

Welcome to E-XFL.COM

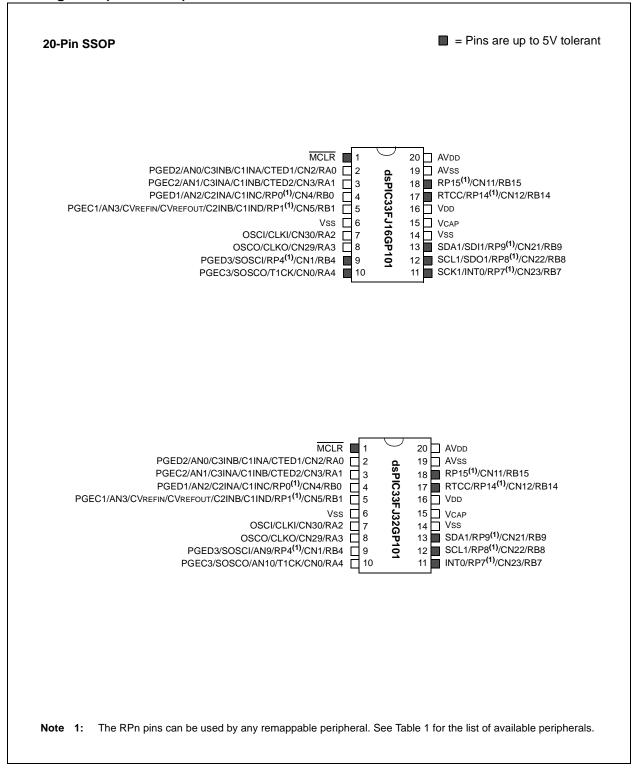
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

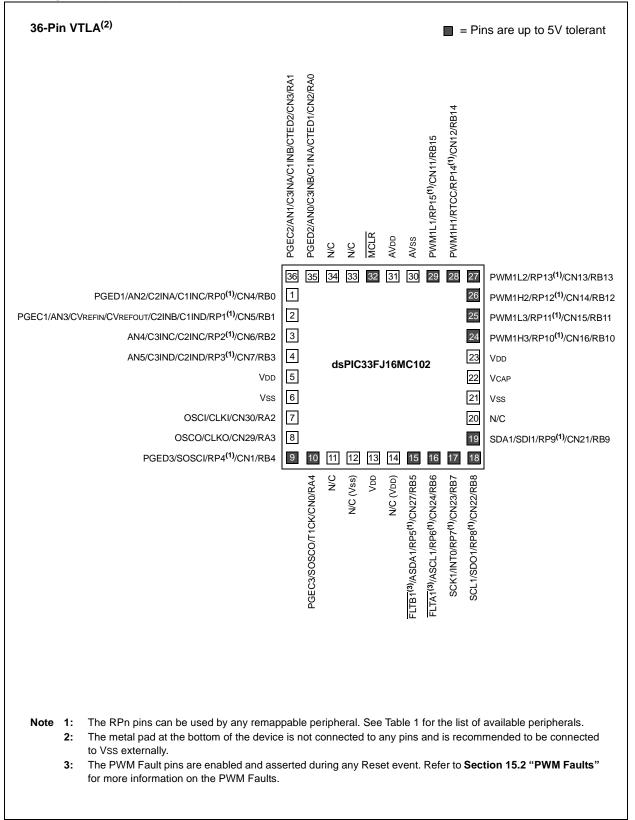
Details

>< ⊢


Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp101-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Pin Diagrams (Continued)

© 2011-2014 Microchip Technology Inc.

Pin Diagrams (Continued)

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 The and dsPIC33FJ32(GP/MC)101/102/104 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address, or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

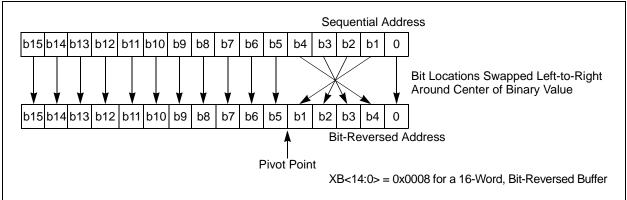

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

TABLE 4-	17:	ADC1	REGIS	STER M	AP FO	R dsPIC	33FJ32(GP/MC)1	04 DEV	ICES								
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ata Buffer	0							xxxx
ADC1BUF1	0302								ADC1 Da	ata Buffer	1							xxxx
ADC1BUF2	0304			ADC1 Data Buffer 2 xxxx							xxxx							
ADC1BUF3	0306		ADC1 Data Buffer 3 xxxx							xxxx								
ADC1BUF4	0308		ADC1 Data Buffer 4 xxxx							xxxx								
ADC1BUF5	030A								ADC1 Da	ata Buffer	5							xxxx
ADC1BUF6	030C								ADC1 Da	ata Buffer	6							xxxx
ADC1BUF7	030E								ADC1 Da	ata Buffer	7							xxxx
ADC1BUF8	0310								ADC1 Da	ata Buffer	8							xxxx
ADC1BUF9	0312								ADC1 Da	ata Buffer	9							xxxx
ADC1BUFA	0314								ADC1 Da	ita Buffer '	10							xxxx
ADC1BUFB	0316								ADC1 Da	ta Buffer	11							xxxx
ADC1BUFC	0318								ADC1 Da	ita Buffer 1	12							xxxx
ADC1BUFD	031A								ADC1 Da	ita Buffer 1	13							xxxx
ADC1BUFE	031C								ADC1 Da	ita Buffer 1	14							xxxx
ADC1BUFF	031E								ADC1 Da	ita Buffer 1	15							xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_		FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	_	CSCNA	CHPS1	CHPS0	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	_	—	—	_	CH123NB1	CH123NB0	CH123SB	—	—		_	—	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	-	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	PCFG15	_	- PCFG<12:0> ⁽¹⁾ 000					0000									
AD1CSSL	0330	CSS15	_	_							CSS12:0>	(1)						0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)104 devices only.

TABLE 4-41: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 5	5-1: NVMCO	N: FLASH I	MEMORY C	ONTROL RE	GISTER		
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR			—		_
bit 15							bit 8
	(4)			(4)	(4)	(4)	(4)
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE	—	—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0
Legend:		SO = Settat	ale Only hit				
R = Readable	hit.				mantad hit raad		
		W = Writabl		-	nented bit, read		
-n = Value at I	POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	WR: Write Con	trol bit ⁽¹⁾					
5			v program or	r erase operati	on; the operatic	on is self-timed	and the bit is
		hardware on		•			
	0 = Program o				e		
bit 14	WREN: Write E	nable bit ⁽¹⁾					
	1 = Enables Fl		erase operati	ions			
	0 = Inhibits Fla						
bit 13	WRERR: Write	Sequence Er	ror Flag bit ⁽¹⁾)			
			•		rmination has oc	curred (bit is se	t automaticallv
		attempt of the				(
	0 = The progra			pleted normally	/		
bit 12-7	Unimplemente	ed: Read as 'o)'				
bit 6	ERASE: Erase	/Program Ena	ble bit ⁽¹⁾				
					3:0> on the nex		
			-	Cified by NVINC	P<3:0> on the	next WR comm	land
bit 5-4	Unimplemente			(1.0)			
bit 3-0	NVMOP<3:0>:	NVM Operati	on Selection	bits ^(1,2)			
	If ERASE = 1:	_					
	1111 = No ope		4				
	1101 = Erase (1100 = No ope	•	ient				
	0011 = No ope						
	0010 = Memor		operation				
	0001 = No ope						
	0000 = No ope	ration					
	If ERASE = 0:						
	1111 = No ope						
	1101 = No ope						
	1100 = No ope						
	0011 = Memor 0010 = No ope		in operation				
	0001 = No ope						
	0000 = No ope						
	-						
	ese bits can only						
	other combination			implemented.	ECISTED		
REGISTER 5	-2. IN VIVINE				LOISIEK		

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

| U-0 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| — | — | | | — | | | _ |

© 2011-2014 Microchip Technology Inc.

Reset Control Register 6.1

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—	_	—	_	СМ	VREGS
bit 15	•						bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7	own	OWBIEN	MBIO	ULL!	IDEE	Dorr	bit
Legend:							
R = Readable	bit	W = Writable b	nit	II – Unimplem	nented bit, read	1 as '0'	
-n = Value at F		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unki	nown
							IOWIT
bit 15	TRAPR: Trap	Reset Flag bit					
	-	onflict Reset has	s occurred				
	0 = A Trap C	onflict Reset has	s not occurre	d			
oit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized	N Access Rese	t Flag bit		
		al opcode detec		al address mo	de or Uninitia	lized W registe	er used as a
	Addroce	Pointer caused	a Reset				
				Reset has not o	courred		
bit 13-10	0 = An Illega	I Opcode or Uni	nitialized W	Reset has not o	ccurred		
	0 = An Illega Unimplemen	I Opcode or Uni Ited: Read as '0	nitialized W	Reset has not o	ccurred		
	0 = An Illega Unimplemen CM: Configur	I Opcode or Uni Ited: Read as '0 ration Mismatch	nitialized W l o' Flag bit		ccurred		
	 0 = An Illega Unimplement CM: Configure 1 = A Configure 	I Opcode or Uni Ited: Read as '0	nitialized W l ,' Flag bit h Reset has o	occurred	ccurred		
bit 9	0 = An Illega Unimplemen CM: Configu 1 = A Configu 0 = A Configu	Il Opcode or Uni Ited: Read as '0 ration Mismatch uration Mismatcl	nitialized W l o' Flag bit h Reset has o h Reset has o	occurred not occurred	ccurred		
bit 9	0 = An Illega Unimplemen CM: Configur 1 = A Configu 0 = A Configu VREGS: Volt	I Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatcl uration Mismatcl	nitialized W I ' Flag bit h Reset has h Reset has Stand-by Duri	occurred not occurred ng Sleep bit	ccurred		
bit 9	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage re 0 = Voltage re	I Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatcl uration Mismatcl age Regulator S egulator is active egulator goes in	nitialized W I Flag bit h Reset has h Reset has Stand-by Duri e during Slee to Stand-by r	occurred not occurred ng Sleep bit p			
bit 9 bit 8	0 = An Illega Unimplemen CM: Configur 1 = A Configu 0 = A Configu VREGS: Volt 1 = Voltage re 0 = Voltage re EXTR: Extern	Il Opcode or Uni ated: Read as 'o ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLE	nitialized W । ,' Flag bit h Reset has i band-by Duri e during Slee to Stand-by r र) Pin bit	occurred not occurred ng Sleep bit p node during Sle			
bit 9 bit 8	0 = An Illega Unimplemen CM: Configur 1 = A Configu 0 = A Configu VREGS: Volt 1 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master	Il Opcode or Uni ated: Read as 'o ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res	nitialized W I Flag bit h Reset has a b Reset has a Stand-by Duri e during Slee to Stand-by r \overline{R} Pin bit et has occurr	occurred not occurred ng Sleep bit p node during Sle			
bit 9 bit 8 bit 7	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage re 0 = Voltage re EXTR: Extern 1 = A Master 0 = A Master	Il Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res	nitialized W I Flag bit h Reset has o the Reset has o Stand-by Duri e during Slee to Stand-by r R) Pin bit et has occurr et has not occurr	occurred not occurred ng Sleep bit p node during Sle red curred			
bit 13-10 bit 9 bit 8 bit 7 bit 6	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage ru 0 = Voltage ru EXTR: Extern 1 = A Master 0 = A Master SWR: Softwar	Il Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res are Reset (Instru	nitialized W I Flag bit h Reset has of the Reset has of Stand-by Duri e during Slee to Stand-by r R) Pin bit et has occurr et has not occurr et has not occurr et has not occurr	occurred not occurred ng Sleep bit p node during Sle red curred it			
bit 9 bit 8 bit 7	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master 0 = A Master SWR: Softwa 1 = A RESET	Il Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res	nitialized W I Flag bit h Reset has of Stand-by Duri e during Slee to Stand-by r R) Pin bit et has occurr et has not oc iction) Flag b been execute	occurred not occurred ng Sleep bit p node during Sle ed curred it			
bit 9 bit 8 bit 7	0 = An Illega Unimplemen CM: Configur 1 = A Configu 0 = A Configu VREGS: Volt 1 = Voltage ro 0 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master 0 = A Master SWR: Softwa 1 = A RESET 0 = A RESET	Il Opcode or Uni ated: Read as 'o ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLE Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has	nitialized W I Flag bit h Reset has a band-by Duri e during Slee to Stand-by r \overline{R}) Pin bit et has occurr et has not oc action) Flag b been execute not been exe	occurred not occurred ng Sleep bit p node during Sle red curred it ed cuted			
bit 9 bit 8 bit 7 bit 6	0 = An Illega Unimplemen CM: Configur 1 = A Configu 0 = A Configu VREGS: Volt 1 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master 0 = A Master SWR: Softwa 1 = A RESET 0 = A RESET SWDTEN: So 1 = WDT is e	Il Opcode or Uni ated: Read as '0 ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res clear (pin) Res are Reset (Instru- instruction has bitstruction has oftware Enable/I nabled	nitialized W I Flag bit h Reset has a band-by Duri e during Slee to Stand-by r \overline{R}) Pin bit et has occurr et has not oc action) Flag b been execute not been exe	occurred not occurred ng Sleep bit p node during Sle red curred it ed cuted			
bit 9 bit 8 bit 7 bit 6	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage re 0 = Voltage re 0 = Voltage re EXTR: Extern 1 = A Master 0 = A Master SWR: Softwar 1 = A RESET 0 = A RESET SWDTEN: Soft 1 = WDT is e 0 = WDT is d	Il Opcode or Uni ited: Read as 'o ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLI Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has instruction has oftware Enable/I nabled isabled	nitialized W I Flag bit h Reset has i b Reset has i Stand-by Duri e during Slee to Stand-by r R) Pin bit et has occurr et has not oc loction) Flag b been execute not been exe Disable of WI	occurred not occurred ng Sleep bit p node during Sle red curred it cuted DT bit ⁽²⁾			
bit 9 bit 8 bit 7 bit 6 bit 5	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage re 0 = Voltage re 0 = Voltage re EXTR: Extern 1 = A Master 0 = A Master SWR: Softwar 1 = A RESET SWDTEN: Soft 1 = WDT is e 0 = WDT is d WDTO: Wate	I Opcode or Uni ited: Read as '0 ration Mismatch uration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has in instruction has in oftware Enable/I nabled isabled chdog Timer Tim	nitialized W I Flag bit h Reset has of the Reset has of Stand-by Duri e during Sleet to Stand-by r R) Pin bit et has occurr et has not occurr et has not occurr to been execute not been execute Disable of WI e-out Flag bi	occurred not occurred ng Sleep bit p node during Sle red curred it cuted DT bit ⁽²⁾			
bit 9 bit 8 bit 7 bit 6 bit 5	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage re 0 = Voltage re 0 = Voltage re EXTR: Extern 1 = A Master 0 = A Master SWR: Softwar 1 = A RESET SWDTEN: Soft 1 = WDT is e 0 = WDT is d WDTO: Watc 1 = WDT time	Il Opcode or Uni ited: Read as 'o ration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLI Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has instruction has oftware Enable/I nabled isabled	initialized W I Flag bit h Reset has of h Reset has of Stand-by Duri e during Slee to Stand-by r \overline{R}) Pin bit et has occurr et has not occurr to the not occurr on been execute not been execute Disable of WI e-out Flag bi red	occurred not occurred ng Sleep bit p node during Sle red curred it cuted DT bit ⁽²⁾			
bit 9 bit 8 bit 7 bit 6	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master 0 = A Master SWR: Softwa 1 = A RESET 0 = A RESET SWDTEN: Soft 1 = WDT is e 0 = WDT is d WDTO: Water 1 = WDT time 0 = WDT time	I Opcode or Uni ited: Read as '0 ration Mismatch uration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has b instruction has b oftware Enable/I nabled isabled sabled bdog Timer Time e-out has occurr	initialized W I Flag bit h Reset has of the Reset has of Stand-by Duri e during Slee to Stand-by Duri e during Slee to Stand-by r \overline{R}) Pin bit et has occurr et has not occurr et has not occur oction) Flag b been execute not been exe Disable of WI e-out Flag bi red curred	occurred not occurred ng Sleep bit p node during Sle red curred it cuted DT bit ⁽²⁾			
bit 9 bit 8 bit 7 bit 6 bit 5 bit 4	0 = An Illega Unimplement CM: Configur 1 = A Configur 0 = A Configur VREGS: Volt 1 = Voltage ro 0 = Voltage ro 0 = Voltage ro EXTR: Extern 1 = A Master 0 = A Master SWR: Softwa 1 = A RESET 0 = A RESET SWDTEN: Sof 1 = WDT is e 0 = WDT is d WDTO: Watc 1 = WDT time 0 = WDT time 0 = WDT time	I Opcode or Uni ited: Read as '0 ration Mismatch uration Mismatch uration Mismatch uration Mismatch age Regulator S egulator is active egulator goes in hal Reset (MCLF Clear (pin) Res Clear (pin) Res Clear (pin) Res are Reset (Instru- instruction has b oftware Enable/I nabled isabled hdog Timer Tim e-out has occurr e-out has not occurr	initialized W I Flag bit h Reset has a Stand-by Duri e during Slee to Stand-by r \overline{R}) Pin bit et has occurr et has not oc loction) Flag b been execute not been exe Disable of WI e-out Flag bit curred o Flag bit o mode	occurred not occurred ng Sleep bit p node during Sle red curred it cuted DT bit ⁽²⁾			

- - 2: If the FWDTEN Configuration bit is set to '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.2 System Reset

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a POR or a BOR. On a Cold Reset, the FNOSC<2:0> Configuration bits in the FOSCSEL Configuration register selects the device clock source.

A Warm Reset is the result of all other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd(1)	—	_	Toscd
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd ⁽¹⁾ + Tlock ⁽³⁾
MS	Toscd ⁽¹⁾	Tost(2)	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
HS	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
EC	—	—	—	—
MSPLL	Toscd(1)	Tost(2)	TLOCK ⁽³⁾	TOSCD ⁽¹⁾ + TOST ⁽²⁾ + TLOCK ⁽³⁾
ECPLL	—	—	ТLОСК ⁽³⁾	ТLОСК ⁽³⁾
SOSC	Toscd(1)	Tost(2)	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
LPRC	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL Lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip, 4x PLL to obtain higher speeds of operation.

For example, suppose an 8 MHz crystal is being used with the selected oscillator mode of MS with PLL. This provides a Fosc of 8 MHz * 4 = 32 MHz. The resultant device operating speed is 32/2 = 16 MIPS.

EQUATION 8-2: MS WITH PLL MODE EXAMPLE

```
FCY = \frac{FOSC}{2} = \frac{1}{2} (8000000 • 4) = 16 MIPS
```

TABLE 8-1:	CONFIGURATION BIT VALU	ES FOR CLOCH	SELECTION	

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (MS) with PLL (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

15.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Motor Control PWM" (DS70187) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16MC10X devices have a 6-channel Pulse-Width Modulation (PWM) module.

The PWM module has the following features:

- Up to 16-bit resolution
- On-the-fly PWM frequency changes
- Edge-Aligned and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or BLDC
- Special event comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

15.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		_	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7 ⁽²		ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit C
Legend:							
R = Reada	ble bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	1 = ADC1 inte	Conversion Cl ernal RC clock ived from syste					
bit 14-13	Unimplemen	ted: Read as '0)'				
bit 12-8	SAMC<4:0>:	Auto-Sample T	ïme bits ⁽¹⁾				
	11111 = 31 T	ĀD					
	•						
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC1 Convers	ion Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =						
	00111111 =	TCY • (ADCS<7	':0> + 1) = 64	• TCY = TAD			
	•						
	•						
	00000001 =	TCY • (ADCS<7 TCY • (ADCS<7 TCY • (ADCS<7	':0> + 1) = 2 •	TCY = TAD			
	This bit is only use This bit is not used			-			

REGISTER 19-3: AD1CON3: ADC1 CONTROL REGISTER 3

REGISTER 20-2: CMxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

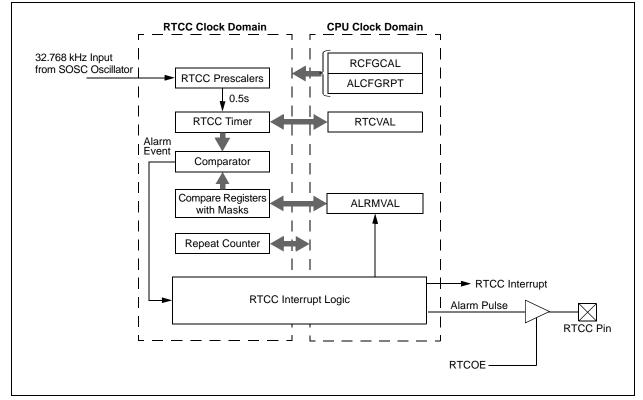
- bit 4 **CREF:** Comparator x Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxINA pin

bit 3-2 Unimplemented: Read as '0'

- bit 1-0 CCH<1:0>: Comparator x Channel Select bits
 - 11 = VIN- input of comparator connects to INTREF
 - 10 = VIN- input of comparator connects to CXIND pin
 - 01 = VIN- input of comparator connects to CxINC pin
 - ${\tt 00}$ = VIN- input of comparator connects to CxINB pin

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Real-Time Clock and Calendar (RTCC)" (DS70310) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices, and its operation. Some of the key features of the RTCC module are:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

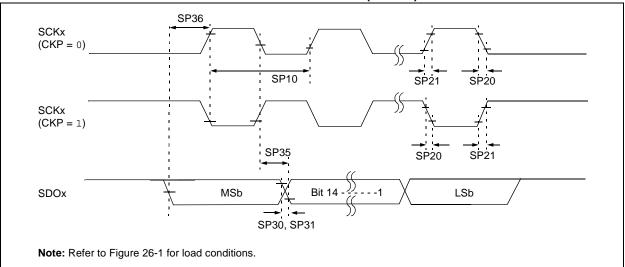


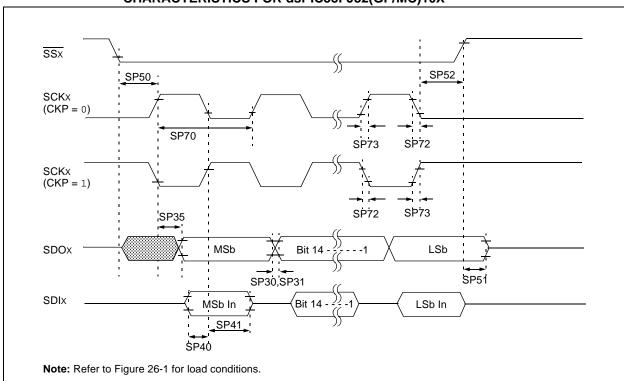
FIGURE 21-1: RTCC BLOCK DIAGRAM

IADL	E 24-2:	INSTRUCTION SET OVERVIEW (CONTINUED)								
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected			
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z			
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z			
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z			
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None			
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None			
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z			
69	SETM	SETM	f	f = 0xFFFF	1	1	None			
		SETM	WREG	WREG = 0xFFFF	1	1	None			
		SETM	Ws	Ws = 0xFFFF	1	1	None			
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB			
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB			
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z			
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z			
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z			
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z			
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z			
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB			
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z			
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z			
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z			
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z			
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z			
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z			
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z			
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z			
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z			
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z			
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z			
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z			
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z			
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z			
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z			
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z			
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z			
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z			
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None			
	5 min	SWAP	Wn	Wn = byte swap Wn	1	1	None			
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None			
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None			
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None			
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None			
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None			
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z			
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z			
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z			
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z			
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z			
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N			

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 26-20: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-38:SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
FOR dsPIC33FJ32(GP/MC)10X


AC CH	ARACTERIS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—	_	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time		—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

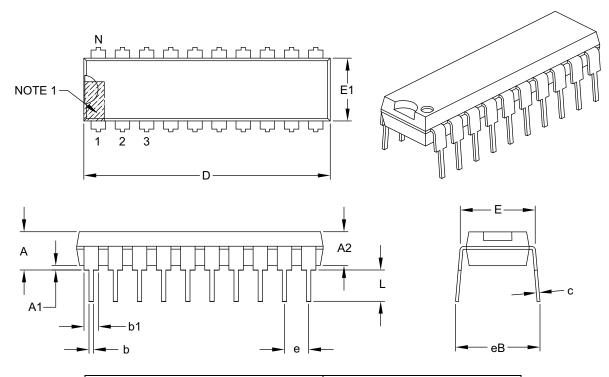
4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-26: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-44:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—		_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

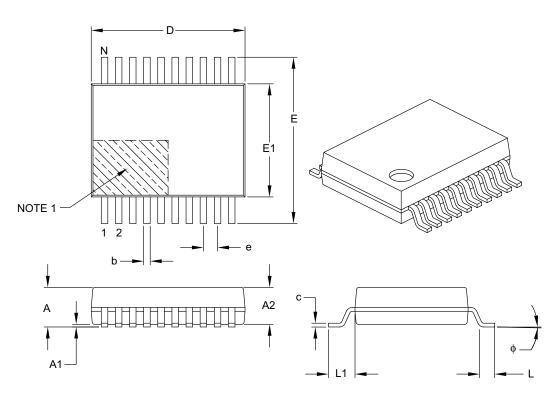
	Units	INCHES			
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν				
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.980	1.030	1.060	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

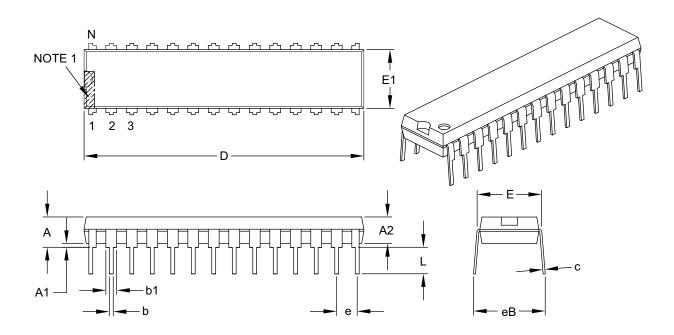
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
	Dimension Limits		NOM	MAX	
Number of Pins	N				
Pitch	e	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle		0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
C	Dimension Limits		NOM	MAX			
Number of Pins	N	28					
Pitch	е	.100 BSC					
Top to Seating Plane	A	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B