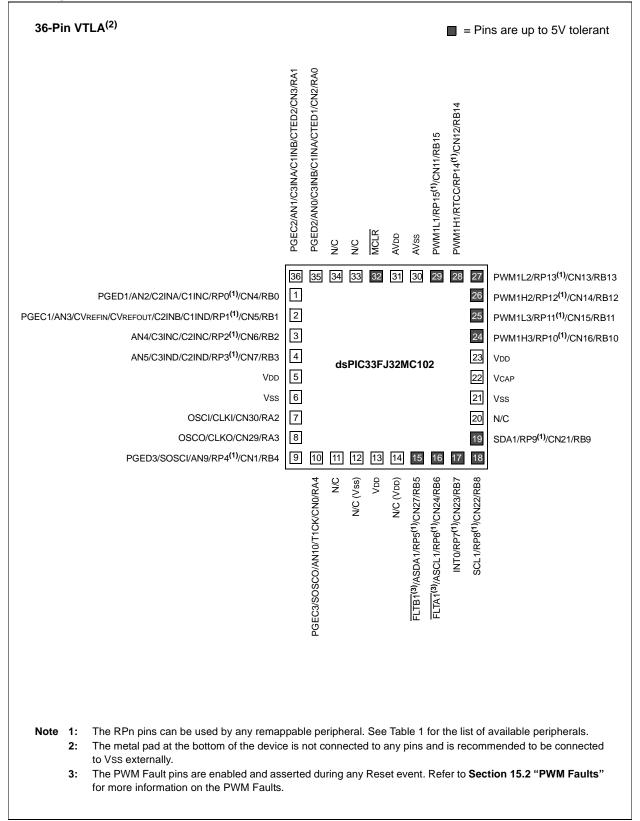


Welcome to E-XFL.COM

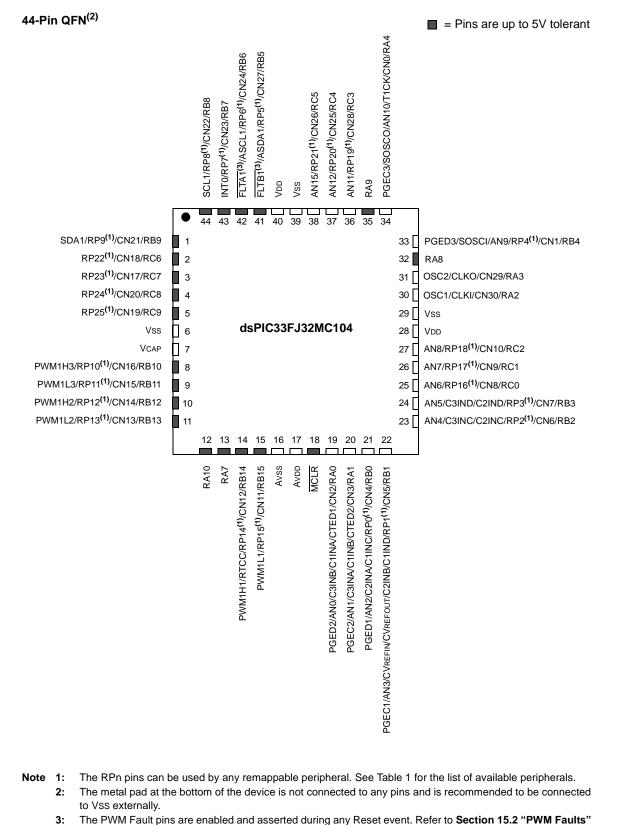
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

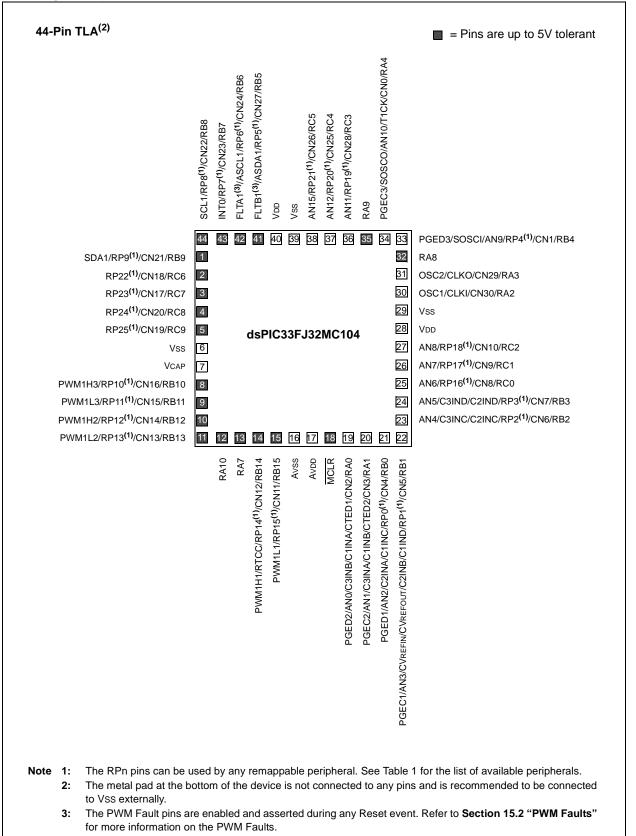

Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp102-e-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)



Pin Diagrams (Continued)

3: The PWM Fault pins are enabled and asserted during any Reset event. Refer to Section 15.2 "PWM Faults" for more information on the PWM Faults.

Pin Diagrams (Continued)

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	This bit can be read or cleared (not set).

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously, and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
 - ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

or

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action; for example, to correct system gain.

TABLE 4-9: INPUT CAPTURE REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0140								Input Cap	ture 1 Regis	ster							xxxx
0142	—	—	ICSIDL	—	—	—	—	—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0144								Input Cap	ture 2 Regis	ster							XXXX
0146	—	—	ICSIDL	—	—	—	—	—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0148								Input Cap	ture 3 Regis	ster							XXXX
014A		_	ICSIDL	_	_	_	_		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
	Addr 0140 0142 0144 0146 0148	Addr Bit 15 0140	Addr Bit 15 Bit 14 0140	Addr Bit 15 Bit 14 Bit 13 0140 ICSIDL 0142 ICSIDL 0144 ICSIDL 0146 ICSIDL 0148 ICSIDL	Addr Bit 15 Bit 14 Bit 13 Bit 12 0140 - - ICSIDL - 0142 - - ICSIDL - 0144 - - ICSIDL - 0146 - - ICSIDL - 0148 - - ICSIDL -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0140

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: OUTPUT COMPARE REGISTER MAP

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0180		Output Compare 1 Secondary Register										xxxx					
0182		Output Compare 1 Register x							XXXX								
0184	—	—	OCSIDL	—	—	—	—	—	—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
0186							Out	put Compar	e 2 Second	ary Register	r						XXXX
0188		Output Compare 2 Register xxx						XXXX									
018A	—	—	OCSIDL	—	—	—	—	_	—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
	Addr 0180 0182 0184 0186 0188	Addr Bit 15 0180 - 0182 - 0184 - 0186 - 0188 -	Addr Bit 15 Bit 14 0180	Addr Bit 15 Bit 14 Bit 13 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 0180 0182 - - 0CSIDL - 0186 - - OCSIDL - - 0188 - - - - - -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0180 0182 0184 - 0186 0188 0188 -	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0180 0182 0utput Compare 1 Second: 0utput Compare 1 Second: 0utput Compare 1 Second: 0utput Compare 2 Second: 0ut	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0180 Output Compare 1 Secondary Register 0182 Output Compare 1 Secondary Register 0184 - - O - - OCFLT 0186 Output Compare 2 Secondary Register 0188 Output Compare 2 Register	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0180 Output Compare 1 Secondary Register 0182 Output Compare 1 Secondary Register 0184 - - - - - - OCFLT OCTSEL 0186 Output Compare 2 Secondary Register 0186 Output Compare 2 Secondary Register 0188 Output Compare 2 Register	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0180	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 9 Bit 9 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0180	AddrBit 13Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 00180

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: 6-OUTPUT PWM1 REGISTER MAP FOR dsPIC33FJXXMC10X DEVICES

SFR Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	—	PTSIDL	—	—	—	-	—	PTOPS3	PTOPS2	PTOPS1	PTOPS0	PTCKPS1	PTCKPS0	PTMOD1	PTMOD0	0000 0000 0000 0000
P1TMR	01C2	PTDIR						P	WM1 Timer	Count Valu	le Register							0000 0000 0000 0000
P1TPER	01C4	—						F	WM1 Time I	Base Peric	d Register							0111 1111 1111 1111
P1SECMP	01C6	SEVTDIR						PW	M1 Special E	event Com	pare Regis	ter						0000 0000 0000 0000
PWM1CON1	01C8	_	-	—	_	_	PMOD3	PMOD2	PMOD1	_	PEN3H	PEN2H	PEN1H	—	PEN3L	PEN2L	PEN1L	0000 0000 0000 0000
PWM1CON2	01CA			_	_	SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0			—		—	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS1	DTBPS0	DTB5	DTB4	DTB3	DTB2	DTB1	DTB0	DTAPS1	DTAPS0	DTA5	DTA4	DTA3	DTA2	DTA1	DTA0	0000 0000 0000 0000
P1DTCON2	01CE			_	_	_	_		—			DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0	—		FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM		—	_	—	FAEN3	FAEN2	FAEN1	0000 0000 0000 011
P1FLTBCON	01D2	_	_	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM		—	_	—	FBEN3	FBEN2	FBEN1	0000 0000 0000 011
P10VDCON	01D4	—		POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	—		POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	0011 1111 0000 000
P1DC1	01D6							PWI	M1 Duty Cyc	le 1 Regist	er							0000 0000 0000 0000
P1DC2	01D8			PWM1 Duty Cycle 2 Register						0000 0000 0000 0000								
P1DC3	01DA			PWM1 Duty Cycle 3 Register						0000 0000 0000 0000								
PWM1KEY	01DE		PWMKEY<15:0>						0000 0000 0000 0000									
			1 (•

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	KEY<7:0>			
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkn	iown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—				RP13R<4:0>	1)	
bit 15							bit 8
			DAVO	DAMO	DAVO	DAMA	DAMO
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—			RP12R<4:0>(1)	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
<u></u>							
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP13R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP13 Output	Pin bits ⁽¹⁾	
		-2 for periphera			-		
bit 7-5	-	ted: Read as '		,			
bit 4-0	-			is Assigned to	PP12 Output	Din hite(1)	
DIL 4 -0		-	•	•			
	(see lable 10	 2 for periphera 	a runction nur	nbers)			

REGISTER 10-17: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Note 1: These bits are not available in dsPIC33FJXXGP101 devices.

REGISTER 10-18: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—			RP15R<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	—			RP14R<4:0>				
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP15R<4:0>	: Peripheral Ou	utput Function	is Assigned to	RP15 Output F	Pin bits			
	(see Table 10	-2 for periphera	al function nur	nbers)					
bit 7-5	Unimplemen	ted: Read as '	0'						
bit 4-0	RP14R<4:0>	RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits							

(see Table 10-2 for peripheral function numbers)

14.2 Output Compare Control Register

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.)
bit 3	OCTSEL: Output Compare x Timer Selection bit
	 1 = Timer3 is the clock source for Output Compare x 0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits
	 111 = PWM mode on OCx, Fault pin is enabled 110 = PWM mode on OCx, Fault pin is disabled 101 = Initializes OCx pin low, generates continuous output pulses on OCx pin 100 = Initializes OCx pin low, generates single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low 001 = Initializes OCx pin low, compare event forces OCx pin high 000 = Output Compare x channel is disabled

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
FLTBM		—	—	—	FBEN3	FBEN2	FBEN1
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13-8	FBOV<3:1>	H:FBOV<3:1>L	: Fault Input E	B PWMx Overrid	de Value bits		
		Mx output pin is	-			ent	
	0 = The PW	Mx output pin is	driven inactiv	e on an externa	al Fault input ev	vent	
bit 7	FLTBM: Fau	It B Mode bit					
	1 = The Faul	t B input pin fur	nctions in the (Cycle-by-Cycle	mode		
	0 = The Faul	t B input pin lat	ches all contro	ol pins to the pro	ogrammed stat	es in PxFLTBC	ON<13:8>
bit 6-3	Unimplemer	nted: Read as '	0'				
bit 2	FBEN3: Fau	lt Input B Enabl	e bit				
		3/PWMxL3 pin					
		3/PWMxL3 pin		trolled by Fault	Input B		
bit 1		lt Input B Enabl					
		2/PWMxL2 pin					
		2/PWMxL2 pin		trolled by Fault	Input B		
bit 0		It Input B Enabl					
		ا 1/PWMxL1 pin ۱/PWMxL1 pin					
				•			
	Comparator output						
	modules for Fault dedicated FLTA1			ternally connec	a the desired c	omparator outp	ut pin to the
	Refer to Table 15-	•		letails			
4 .					• ·· · · • • • • • •		
	The PxFLIACON	register is a writ	e-protected re	aister. Refer to	Section 15.3 "	write-Protecte	d Registers
3:	The PxFLIACON for more information	register is a writ		gister. Refer to	Section 15.3 "	write-Protecte	d Registers
3:		on on the unloc	k sequence.	•			•

REGISTER 15-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER^(1,2,3,4)

REGISTER	16-2: SPIxC	ON1: SPIx C	ONTROL RE	EGISTER 1							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7		1		1			bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12	DISSCK: Disa	able SCKx pin	bit (SPI Maste	er modes only)							
		PI clock is disa PI clock is ena	•	tions as I/O							
bit 11											
		DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by the module; pin functions as I/O									
		is controlled b									
oit 10	MODE16: Wo	MODE16: Word/Byte Communication Select bit									
		ication is word-	. ,								
		ication is byte-									
bit 9		ata Input Sam	ole Phase bit								
		<u>:</u> a sampled at ei a sampled at m									
	Slave mode:	cleared when		-							
bit 8	CKE: Clock E	dge Select bit	(1)								
					clock state to lo						
bit 7	SSEN: SPIX S	Slave Select E	nable bit (Slav	e mode) ⁽²⁾							
		s used for Slav s not used by tl		n is controlled b	by port function						
bit 6	CKP: Clock F	Polarity Select I	oit								
		for clock is a h for clock is a lo									
bit 5	MSTEN: Mas	ter Mode Enat	ole bit								
	1 = Master m 0 = Slave mo										
	he CKE bit is not FRMEN = 1).	used in the Fr	amed SPI moo	des. Program t	his bit to '0' for	the Framed SP	Pl modes				
2: T	his bit must be cl	eared when FF	RMEN = 1.								
3: D	Do not set both pri	mary and seco	ondary prescal	ers to a value	of 1:1.						

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

17.3 I²C Control Registers

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit (
Legend:		HC = Hardwa	re Clearable bi	it			
R = Reada	able bit	W = Writable	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own
bit 15	12CEN: 12Cx	Enable bit					
	0 = Disables	the I2Cx modu	le; all l ² C™ pir		and SCLx pins a ed by port function	s serial port pin ons	S
bit 14	Unimplemer	nted: Read as '	0'				
bit 13		Cx Stop in Idle N					
		ues module op			in Idle mode		
oit 12		s module opera CLx Release Co			2 C clave)		
JIL IZ	1 = Releases			r operating as i	C slave)		
		Lx clock low (c	lock stretch)				
	beginning of reception. Ha If STREN = 0 Bit is R/S (i.e	e., software car every slave da ardware clears a <u>):</u> ., software can	ata byte transm at every slave only write '1' t	nission. Hardw data byte rece o release clocl	are clears at er ption.	ease clock). Har nd of every slav ears at beginning yte reception.	e address byt
bit 11	IPMIEN: Inte	lligent Peripher	al Managemer	nt Interface (IP	MI) Enable bit		
		de is enabled; a de is disabled	II addresses a	re Acknowledg	jed		
bit 10	1 = I2CxADD	10-Bit Slave Ac) is a 10-bit slav) is a 7-bit slave	ve address				
bit 9	DISSLW: Dis	able Slew Rate	e Control bit				
		e control is disa e control is enal					
bit 8	SMEN: SMB	us Input Levels	bit				
		I/O pin threshol SMBus input th		vith SMBus spe	ecification		
bit 7	GCEN: Gene	eral Call Enable	bit (when ope	rating as I ² C s	lave)		
	1 = Enables reception	-	a general cal	l address is re	ceived in the I2	CxRSR (module	e is enabled fo
		call address is	disabled				

0 = General call address is disabled

20.1 Comparator Control Registers

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
CMSIDL		—		—	C3EVT	C2EVT	C1EVT			
bit 15					I.		bit 8			
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
_	_	_	_	—	C3OUT	C2OUT	C10UT			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	CMSIDL: Cor	nparator Stop	in Idle Mode b	bit						
					ce enters Idle n	node				
		-	-	s in Idle mode						
bit 14-11	-	ted: Read as '								
bit 10	-	parator 3 Even								
		or event occur or event did no								
bit 9										
DIL 9	C2EVT: Comparator 2 Event Status bit 1 = Comparator event occurred									
	0 = Comparator event did not occur									
bit 8	C1EVT: Comparator 1 Event Status bit									
	1 = Comparator event occurred									
	0 = Comparat	or event did no	ot occur							
bit 7-3	Unimplemen	ted: Read as '	0'							
bit 2		parator 3 Outp	ut Status bit							
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$									
	1 = VIN + > VII $0 = VIN + < VII$	-								
	When CPOL :									
	1 = VIN + < VIN	۷-								
	0 = VIN + > VII									
bit 1		parator 2 Outp	ut Status bit							
	$\frac{\text{When CPOL}}{1 = \text{VIN+} > \text{VIN}}$									
	1 = VIN + > VII $0 = VIN + < VII$									
	When CPOL :									
	1 = VIN + < VIN									
	0 = VIN + > VII									
bit 0		parator 1 Outp	ut Status bit							
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$									
	1 = VIN + > VII $0 = VIN + < VII$									
	When CPOL :									
	1 = VIN + < VIN	۷-								
	0 = VIN + > VIN									

REGISTER 20-1: CMSTAT: COMPARATOR STATUS REGISTER

REGISTER 20-4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3	ABEN: AND Gate A1 B Input Inverted Enable bit
	1 = MBI is connected to AND gate
	0 = MBI is not connected to AND gate
bit 2	ABNEN: AND Gate A1 B Input Inverted Enable bit
	1 = Inverted MBI is connected to AND gate0 = Inverted MBI is not connected to AND gate
bit 1	AAEN: AND Gate A1 A Input Enable bit
	1 = MAI is connected to AND gate0 = MAI is not connected to AND gate
bit 0	AANEN: AND Gate A1 A Input Inverted Enable bit
	1 = Inverted MAI is connected to AND gate0 = Inverted MAI is not connected to AND gate

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm, Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 26-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.4V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—	—	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	_			ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-44:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—		_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Conditions			
			Devic	e Suppl	у			
AD01	AVdd	Module VDD Supply ^(2,4)	Greater of: VDD – 0.3 or 2.9	_	Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply ^(2,5)	Vss - 0.3	_	Vss + 0.3	V		
AD09	IAD	Operating Current	_	7.0	9.0	mA	See Note 1	
			Anal	og Input	1			
AD12	Vinh	Input Voltage Range _{VINH} (2)	VINL	_	AVdd	V	This voltage reflects S&H Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range _{VINL} (2)	AVss	—	AVss + 1V	V	This voltage reflects S&H Channels 0, 1, 2 and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source ⁽³⁾	—		200	Ω		

TABLE 26-47: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

4: This pin may not be available on all devices; in which case, this pin will be connected to VDD internally. See the "**Pin Diagrams**" section for availability.

5: This pin may not be available on all devices; in which case, this pin will be connected to Vss internally. See the "**Pin Diagrams**" section for availability.

6: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ16(GP/MC)10X
SPIx Master Transmit Mode (Half-Duplex)
for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ16(GP/MC)10X
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,
SMP = 0) for dsPIC33FJ32(GP/MC)10X
Timer1 External Clock
Timer2/4 External Clock
Timer3/5 External Clock
Timing Specifications
Comparator Module
Comparator Timing
Comparator Voltage Reference
Comparator Voltage Reference Settling Time
CTWO CUITERI Source

U

UART	
Control Registers	213
Helpful Tips	212
Resources	212
Universal Asynchronous Receiver	
Transmitter (UART)	
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	
W	
Watchdog Timer (WDT)	267
Programming Considerations	
WWW Address	387
WWW, On-Line Support	