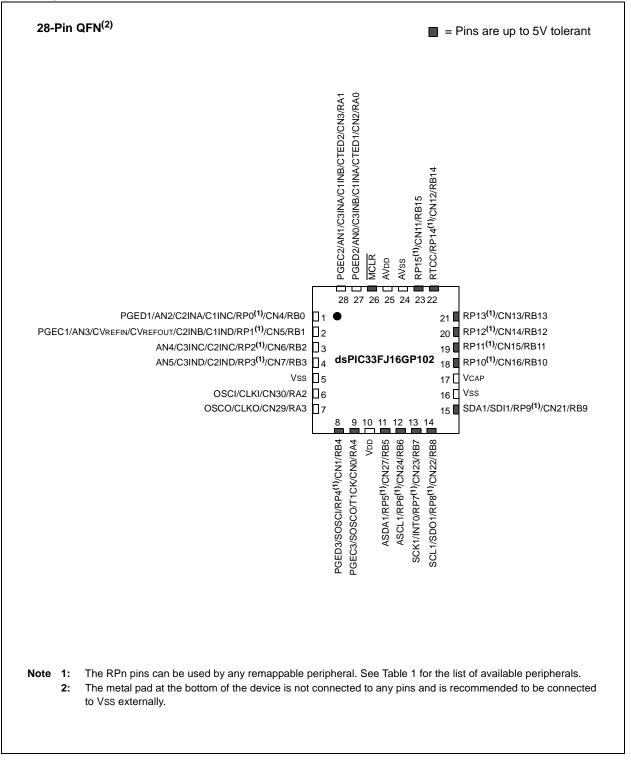


Welcome to E-XFL.COM

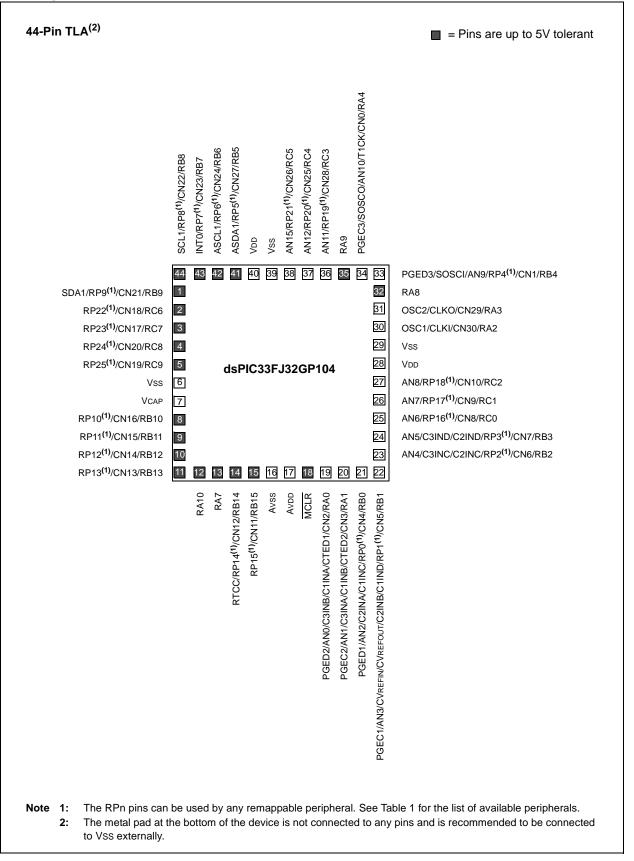
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp101-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-	16:	ADC1	REGIST	ER MA	P FOR c	ISPIC33	FJXX(G	P/MC)102	2 DEVIC	ES	-					-		
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data	Buffer 0								xxxx
ADC1BUF1	0302								ADC1 Data	Buffer 1								xxxx
ADC1BUF2	0304								ADC1 Data	Buffer 2								xxxx
ADC1BUF3	0306								ADC1 Data	Buffer 3								xxxx
ADC1BUF4	0308								ADC1 Data	Buffer 4								xxxx
ADC1BUF5	030A								ADC1 Data	Buffer 5								xxxx
ADC1BUF6	030C								ADC1 Data	Buffer 6								xxxx
ADC1BUF7	030E								ADC1 Data	Buffer 7								xxxx
ADC1BUF8	0310								ADC1 Data	Buffer 8								xxxx
ADC1BUF9	0312		ADC1 Data Buffer 9 xx										xxxx					
ADC1BUFA	0314							A	ADC1 Data E	Buffer 10								xxxx
ADC1BUFB	0316							ŀ	ADC1 Data B	Buffer 11								xxxx
ADC1BUFC	0318							ŀ	ADC1 Data E	Buffer 12								xxxx
ADC1BUFD	031A							ŀ	ADC1 Data E	Buffer 13								xxxx
ADC1BUFE	031C							A	ADC1 Data E	Buffer 14								xxxx
ADC1BUFF	031E							A	ADC1 Data E	Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	—	_	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	_	—	CSCNA	CHPS1	CHPS0	BUFS		SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	_	_	_	—	CH123NB1	CH123NB0	CH123SB	_			_	_	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA			CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	—	_	—	_	—		10:9> ⁽¹⁾	_	_	_			PC	FG<5:0>			0000
AD1CSSL	0330	—	_	—	—	_	CSS<1	0:9> ⁽¹⁾	—	_	—			С	SS<5:0>			0000

TABLE 4-16: ADC1 REGISTER MAP FOR dsPIC33FJXX(GP/MC)102 DEVICES

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)101/102 devices only.

TABLE 4-21: COMPARATOR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0650	CMSIDL	_	_	_	_	C3EVT	C2EVT	C1EVT	_	—	—	—	—	C3OUT	C2OUT	C1OUT	0000
CVRCON	0652	—	_	_	_	_	VREFSEL	BGSEL1	BGSEL0	CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0654	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM1MSKSRC	0656	_	_	-	_	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM1MSKCON	0658	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	065A	-	—			-	-	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM2CON	065C	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM2MSKSRC	065E	-	—			SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM2MSKCON	0660	HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0662	-	—			-	-	_	_	_	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000
CM3CON	0664	CON	COE	CPOL		-	-	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3MSKSRC	0666	-	—			SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0	SELSRCB3	SELSRCB2	SELSRCB1	SELSRCB0	SELSRCA3	SELSRCA2	SELSRCA1	SELSRCA0	0000
CM3MSKCON	0668	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	066A	_	—	—	—	_	—	_	_	-	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	—	—		I	NT1R<4:0>			—	—	—	_	—	—	—	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_		I	NT2R<4:0>			001F
RPINR3	0686	_	_	_		Т	3CKR<4:0>			_	_	_		Т	2CKR<4:0>	•		1F1F
RPINR4	0688	—	_	_		Τŧ	5CKR<4:0>(1)		_	_	_		T4	CKR<4:0>	1)		1F1F
RPINR7	068E	—	_	_			IC2R<4:0>			_	_	—			IC1R<4:0>			1F1F
RPINR8	0690	—	_	_	_	_	—	—	_	_	_	—			IC3R<4:0>			001F
RPINR11	0696	—	_	_	_	_	_	—	_	_	_	—		C	CFAR<4:0	>		001F
RPINR18	06A4	—	_	_		U	1CTSR<4:0>			_	_	—		U	1RXR<4:0:	>		1F1F
RPINR20	06A8	—	_	_		S	CK1R<4:0> ⁽¹)		_	_	—		SI	DI1R<4:0>(1)		1F1F
RPINR21	06AA	_	_	_	—	—	—	_	_	_	—	_		;	SS1R<4:0>			001F

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

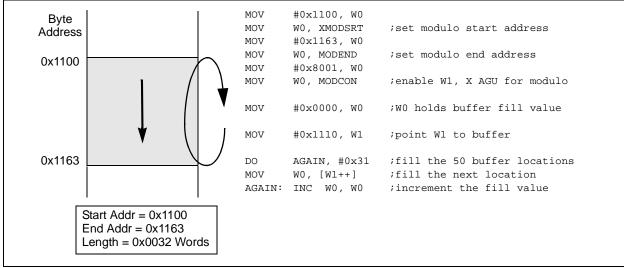
In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

- The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing.
- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts (Part IV)" (DS70300) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR). Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices implement up to 26 unique interrupts and 4 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a way to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications to facilitate evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices clear their registers in response to a Reset, forcing the PC to zero. The Digital Signal Controller then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2/3 and Timer4/5 have three 2-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

Note 1: Timer4 and Timer5 are available in dsPIC33FJ32(GP/MC10X) devices only.

As a 32-bit timer, Timer2/3 and Timer4/5 permit operation in three modes:

- Two independent 16-bit timers (e.g., Timer2 and Timer3 or Timer4 and Timer5) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3 and Timer4/5)
- Single 32-bit synchronous counter (Timer2/3 and Timer4/5)

Timer2/3 and Timer4/5 also support:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during Idle and Sleep modes
- Interrupt on a 32-bit Period register match
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC1 event trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers (see Register 12-1 through Register 12-4). For 32-bit timer/counter operation, Timer2/4 is the least significant word (Isw) and Timer3/5 is the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

12.1 32-Bit Operation

To configure Timer2/3 and Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3/PR5 contains the msw of the value, while PR2/PR4 contains the least significant word (lsw).
- 5. If interrupts are required, set the Timer3 (or Timer5) Interrupt Enable bit, T3IE (or T5IE). Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. While Timer2/Timer4 controls the timer, the interrupt appears as a Timer3/Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the msw of the count, while TMR2 or TMR4 contains the lsw.

12.2 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

NOTES:

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	_	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8	SELSRCC<3:0>: Mask C Ir	nput Select bits

SELSRCC<3:0>: Mask C Input Select bits
1111 = Reserved
1110 = Reserved
1101 = Reserved
1100 = Reserved
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM1H3
0100 = PWM1L3
0011 = PWM1H2
0010 = PWM1L2
0001 = PWM1H1
0000 = PWM1L1
SELSRCB<3:0>: Mask B Input Select bits
SELSINGES. Wask D input Select bits
1111 = Reserved
-
1111 = Reserved
1111 = Reserved 1110 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1100 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1010 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0110 = PWM1H3 0100 = PWM1L3
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1010 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2 0010 = PWM1L2
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1010 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2

bit 7-4

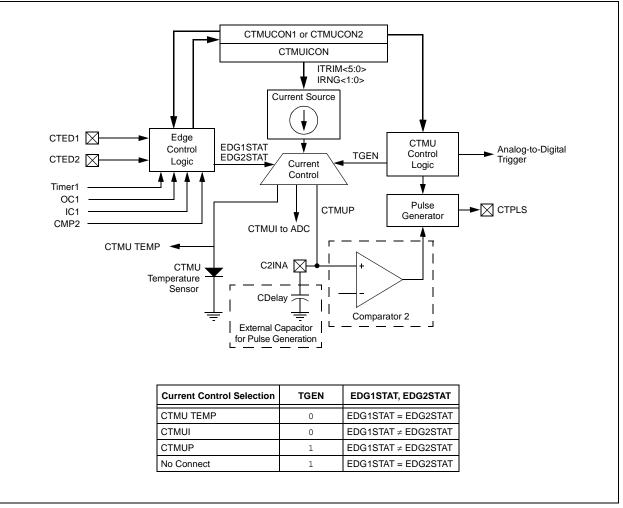
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_				_		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0
Legend:							
R = Readab	la hit	W = Writable	hit	LI – Unimplom	nented bit, read	oo 'O'	
-n = Value at		1' = Bit is set		0 = 0 miniplent 0' = Bit is clear		x = Bit is unk	00000
	TFOR				areu		nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	-	: Comparator I		ock Select bits			
	110 = Reserv 101 = Timer3 100 = Timer2 011 = Reserv 010 = PWM \$ 001 = Fosc 000 = Fcy		Frigger				
bit 3	CFLTREN: C 1 = Digital filte 0 = Digital filte		er Enable bit				
bit 2-0	-	Comparator F Divide 1:128 Divide 1:64 Divide 1:32 Divide 1:16 Divide 1:8 Divide 1:4 Divide 1:2	ilter Clock Div	ide Select bits			

REGISTER 20-5: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): RTCC WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—		_	_	WDAY2	WDAY1	WDAY0
bit 15							bit 8


U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Ur	nimplemented: Read as '0'
--------------	---------------------------

- bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

FIGURE 22-1: CTMU BLOCK DIAGRAM

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

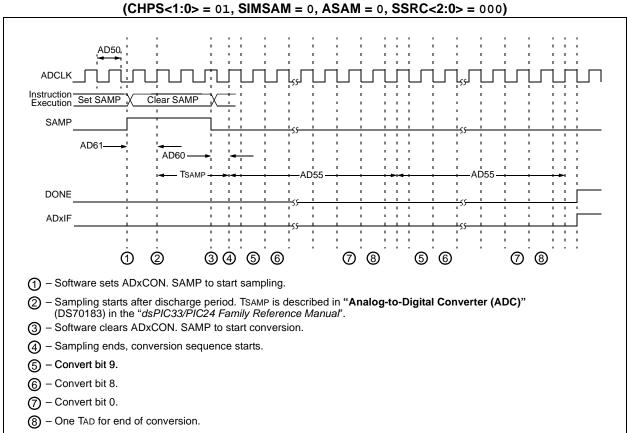
User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

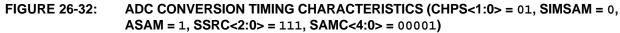
dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

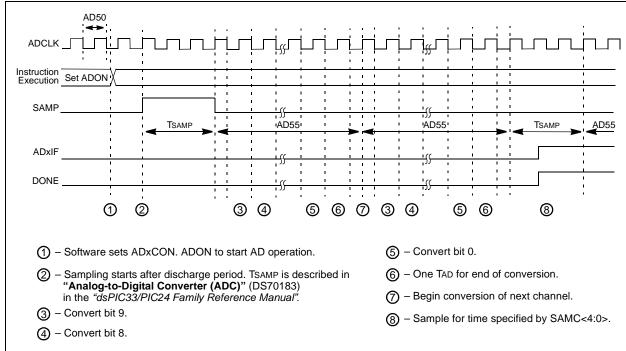
DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Conditions
DI60a	licl	Input Low Injection Current	0	-5 ^(5,8)	_	mA	All pins excep <u>t VDD,</u> Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO and RB14
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, RB14 and digital 5V tolerant designated pins
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.


- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.


6: Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins, VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 26-31: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Co				Conditions
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—		0.5	LSb	
VRD312	CVRUR	Unit Resistor Value (R)	_	2k		Ω	

TABLE 26-53: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

TABLE 26-54: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			(unless	otherv	rating C vise stat perature	t ed) -40°C	ns:3.0V to 3.6V ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended		
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions		
	CTMU Current Source								
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	320	550	980	na	IRNG<1:0> bits (CTMUICON<9:8>) = 0b01		
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	3.2	5.5	9.8	μΑ	IRNG<1:0> bits (CTMUICON<9:8>) = 0b10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	32	55	98	μA	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11		
				Intern	al Diod	e			
CTMUFV1	VF	Forward Voltage ⁽²⁾	_	0.77	_	V	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11 @ +25°C		
CTMUFV2	Vfvr	Forward Voltage Rate ⁽²⁾	—	-1.38	_	mV/⁰C	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11		

Note 1: Nominal value at center point of current trim range (ITRIM<5:0> bits (CTMUICON<15:10>) = 0b000000).

2: ADC module configured for conversion speed of 500 ksps. Parameters are characterized but not tested in manufacturing.

27.1 High-Temperature DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temperature Range	Max MIPS
	(in Volts)	(in °C)	dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104
HDC5	Vbor – 3.6V ⁽¹⁾	-40°C to +150°C	5

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., may have degraded performances below VDDMIN.

TABLE 27-2: THERMAL OPERATING CONDITIONS

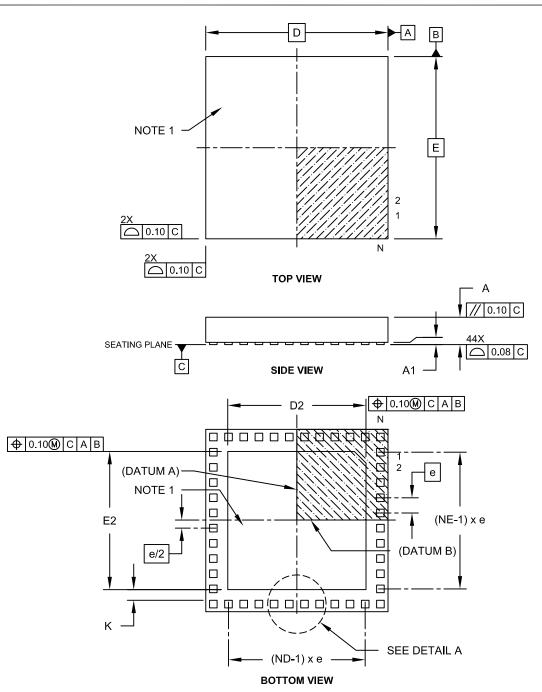

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 27-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD))

DC CHARACTERISTICS			(unless oth	erwise stated)	litions: 3.0V to 3.6V $0^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature		
Parameter No.	Typical	Мах	Units Conditions				
Operating Cur	rent (IDD) – d	dsPIC33FJ1	6(GP/MC)10)	(Devices			
DC20e	1.3	1.7	mA	3.3V	LPRC (32.768 kHz)		
DC22e	7.0	8.5	mA	3.3V	5 MIPS		

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13