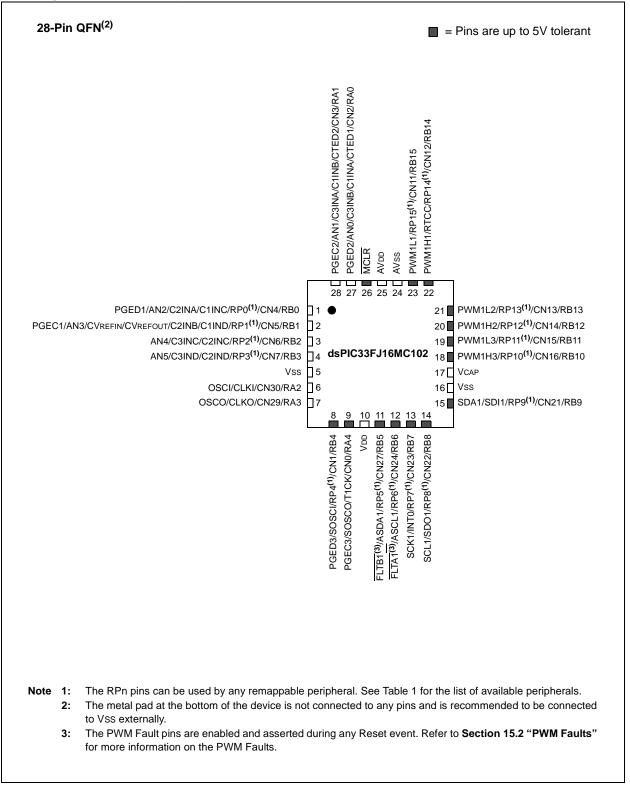


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

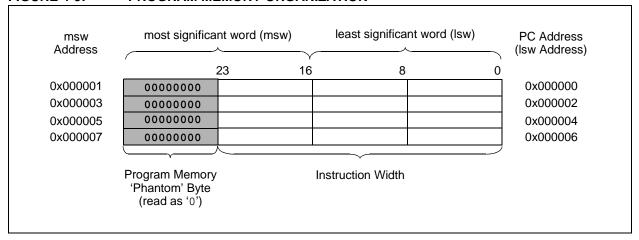
Detalls	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp102-e-sp

Email: info@E-XFL.COM

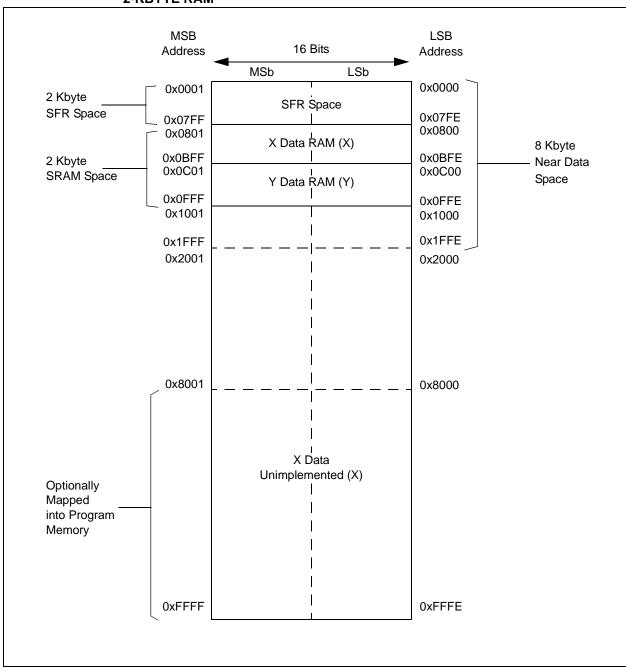
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-3).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.


4.1.2 INTERRUPT AND TRAP VECTORS

All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices also have two Interrupt Vector Tables (IVTs), located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-3: PROGRAM MEMORY ORGANIZATION

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES WITH 2-KBYTE RAM

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-40: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing
	mode specified in the instruction can differ
	for the source and destination EA. How-
	ever, the 4-bit Wb (Register Offset) field is
	shared by both source and destination
	(but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset			
	Addressing mode is available only for W9							
	(in X space) and W11 (in Y space).							

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

In addition to the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

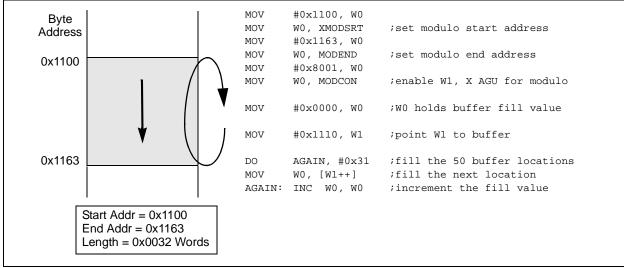
In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

- The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing.
- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

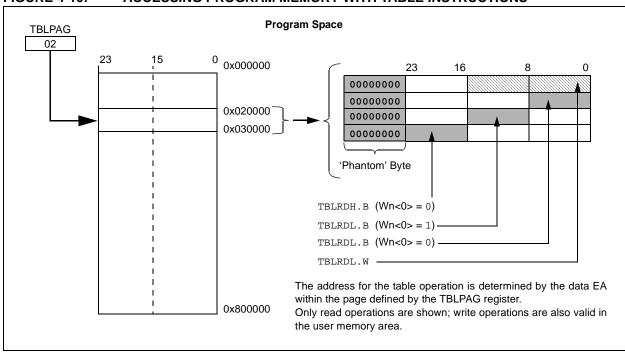
The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

			0								
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
ALTIVT	DISI	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
		—	—	_	INT2EP	INT1EP	INT0EP				
bit 7							bit (
Legend:											
R = Readable bit W = Writable bit				U = Unimple	emented bit, rea	d as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cl	eared	x = Bit is unk	nown					
bit 15	ALTIVT: Enable Alternate Interrupt Vector Table bit										
		1 = Uses Alternate Interrupt Vector Table									
bit 14		0 = Uses standard Interrupt Vector Table (default) DISI: DISI Instruction Status bit									
		1 = DISI instruction is active									
	0 = DISI instruction is not active										
bit 13-3	Unimplemen	ted: Read as '	0'								
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detec	t Polarity Sele	ct bit						
	1 = Interrupt on negative edge										
	0 = Interrupt on positive edge										
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
	1 = Interrupt on negative edge 0 = Interrupt on positive edge										
h it 0	-			t Delevity Cele	-4 h i4						
bit 0		ernal Interrupt (0	a Polarity Sele							
		on negative ed on positive edg									
			-								

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

8.1 CPU Clocking System

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with 4x PLL
- Primary (MS, HS or EC) Oscillator
- Primary Oscillator with 4x PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

8.1.1.1 Fast RC

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The FRC frequency depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3).

8.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- MS (Crystal): Crystals and ceramic resonators in the range of 4 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 32 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

8.1.1.3 Secondary

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

8.1.1.4 Low-Power RC

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

8.1.1.5 PLL

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip, 4x Phase Lock Loop (PLL) to provide faster output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 23.1 "Configuration Bits" for further details.) The initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 16 MHz are supported by the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

$$FCY = \frac{FOSC}{2}$$

REGISTER	10-4: RPINR	4: PERIPHE	RAL PIN SE	LECT INPUT	REGISTER	1					
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	—	T5CKR4 ⁽¹⁾	T5CKR3 ⁽¹⁾	T5CKR2 ⁽¹⁾	T5CKR1 ⁽¹⁾	T5CKR0 ⁽¹⁾				
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	_	_	T4CKR4 ⁽¹⁾	T4CKR3 ⁽¹⁾	T4CKR2 ⁽¹⁾	T4CKR1 ⁽¹⁾	T4CKR0 ⁽¹⁾				
bit 7							bit (
Legend: R = Readab	la hit	W = Writable	. hit		nantad hit raa						
				-	nented bit, read						
-n = Value a	TPOR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	-	ted: Read as									
bit 12-8	T5CKR<4:0>	: Assign Time	r5 External Clo	ck (T5CK) to th	ne Correspondi	ng RPn Pin bits	_S (1)				
	11111 = I npu	it tied to Vss									
	11110 = Res	erved									
	•										
	•										
		11010 = Reserved									
	11001 = Input tied to RP25										
	•										
	00001 = Input tied to RP1 00000 = Input tied to RP0										
			(0)								
bit 7-5	•	ted: Read as			.		(1)				
bit 4-0			r4 External Clo	CK (14CK) to the	ne Correspondi	ng RPn Pin bits	5(1)				
	11111 = Inpu 11110 = Res										
	•										
	•										
	11010 = Res	anvad									
		it tied to RP25									
	00001 = Inpu										
	00000 = Inpu	It tied to RP0									

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
0-0	0-0	0-0	10,00-0	11/00-0			10,00-0		
	—				RP17R<4:0>(.)			
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	_			RP16R<4:0>(1)			
bit 7		•					bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
							/		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	RP17R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP17 Output I	Pin bits ⁽¹⁾			
		-2 for peripher	•	•	•				
bit 7-5		ted: Read as '		- /					
	-					- · · · (1)			
bit 4-0	RP16R<4:0>	RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits ⁽¹⁾							

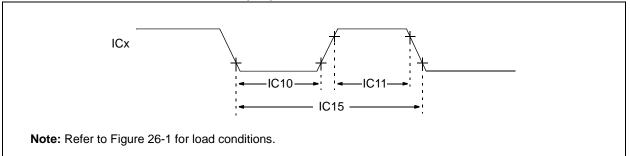
REGISTER 10-19: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

(see Table 10-2 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
					RP19R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_				RP18R<4:0> ⁽¹)	
bit 7							bit 0
Legend:							

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)


Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER	19-4. ADICI	15123: ADCT		ANNUL $1, 2,$	S SELECT RE	GISTER					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_		—		—	CH123NB1	CH123NB0	CH123SB				
bit 15		bit 8									
						DAMO	DAMO				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0 CH123NA0	R/W-0				
 bit 7	—	—	_	—	CH123NA1	CH123NAU	CH123SA bit (
							Dit (
Legend:											
R = Readab	le bit	W = Writable bi	t	U = Unimple	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15-11	Unimplemen	ted: Read as '0'									
bit 10-9	CH123NB<1:	0>: Channel 1, 2	2, 3 Negative	Input Select f	or Sample B bit	5					
	dsPIC33FJ16	CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits dsPIC33FJ16(GP/MC)101/102 Devices Only:									
	11 = Reserved										
		10 = Reserved									
		0x = CH1, CH2, CH3 negative inputs are AVss									
		2(GP/MC)101/10									
	11 = CH1 heg 10 = Reserve	gative input is AN	v9, CH2 nega	ative input is A	IN10, CH3 nega	tive input is not	connected				
		d 12, CH3 negative	e inputs are A	Wss							
			•								
		<u>dsPIC33FJ32(GP/MC)104 Devices Only:</u> 11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8										
	0x = CH1, CH2, CH3 negative inputs are AVss										
bit 8	CH123SB: Ch	nannel 1, 2, 3 Po	sitive Input S	Select for Sam	ple B bit						
	dsPIC33FJXX(GP/MC)101 Devices Only:										
	1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected										
	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2										
	All Other Devices:										
	 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 										
	-	•	•	e input is AN1	, CH3 positive in	iput is Ainz					
bit 7-3	-	ted: Read as '0'									
bit 2-1	CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits										
		10-9> for the ava									
bit 0		nannel 1, 2, 3 Po	=	Select for Sam	ple A bit						
	Refer to bit 8	for the available	settings.								

REGISTER 19-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

FIGURE 26-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

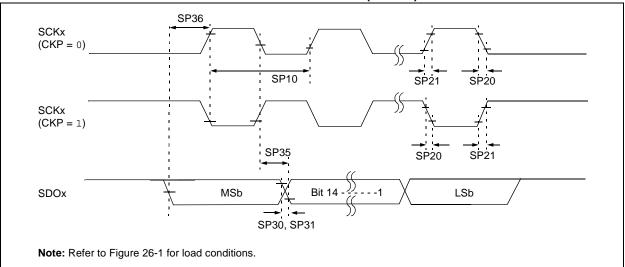


TABLE 26-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic ⁽¹⁾			Min	Мах	Units	Conditions		
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20	_	ns		
			With Prescaler	10	—	ns		
IC11	TccH	ICx Input High Time	No Prescaler	0.5 TCY + 20	_	ns		
			With Prescaler	10	_	ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-20: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-38:SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS
FOR dsPIC33FJ32(GP/MC)10X

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—	_	15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time		—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-42:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

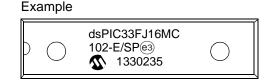
AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_	—		ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	—	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


28.1 Package Marking Information (Continued)

28-Lead SPDIP

28-Lead SOIC

Example

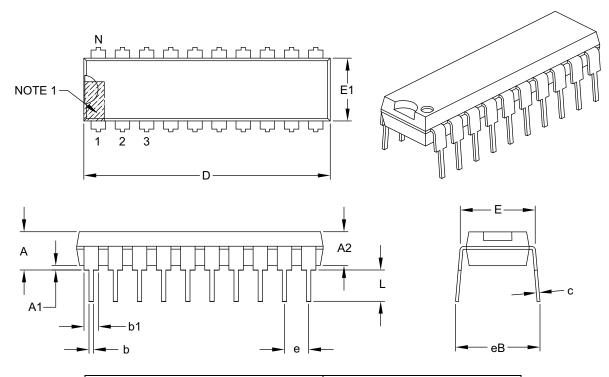
28-Lead SSOP

28-Lead QFN

36-Lead VTLA

Example

Example



Example

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

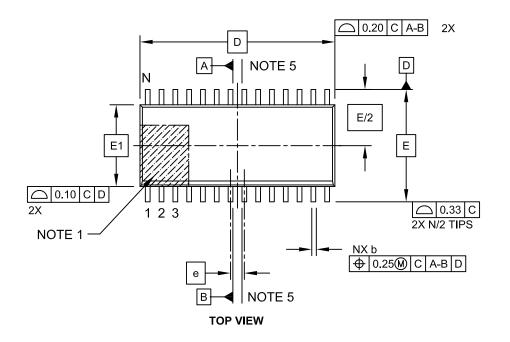
	Units		INCHES	
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

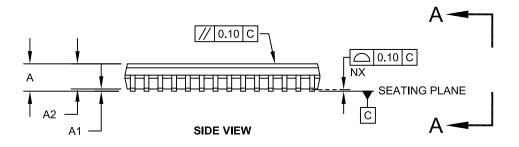
Notes:

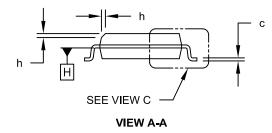
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-019B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

TABLE A-3: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "Electrical	Updated the Absolute Maximum Ratings.
Characteristics"	Updated TABLE 26-3: Thermal Packaging Characteristics.
	Updated TABLE 26-6: DC Characteristics: Operating Current (Idd).
	Updated TABLE 26-7: DC Characteristics: Idle Current (lidle).
	Updated TABLE 26-8: DC Characteristics: Power-Down Current (Ipd).
	Updated TABLE 26-9: DC Characteristics: Doze Current (Idoze).
	Updated TABLE 26-10: DC Characteristics: I/O Pin Input Specifications.
	Replaced all SPI specifications and figures (see Table 26-29 through Table 26-44 and Figure 26-11 through Figure 26-26).
Section 28.0 "Packaging	Added the following Package Marking Information and Package Drawings:
Information"	44-Lead TQFP
	• 44-Lead QFN
	 44-Lead VTLA (referred to as TLA in the package drawings)

INDEX

1	•
r	١

Absolute Maximum Ratings
AC Characteristics
10-Bit ADC Specifications
ADC Specifications
Internal Fast RC (FRC) Accuracy
Internal Low-Power RC (LPRC) Accuracy 296, 342
Load Conditions
PLL Clock
Temperature and Voltage Specifications
ADC
Control Registers 222
Helpful Tips
Initialization217
Key Features217
Resources
Alternate Interrupt Vector Table (AIVT)95
Analog-to-Digital Converter (ADC)217
Arithmetic Logic Unit (ALU)43

В

Bit-Reversed Addressing	
Example	77
Implementation	
Sequence Table (16-Entry)	77
Block Diagrams	
16-Bit Timer1 Module	
6-Channel PWM1 Module	182
ADC1 Conversion Clock Period	221
ADC1 for dsPIC33FJ32(GP/MC)104 Devices	220
ADC1 for dsPIC33FJXX(GP/MC)101 Devices	218
ADC1 for dsPIC33FJXX(GP/MC)102 Devices	219
Comparator I/O Operating Modes	231
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	266
CTMU Module	256
Digital Filter Interconnect	233
DSP Engine	44
dsPIC33FJXX(GP/MC)10X CPU Core	38
dsPIC33FJXX(GP/MC)10X Devices	
I ² C Module	
Input Capture x Module	
MCLR Pin Connections	34
Multiplexing of Remappable Output for RPn	144
Oscillator System	
Output Compare x Module	
Real-Time Clock and Calendar (RTCC) Module	
Recommended Minimum Connection	
Remappable MUX Input for U1RX	142
Reset System	87
Shared Port Structure	140
SPIx Module	
Timer2 and Timer4 (16-Bit)	
Timer2/3 and Timer4/5 (32-Bit)	
Timer3 and Timer5 (16-Bit)	
UARTx Simplified	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	

С

Charge Time Measurement Unit. See CTMU.	
Clock Switching	132
Enabling	132
Sequence	132
Code Examples	
Assembly Code for Write-Protected Register	
Unlock, Fault Clearing Sequence	184
C Code for Write-Protected Register Unlock,	
Fault Clearing Sequence	184
Port Write/Read	141
PWRSAV Instruction Syntax	133
Setting the RTCWREN Bit	
Comparator	
Control Registers	
Configuration Bits	
Description	
CPU	
Control Registers	40
Data Addressing	
Overview	37
DSP Engine	
Adder/Subtracter	-
Overflow and Saturation	45
Barrel Shifter	
Data Accumulators	
Write Back	46
Data Accumulators and Adder/Subtracter.	
Multiplier	
Overview	
Special MCU Features	
CPU Clocking System	
Clock Selection	
Clock Sources	
Configuration Bit Values for Clock Selection	
PLL Configuration	
CTMU	
Control Registers	257
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	52
Memory Map for dsPIC33FJ16(GP/MC)101/102	
Devices, 1-Kbyte RAM	53
Memory Map for dsPIC33FJ32(GP/MC)101/102/104	
Devices, 2-Kbyte RAM	54
Near Data Space	52
Organization and Alignment	52
SFR Space	52
Software Stack	73
Width	52
X and Y Spaces	55

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-845-6

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.