

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp101t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0		
	—		US	EDT ⁽¹⁾	DL2	DL1	DL0		
bit 15							bit 8		
DAA			DAMA	D/0 0	DANA		DAALO		
R/VV-U			R/W-U		R/W-U	R/W-U	R/W-0		
SATA	SAID	SAIDW	ACCSAT	IPL3	P3V	RND	IF bit 0		
							DILU		
Legend:		C = Clearable	e bit						
R = Read	able bit	W = Writable	bit	-n = Value a	t POR	'1' = Bit is set			
0' = Bit is	cleared	'x = Bit is unk	nown	U = Unimple	emented bit, read	1 as '0'			
1:1.45.40			o.!						
DIT 15-13		ed: Read as	U ^r /Signad Contr	albit					
DIT 12	US: DSP Mul	itipiy Unsigned	Signed Contro	DIDIT					
	0 = DSP engi	ine multiplies a	re sianed						
bit 11	EDT: Early DO	Loop Termina	ation Control b	it ⁽¹⁾					
	1 = Terminate	es executing Do	loop at the e	nd of current	loop iteration				
	0 = No effect								
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its					
	111 = 7 DO IO •	ops are active							
	•								
	001 = 1 DO lo	001 = 1 DO loop is active							
	000 = 0 DO lo	000 = 0 DO loops are active							
bit 7	SATA: ACCA	SATA: ACCA Saturation Enable bit							
	1 = Accumula	ator A saturatio	n is enabled						
bit 6		Saturation En	ahle hit						
Sit 0	1 = Accumula	ator B saturatio	n is enabled						
	0 = Accumula	ator B saturatio	n is disabled						
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturatior	n Enable bit				
	1 = Data spac	ce write satura	tion is enabled	1					
bit /	0 = Data space	ce write satura	tion is disabled] Salaat hit					
DIL 4	1 – 0 31 satu	ration (super s	aturation)						
	0 = 1.31 satu	ration (normal	saturation)						
bit 3	IPL3: CPU In	terrupt Priority	Level Status k	oit 3 ⁽²⁾					
	1 = CPU Inte	rrupt Priority Le	evel is greater	than 7					
	0 = CPU Inte	rrupt Priority Le	evel is 7 or les	s					
bit 2	PSV: Program	n Space Visibil	ity in Data Spa	ace Enable bit					
	⊥ = Program 0 = Program	1 = Program space is visible in data space							
bit 1	RND: Roundi	RND: Rounding Mode Select bit							
	1 = Biased (c	1 = Biased (conventional) rounding is enabled							
	0 = Unbiased	0 = Unbiased (convergent) rounding is enabled							
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit					
	1 = Integer m	ode is enabled	for DSP mult	iply operation	S				
	0 = Fractiona	i mode is enab	nea for DSP m	iuitipiy operati	UNS				
Note 1:	This bit will always	read as '0'.							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- · Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)
- A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back		
CLR	A = 0	Yes		
ED	$A = (x - y)^2$	No		
EDAC	$A = A + (x - y)^2$	No		
MAC	A = A + (x * y)	Yes		
MAC	$A = A + x^2$	No		
MOVSAC	No change in A	Yes		
MPY	A = x * y	No		
MPY	$A = x^2$	No		
MPY.N	A = - x * y	No		
MSC	A = A - x * y	Yes		

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously, and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
 - ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

or

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to Section 7.0 "Interrupt Controller"). This allows the user application to take immediate action; for example, to correct system gain.

TABLE 4-37: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 E	Bit 4 E	it 3 B	it 2 E	Sit1 Bi	0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	—	—	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx ⁽¹⁾
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	—	LPOSCEN	OSWEN	0300 ⁽²⁾
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	_	_	—	_	_	_	_	_	3040
OSCTUN	0748	_	_	_	_	_	_	_	_		_			TUN	l<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-38: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	_	_	_	ERASE	_						

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

	11.0		DAMO	DAMO					
0-0	0-0		K/VV-U		0-0	0-0	0-0		
—	_	IN 12IF	15IF(*)	141F(*)	—		—		
Dit 15							Dit 8		
			DAALO	DAMO	DAMO	DAMA	DAMA		
0-0	0-0	0-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	—	INTTIF	CNIF	CMIF	MI2C1IF	SI2C1IF		
Dit 7							Dit U		
Lanandi									
Legena:	L:4		L :4			-l (0)			
R = Readable			DIT		mented bit, rea				
-n = Value at F	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkr	nown		
		tadi. Daadaa (<u>.</u>						
DIL 10-14		real Interrupt 2	J Eloa Statua hi						
DIL 13	INIZIF: External Interrupt 2 Flag Status bit								
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 12	T5IF: Timer5 Interrupt Flag Status bit ⁽¹⁾								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 11	T4IF: Timer4 Interrupt Flag Status bit ⁽¹⁾								
	1 = Interrupt	request has occ	curred						
	0 = Interrupt	request has not	occurred						
bit 10-5	Unimplemen	ted: Read as '	כ'						
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bi	t					
	1 = Interrupt	request has occurrent has not	curred						
hit 2		Change Netifies	tion Interrupt	Elog Statua bit					
DIL 3	1 – Interrunt	request has occ		Flay Status Di	L				
	0 = Interrupt	request has not	occurred						
bit 2	CMIF: Comp	arator Interrupt	Flag Status b	it					
	1 = Interrupt	request has occ	curred						
	0 = Interrupt request has not occurred								
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
	0 = Interrupt request has not occurred								
bit 0	SI2C1IF: I2C	1 Slave Events	Interrupt Flag	g Status bit					
	\perp = interrupt request has occurred 0 = Interrupt request has not occurred								
		icquest nas no							

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

10.7 Peripheral Pin Select Registers

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of devices implements up to 23 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.3.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits
	11111 = Input tied to Vss
	11110 = Reserved
	•
	11010 Decembed
	11010 = Reserved
	11001 = Input tied to RP25
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM ^(1,3,4)

4: Where 'x' or 'y' is present, x = 2 or 4; y = 3 or 5.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 20-2: CMx	CON: COMP ARATOR :	X CONTROL REGISTER
--------------------	--------------------	--------------------

R/W-0	R/\/-0	R/W-0	U-0	U-0	U-0	R/\\/-0	R/W-0		
	COF	CPOI	<u> </u>	<u> </u>	<u> </u>		COLIT		
bit 15	COE	GFOL		_	_	CEVI	bit 9		
							DIL 0		
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
EVPOL1	EVPOL0		CREF			CCH1	CCH0		
bit 7	4						bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	CON: Compa	rator x Enable	bit						
	1 = Comparat	tor x is enabled							
	0 = Comparat	tor x is disabled	1						
bit 14	COE: Compa	rator x Output I	Enable bit						
	1 = Comparat	tor output is pre	esent on the C	CxOUT pin					
bit 13	CPOL: Comp	arator x Output	t Polarity Sele	ect bit					
	1 = Comparat	tor x output is in	nverted						
	0 = Comparat	tor x output is n	ot inverted						
bit 12-10	Unimplement	ed: Read as '	י'						
bit 9	CEVT: Compa	arator x Event b	bit						
	1 = Compara interrupts	ator x event acts s until the bit is	cording to E\ cleared	/POL<1:0> set	ttings occurred;	disables future	e triggers and		
hit 0	0 = Compara	ator x event did							
bit 8 COUI: Comparator x Output bit									
	1 = VIN + > VIN		eu polanty).						
	0 = VIN + < VIN	N-							
	When CPOL = 1 (inverted polarity):								
	1 = VIN + < VIN	N-							
hit 7 C	0 = VIN + > VII	N- . Trigger/Event	/Interrupt Dol	arity Calaat hits	_				
DIL 7-0	EVPOL<1:U>: Irigger/Event/Interrupt Polarity Select bits								
	 10 = Trigger/event/interrupt is generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) 								
	If CPOL = 1 (inverted polarity):								
	Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt is generated only on low-to-high transition of the polarity selec comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity):								
	High-to-low tr	ansition of the	comparator o	utput.					
	If CPOL = 0 (non-inverted polarity):								
	0.0 = Trigger/4	event/interrunt	deneration is	disabled					
bit 5		ed. Read as '	י ז'						
bit 5	01 = Trigger/e compare If CPOL = 1 (i) High-to-low tr If CPOL = 0 (i) Low-to-high tr 00 = Trigger/e Unimplemente	event/interrupt ator output (whi inverted polarit ansition of the non-inverted polarit ransition of the event/interrupt ed: Read as '0	is generated le CEVT = 0) <u>y):</u> comparator o <u>plarity):</u> comparator o generation is ₀ '	d only on low utput. putput. disabled	r-to-high transit	ion of the pol	arity selected		

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

REGISTER 20-3: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimplemente	ed: Read as '0'		
bit 11-8	SELSRCC<3:	:0>: Mask C Input Select b	its	
	1111 = Reser	rved		
	1110 = Reser	rved		
	1101 = Reser	rved		
	1100 = Reser	rved		
	1011 = Reser	rved		
	1010 = Reser	rved		
	1001 = Reser	rved		
	0111 = Reser	rved		
	0110 = Rese r	rved		
	0101 = PWM	1H3		
	0100 = PWM	1L3		
	0011 = PWM	1H2		
	$0010 = PVVM^{2}$	1L2		
	0001 = PWM	1 1		
bit 7-4	SELSECB<3	·0>· Mask B Input Select bi	ts	
	1111 - Reser	rved		
	1110 = Reser	rved		
	1101 = Reser	rved		
	1100 = Rese r	rved		
	1011 = Reser	rved		
	1010 = Reser	rved		
	1001 = Reser	rved		
	1000 = Reser	rved		
	0111 = Reser	rved		
	$0101 = PWM^{-1}$	1H3		
	0100 = PWM	1L3		
	0011 = PWM	1H2		
	0010 = PWM	1L2		
	0001 = PWM	1H1		
	0000 = PWM	1L1		

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	_	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—		—	—	—				
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	CTMUEN: C	TMU Enable bit								
	1 = Module i	is enabled								
	0 = Module i	0 = Module is disabled								
bit 14	Unimplemen	ted: Read as '0	,							
bit 13	CTMUSIDL:	CTMU Stop in Id	le Mode bit							
	1 = Discontinue	nues module opera	eration when o	device enters lo	dle mode					
hit 12		Generation Ena	ble bit $^{(1)}$	ide -						
DIC 12	1 - Enables adde delay generation									
	0 = Disables	s edge delay gen	eration							
bit 11	EDGEN: Edd	EDGEN: Edge Enable bit								
	1 = Edges are not blocked									
	0 = Edges a	re blocked								
bit 10	EDGSEQEN	EDGSEQEN: Edge Sequence Enable bit								
	1 = Edge 1 e	1 = Edge 1 event must occur before Edge 2 event can occur								
	0 = No edge	sequence is ne	eded							
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾									
	1 = Analog c	current source ou	utput is ground	bed						
	0 = Analog c	current source of	itput is not gro	bunded						
bit 8		MU Trigger Con	trol bit							
	$\perp = 1$ rigger of $0 = $ Trigger of $0 = $	output is enabled	1							
bit 7-0	Unimplemen	ted: Read as '0	,							
			1 1 1				_			
Note 1: I	I I GEN = 1, the	peripheral input	s and outputs	must be config	ured to an avail	iable RPn pin. I	-or more			
		000001 10.4 Ft			•					

2: The ADC module S&H capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

Revision E (September 2012)

This revision includes updates to the values in Section 26.0 "Electrical Characteristics" and updated packaging diagrams in Section 28.0 "Packaging Information". There are minor text edits throughout the document.

Revision F (January 2014)

This revision adds the High-Temperature Electrical Characteristics chapter and updated packaging diagrams in Section 28.0 "Packaging Information" . There are minor text edits throughout the document.