	—	—	_	—	-	_	_	_	—	0000
0520	FURT	15:0	_	—	RF13	RF12	_	_	_	RF8	_	_	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
0530	LATF	31:16		-	_	_		_	_	_			_					_	0000
0550	LAII	15:0	Ι	_	LATF13	LATF12			—	LATF8	Ι		LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
0540	ODCF	31:16		_	—	—	-		_	—		—	—	—	—	—	—	_	0000
0540	ODCF	15:0	Ι	_	ODCF13	ODCF12		_	_	ODCF8		_	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
0550	CNPUF	31:16	_	_	_		_	_	_	—	_	_	—	_	_	_	_	_	0000
0550	CNPUF	15:0	_	_	CNPUF13	CNPUF12	_	_	_	CNPUF8	_	_	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
0560	CNPDF	31:16	_	_	_		_	_	_	—	_	_	—	_	_	_	_	_	0000
0560	CNPDF	15:0	_		CNPDF13	CNPDF12	_	_	_	CNPDF8	_	_	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
0570		31:16	_	_	—	—	_	_	_	—	_	-	_	-	-	_	-	_	0000
0570	CNCONF	15:0	ON	_	SIDL		_	_	_	—	_	-	_		-			_	0000
0500		31:16	_		_	_	_	_	_	_	_		_					_	0000
0580	CNENF	15:0	_	—	CNIEF13	CNIEF12	_	_	_	CNIEF8	_	_	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_	—	0000
0590	CNSTATF	15:0	_	_	CN STATF13	CN STATF12	_	_	_	CN STATF8	_		CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000

x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

All registers in this table have corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

REGISTER 20-12:	SQI1STAT1: SQI STATUS REGISTER 1
-----------------	----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—	—	—	—	—	—				
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16				TXFIFOFR	EE<7:0>							
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
10.0	—		_		—	—	_	—				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0	RXFIFOCNT<7:0>											

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 TXFIFOFREE<7:0>: Transmit FIFO Available Word Space bits

bit 15-8 Unimplemented: Read as '0'

bit 7-0 RXFIFOCNT<7:0>: Number of words of read data in the FIFO

TABLE 22-1:	UART1 THROUGH UART6 REGISTER MAP (CONTINUED)
		CONTINUED	,

ess		0								Bi	ts								
Virtual Address (BF82_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	U4MODE ⁽¹⁾	31:16	—	—	_		—	—		—	—		—		—	—		_	0000
2000		15:0	ON	—	SIDL	IREN	RTSMD	_	UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
2610	U4STA ⁽¹⁾	31:16	—	—	—	—	—	—	—	ADM_EN				ADDR					0000
2010		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2620	U4TXREG	31:16	_	—	—	_	—	_	_	—	—	—	—	—	—	—	—	—	0000
2020	OTIXILEO	15:0	—	—	—	—	—	—	—	TX8		-		Transmit	Register	-	-		0000
2630	U4RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2000	OHIVINEO	15:0	—	—	—	—	—	—	—	RX8		-	-	Receive	Register	-	-		0000
2640	U4BRG ⁽¹⁾	31:16	—	—	_	_	—	—	—	—	—	—	—	-	—	—	—	_	0000
2040	0401(0)	15:0							Bau	d Rate Gene	erator Pres	caler							0000
2800	U5MODE ⁽¹⁾	31:16	_	_	_		_	_	_	—	_	_	_		_	_	_		0000
2000	03WODL V	15:0	ON	_	SIDL	IREN	RTSMD	—	UEN	I<1:0> WAKE LPBACK ABAUD RXINV BRGH PI		PDSE	L<1:0>	STSEL	0000				
2810	U5STA ⁽¹⁾	31:16	_	-	-	_		_	—	ADM_EN				ADDR	R<7:0>				0000
2010	0331A. /	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
2820	U5TXREG	31:16	_	_	—	—	-	_	_	_	_	—	_	—	—	_	—	_	0000
2020	USIAREG	15:0	_	-	-	_		_	—	TX8				Transmit	Register				0000
2830	U5RXREG	31:16	—	—	—	_	—	—	—		—	—	—	—	—	—	—	—	0000
2830	USKAREG	15:0	_	_	—	_	—	_	—	RX8				Receive	Register				0000
2840	U5BRG ⁽¹⁾	31:16	_	_	_	-	_	—	_	—	—	—	—	—	_	_	—	_	0000
2840	USBKG '	15:0							Bau	d Rate Gene	erator Pres	caler							0000
0 4 00	U6MODE ⁽¹⁾	31:16	_	_	_	—	_	_	_	—	_	—	—	—	—	_	—	—	0000
2A00	UGINIODE	15:0	ON	_	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	L<1:0>	STSEL	0000
0.40	U6STA ⁽¹⁾	31:16	_	_	_	_	_	—	—	ADM_EN				ADDR	R<7:0>				0000
2A10	USTA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
		31:16	_	—	—	_	_	_	—	—	_	—	—	-	_	—	—	-	0000
2A20	U6TXREG	15:0	_	_	_	_	_	_	_	TX8				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	—	_	—	—	—	—	—	—	—	0000
2A30	U6RXREG	15:0	_	_	_	_		_	_	RX8	RX8 Receive Register						0000		
0.4.45		31:16	_	_	_	_	_	_	_						_				0000
2A40	U6BRG ⁽¹⁾	15:0							Bau	d Rate Gene	erator Pres	caler							0000
Leger	· . · ·	v - unknown value on Reset: unimplemented read as '0' Reset values are shown in hevadecimal																	

Le

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET, and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MZ Embedded Connectivity (EC) Family

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24		_	HR10	<1:0>	HR01<3:0>						
00.40	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16			MIN10<2:0>		MIN01<3:0>						
45.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	—		SEC10<2:0>		SEC01<3:0>						
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	—				_			—			
Legend:											
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit, read as '0'						

0' = Bit is cleared

x = Bit is unknown

REGISTER 25-5: ALRMTIME: ALARM TIME VALUE REGISTER

-n = Value at POR

bit 31-30 **Unimplemented:** Read as '0'

bit 29-28 HR10<1:0>: Binary Coded Decimal value of hours bits, tens digit; contains a value from 0 to 2

'1' = Bit is set

bit 27-24 **HR01<3:0>:** Binary Coded Decimal value of hours bits, ones digit; contains a value from 0 to 9 bit 23 **Unimplemented:** Read as '0'

bit 22-20 **MIN10<2:0>:** Binary Coded Decimal value of minutes bits, tens digit; contains a value from 0 to 5 bit 19-16 **MIN01<3:0>:** Binary Coded Decimal value of minutes bits, ones digit; contains a value from 0 to 9

bit 15 Unimplemented: Read as '0'

bit 14-12 **SEC10<2:0>:** Binary Coded Decimal value of seconds bits, tens digit; contains a value from 0 to 5

bit 11-8 **SEC01<3:0>:** Binary Coded Decimal value of seconds bits, ones digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)

ess										В	its								
VIITUAI Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
2110	ETH FRMTXOK	31:16 15:0	_	—	—	-	_	—	-		— CNT<15:0>	—	—	—	—	_	—	-	00
	ETH	31:16	_	_	_	_	_	_	_	-		_	_	_	_	_	_	_	00
120	SCOLFRM	15:0								SCOLFRM	CNT<15:0>								00
130	ETH	31:16	—	—	—	—	_	—	-	—	—	_	—	—	—	—	—	—	0
50	MCOLFRM	15:0								MCOLFRN	ICNT<15:0>								0
140	ETH	31:16	_	_			_		_		_	_	—	_		—	_		0
	FRMRXOK	15:0								FRMRXOK	CNT<15:0>								0
150	ETH	31:16	_	—	—	_	_	_	—	_	—	—	—	—	_	—	—	—	0
	FCSERR	15:0									CNT<15:0>								C
160	ETH ALGNERR	31:16	_	_			_			—	—	—		_		_	_		(
	ALGNERK	15:0							1		CNT<15:0>								(
200	EMAC1	31:16	-	-	_	—	-	-	-	-	_	_	_	_	_	—	_		(
200	CFG1	15:0	SOFT RESET	SIM RESET	-	—	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	—	—	—	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE	E 8
	EMAC1	31:16		_	_	—	_			_		_	—	_	_	—			(
210	CFG2	15:0	-	EXCESS DFR	BP NOBKOFF	NOBKOFF	-	-	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX	(4
220	EMAC1	31:16	—	_	—	—	—	_	_	_	_	—	—	—	_	_	_	_	C
20	IPGT	15:0	_	_	_	—	_			_				Bź	2BIPKTGP<6	:0>	-	-	(
230	EMAC1	31:16	_	_	_	—	_			—	_	_	_	_	—	_	_		(
.00	IPGR	15:0	_			NB2	BIPKTGP1<	6:0>			_			NB	2BIPKTGP2<	6:0>			1
240	EMAC1	31:16	_	_	_	—	—	—	_	—	_	-	—	-	—	—	_	_	(
	CLRT	15:0					CWINDO	DW<5:0>				_	_	_		RET	<3:0>		i
250	EMAC1	31:16	_		—	—						—		—		—			(
	MAXF	15:0								MACMA	XF<15:0>								
	EMAC1	31:16	_		—	—	_			_		_	_	_	_	—			(
260	SUPP	15:0	—	—	_	—	RESET RMII	—	-	SPEED RMII	—	—	—	—	—	—	—	—	
270	EMAC1	31:16	_		_	—	_		_	—	_	_	—	—	—	—	_		(
270	TEST	15:0	_	—	—	—	—		_	—	_	—	—	—	—	TESTBP	TESTPAUSE	SHRTQNTA	A (
	EMAC1	31:16	_	_	-	_	_	—	-	—	_	—	—	_	_	_	—	—	(
280	MCFG	15:0	RESET MGMT	-	-	—	_	-	-	—	_	—		CLKSE	EL<3:0>		NOPRE	SCANINC	C
290	EMAC1	31:16	—	—	-	—	_	—	-	—	—	_	—	_	—	—	—	—	(
290	MCMD	15:0	—	—	-	—	_	—	-	—	—	_	—	_	—	—	SCAN	READ	C
2A0	EMAC1	31:16	_	—		—	_	_	_		—	—	—	_		_	—	_	0
200	MADR	15:0	_	_	_		P	HYADDR<4:	0>			_	_	1	R	EGADDR<4	0>		0

x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexad

Note 1: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: Reset values default to the factory programmed value.

REGISTER 30-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	-				-	—				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	—	—	_	_	_	_	—	—				
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8 FRMTXOKCNT<15:8>												
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	FRMTXOKCNT<7:0>											

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

33.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features			
	of the PIC32MZ Embedded Connectivity			
	(EC) Family of devices. It is not intended			
	to be a comprehensive reference source.			
	To complement the information in this			
	data sheet, refer to Section 10. "Power-			
	Saving Features" (DS60001130), which			
	is available from the Documentation >			
	Reference Manual section of the			
	Microchip PIC32 web site			
	(www.microchip.com/pic32).			

This section describes power-saving features for the PIC32MZ EC devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

33.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

33.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

33.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

33.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
DI50	lι∟	Input Leakage Current (Note 3)						
		I/O Ports (with the follow- ing three exceptions)	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	
		SOSCI/RPC13/RC13	—	—	<u>+</u> 500	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance	
		SOSCO/RPC14/TI1CK/ RC14	_	—	<u>+</u> 500	μA	VSS \leq VPIN \leq VDD, Pin at high-impedance	
		RPF3/USBID/RF3	—	—	<u>+</u> 500	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$	
DI51	lı∟	Analog Input Pins	—	—	<u>+</u> 1	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$	
DI55	lı∟	MCLR ⁽²⁾	_		<u>+</u> 1	μA	$V\text{SS} \leq V\text{PIN} \leq V\text{DD}$	
DI56	lı∟	OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ HS \mbox{ mode} \end{array}$	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

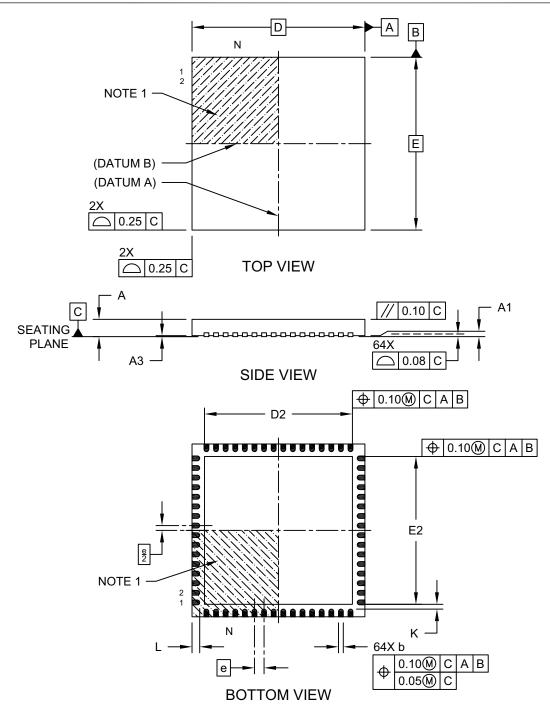
- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the pin name tables (Table 2 through Table 4) for the 5V-tolerant pins.
- **6:** The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 37-33: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP51	TSSH2DOZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_	—	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	12.5	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


3: The minimum clock period for SCKx is 20 ns.

4: Assumes 10 pF load on all SPIx pins.

39.2 Package Details

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.70 x 7.70 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-213B Sheet 1 of 2

PIC32MX5XX/6XX/7XX Feature	PIC32MZ Feature
Crystal/Oscillator	Selection for USB
Any frequency that can be divided down to 4 MHz using UPLLIDIV, including 4, 8, 12, 16, 20, 40, and 48 MHz.	If the USB module is used, the Primary Oscillator is limited to either 12 MHz or 24 MHz. Which frequency is used is selected using the UPLLFSEL (DEVCFG2<30>) bit.
USB PLL C	onfiguration
On PIC32MX devices, the PLL for the USB requires an input frequency of 4 MHz.	On PIC32MZ devices, the HS USB PHY requires an input frequency of 12 MHz or 24 MHz. UPLLIDIV has been replaced with UPLLFSEL.
UPLLIDIV<2:0> (DEVCFG2<10:8>) 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider	UPLLFSEL (DEVCFG2<30>) 1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz
	ock Configuration
On PIC32MX devices, there is one peripheral bus, and the clock for that bus is divided from the SYSCLK using FPBDIV/PBDIV. In addition, the maximum PBCLK frequency is the same as SYSCLK. FPBDIV<1:0> (DEVCFG1<5:4>) PBDIV<1:0> (OSCCON<20:19>) 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1	On PIC32MZ devices, there are eight peripheral buses with their own clocks. FPBDIV is removed, and each PBDIV is in its own register for each PBCLK. The initial PBCLK speed is fixed at reset, and the maximum PBCLK speed is limited to100 MHz for all buses, with the exception of PBCLK7, which is 200 MHz. PBDIV<6:0> (PBxDIV<6:0>) 1111111 = PBCLKx is SYSCLK divided by 128 1111110 = PBCLKx is SYSCLK divided by 127 • • • • • • • • • • • • • • • • • • •
CPU Clock (Configuration
On PIC32MX devices, the CPU clock is derived from SYSCLK.	On PIC32MZ devices, the CPU clock is derived from PBCLK7.
FRCDIV	Default
On PIC32MX devices, the default value for FRCDIV was to divide the FRC clock by two.	On PIC32MZ devices, the default has been changed to divide by one.
FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 (default) 000 = FRC divided by 1	FRCDIV<2:0> (OSCCON<26:24>) 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 1 (default)

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)