

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	R/W-0	IF
bit 7	SAID	SAIDW	ACCOAT	IF L3. 7	F3V	RND	bit
							Dit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	-	tiply Unsigned		ol bit			
		ne multiplies a	•				
	0 = DSP engi	ne multiplies a	ire signed				
bit 11		Loop Termina					
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	• 001 = 1 DO lo	on is activo					
		ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
		itor A saturatio					
		itor A saturatio					
bit 6		Saturation En					
		tor B saturatio					
bit 5				ine Saturation	Enable bit		
		ce write satura					
		ce write satura					
bit 4	ACCSAT: Acc	cumulator Satu	uration Mode S	Select bit			
		ration (super s					
L:1 0		ration (normal	,	··· (2)			
bit 3		terrupt Priority rrupt Priority Le					
		rupt Priority Le	•				
bit 2				ace Enable bit			
		space is visible					
	-	space is not vi		pace			
bit 1		ng Mode Sele					
		onventional) ro (convergent)					
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	-			iply operations			
	0 = Fractional	l mode is enab	led for DSP m	nultiply operation	ons		

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input.

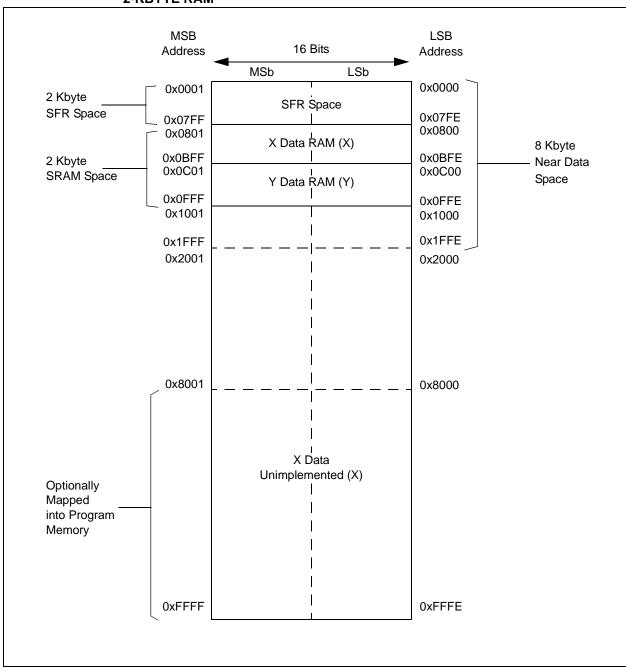
- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously, and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS Register bits support saturation and overflow:


- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
 - ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)
- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

or

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action; for example, to correct system gain.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ32(GP/MC)101/102/104 DEVICES WITH 2-KBYTE RAM

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	KEY<7:0>			
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemer	nted bit, re	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkn	iown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	Reserved
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

TABLE 7-2:TRAP VECTORS

7.3 Interrupt Control and Status Registers

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices implement a total of 26 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx Registers

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx Registers

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx Registers

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IPx bits in the first positions of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user application can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-28 on the following pages.

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip, 4x PLL to obtain higher speeds of operation.

For example, suppose an 8 MHz crystal is being used with the selected oscillator mode of MS with PLL. This provides a Fosc of 8 MHz * 4 = 32 MHz. The resultant device operating speed is 32/2 = 16 MIPS.

EQUATION 8-2: MS WITH PLL MODE EXAMPLE

```
FCY = \frac{FOSC}{2} = \frac{1}{2} (8000000 • 4) = 16 MIPS
```

TABLE 8-1:	CONFIGURATION BIT VALU	ES FOR CLOCH	SELECTION	

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (MS) with PLL (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI	DOZE2 ^(2,3)	DOZE1 ^(2,3)	DOZE0 ^(2,3)	DOZEN ^(1,2,3)	FRCDIV2	FRCDIV1	FRCDIV0			
bit 15							bit			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_		—			—			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpleme	ented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown			
bit 15	1 = Interrupts 0 = Interrupts	s have no effec	DOZEN bit and to the		clock/periphera	al clock ratio is	set to 1:1			
bit 14-12	DOZE<2:0>:	Processor Cloo	ck Reduction S	Select bits ^(2,3)						
	111 = Fcy/128									
	110 = FCY/64 101 = FCY/32									
	101 = FCY/16									
	011 = FCY/8 (default)								
	010 = FCY/4									
	001 = FCY/2 000 = FCY/1									
bit 11		E Mode Enabl	e bit ^(1,2,3)							
				io between the p	eripheral clock	s and the proc	essor clock			
	0 = Processo	or clock/periphe	eral clock ratio	is forced to 1:1						
bit 10-8			RC Oscillator	Postscaler bits						
	111 = FRC divide-by-256									
	110 = FRC divide-by-64 101 = FRC divide-by-32									
	100 = FRC di	•								
	011 = FRC di	•								
	010 = FRC di									
	001 = FRC di	vide-by-2 vide-by-1 (defa								
		•								
bit 7-0	Unimploment	ted: Read as '	o'							

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

- **2:** If DOZEN = 1, writes to DOZE<2:0> are ignored.
- 3: If DOZE<2:0> = 000, the DOZEN bit cannot be set by the user; writes are ignored.

10.7 Peripheral Pin Select Registers

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of devices implements up to 23 registers for remappable peripheral configuration.

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.3.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	_	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

-n = value a	IT POR	T = Bit is set	0° = Bit is cleared	X = Bit is unknown
bit 15-13	Unimple	mented: Read as '0'		
bit 12-8	INT1R<4	1:0>: Assign External Interr	upt 1 (INTR1) to the Correspond	ding RPn Pin bits
		Input tied to Vss Reserved		
	•			
	•			
		Reserved Input tied to RP25		
	•			

bit 7-0 Unimplemented: Read as '0'

00001 = Input tied to RP1 00000 = Input tied to RP0

12.3 Timer2/3 and Timer4/5 Control Registers

_							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	_		—		_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timer2	On bit					
	When T32 = 2						
	1 = Starts 32-						
	0 = Stops 32-						
	<u>When T32 = 0</u> 1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Timer	2 Stop in Idle M	lode bit				
		ues module ope			lle mode		
		s module opera		de			
bit 12-7	Unimplemen	ted: Read as '0)'				
bit 6		er2 Gated Time	Accumulation	Enable bit			
	When TCS =						
	This bit is igno When TCS =						
		<u>o.</u> e accumulatior	is enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3		imer Mode Sele	ct bit				
Sit 0		nd Timer3 form		timer			
		nd Timer3 act a					
bit 2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timer2	Clock Source S	elect bit				
		clock from pin, ⁻	Γ2CK (on the r	ising edge)			
	0 = Internal cl						
bit 0	Unimplemen	ted: Read as '0) '				

REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

NOTES:

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - . .
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to a value of 1:1.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL		—		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
	<u> </u>		<u> </u>			FRMDLY	
pit 7						TRIBET	bit (
_egend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15		ned SPIx Supp					
bit 15	1 = Framed S	Plx support is	enabled (SSx	pin is used as	Frame Sync pu	ulse input/output)
	1 = Framed S 0 = Framed S	Plx support is Plx support is	enabled (SSx disabled		Frame Sync pu	ulse input/output)
	1 = Framed S 0 = Framed S SPIFSD: Frar	Plx support is Plx support is ne Sync Pulse	enabled (SSx disabled Direction Cor		Frame Sync pu	Ilse input/output)
	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy	Plx support is Plx support is	enabled (SSx disabled Direction Cor (slave)		Frame Sync pu	ulse input/output)
bit 14	1 = Framed S 0 = Framed S SPIFSD: Frar 1 = Frame Sy 0 = Frame Sy	Plx support is Plx support is ne Sync Pulse nc pulse input	enabled (SSx disabled Direction Cor (slave) tt (master)		Frame Sync pu	ulse input/output)
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fram 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	PIx support is PIx support is ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act	enabled (SSx disabled Direction Cor (slave) It (master) e Polarity bit ive-high		Frame Sync pu	ulse input/output)
bit 14	1 = Framed S 0 = Framed S SPIFSD: Fram 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy	PIx support is PIx support is ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls	enabled (SSx disabled Direction Cor (slave) It (master) e Polarity bit ive-high		Frame Sync pu	ulse input/output)
bit 14 bit 13	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy	PIx support is PIx support is ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act	enabled (SSx disabled Direction Cor (slave) It (master) e Polarity bit ive-high ive-low		Frame Sync pu	ulse input/output)
bit 15 bit 14 bit 13 bit 12-2 bit 1	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen	PIx support is PIx support is ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act	enabled (SSx disabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0'	ntrol bit	Frame Sync pu	Ilse input/output)
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy 0 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy	PIx support is PIx support is ne Sync Pulse nc pulse input nc pulse outpu ame Sync Puls nc pulse is act nc pulse is act ted: Read as ' me Sync Pulse nc pulse coinci	enabled (SSx disabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first	trol bit bit bit clock	Frame Sync pu	ulse input/output)
bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: Fran 1 = Frame Sy 0 = Frame Sy FRMPOL: Fra 1 = Frame Sy Unimplemen FRMDLY: Fra 1 = Frame Sy 0 = Frame Sy	Plx support is Plx support is ne Sync Pulse nc pulse input nc pulse output ame Sync Puls nc pulse is act nc pulse is act ted: Read as ' me Sync Pulse nc pulse coinci nc pulse prece	enabled (SSx disabled Direction Cor (slave) it (master) e Polarity bit ive-high ive-low 0' e Edge Select ides with first edes first bit cl	trol bit bit bit clock		ulse input/output)

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated CircuitTM (I²CTM)" (DS70195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-Bit and 10-Bit Addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-Bit Addressing
- I²C slave operation with 10-Bit Addressing
- I²C master operation with 7-Bit or 10-Bit Addressing

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33/PIC24 Family Reference Manual"* sections.

17.2 I²C Registers

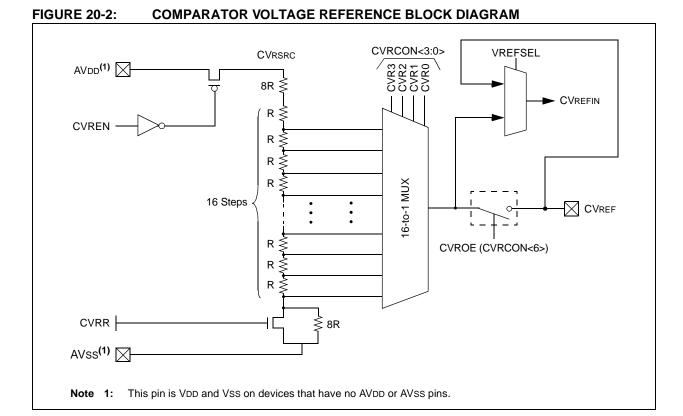
I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write.

- I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- ADD10 status bit indicates 10-Bit Addressing mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

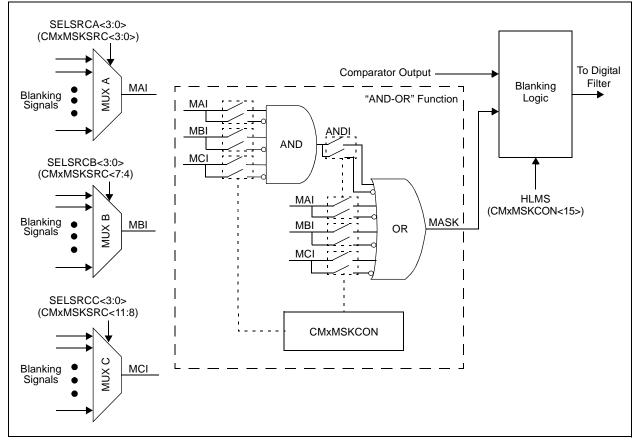
In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

18.1 UART Helpful Tips

- In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.


18.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.


Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554109

18.2.1 KEY RESOURCES

- "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* sections
- Development Tools

FIGURE 20-3: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

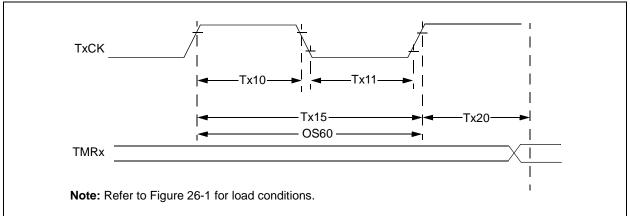
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

FIGURE 26-5: TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial -40°C \leq TA \leq +125°C for Extended Param Characteristic⁽²⁾ Symbol Min Max Units Conditions Тур No. TA10 ТтхН T1CK High Synchronous Greater of: Must also meet ns Time mode 20 or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 35 ns _ ____ TA11 T1CK Low Must also meet TTXL Synchronous Greater of: ns Time mode 20 ns or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 10 ns TA15 ΤτχΡ T1CK Input Synchronous Greater of: N = prescale value ns Period mode 40 or (1, 8, 64, 256) (2 TCY + 40)/N **OS60** Ft1 SOSC1/T1CK Oscillator DC 50 kHz ____ Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit) TA20 TCKEXTMRL Delay from External T1CK 0.75 Tcy + 40 1.75 Tcy + 40 ns Clock Edge to Timer Increment

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

TABLE 26-43:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	—w	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—		ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

27.1 High-Temperature DC Characteristics

TABLE 27-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temperature Range	Max MIPS	
Characteristic	(in Volts)	(in °C)	dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104	
HDC5	Vbor – 3.6V ⁽¹⁾	-40°C to +150°C	5	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., may have degraded performances below VDDMIN.

TABLE 27-2: THERMAL OPERATING CONDITIONS

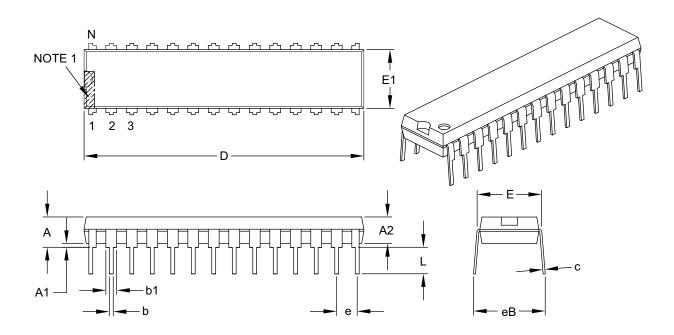

Rating	Symbol	Min	Тур	Max	Unit
High Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	PINT + PI/O			W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJA			W

TABLE 27-3: DC CHARACTERISTICS: OPERATING CURRENT (IDD))

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Parameter No.	Typical	Мах	Units	Conditions			
Operating Current (IDD) – dsPIC33FJ16(GP/MC)10X Devices							
DC20e	1.3	1.7	mA	3.3V	LPRC (32.768 kHz)		
DC22e	7.0	8.5	mA	3.3V 5 MIPS			

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
C	Dimension Limits	MIN	NOM	MAX			
Number of Pins	mber of Pins N 28						
Pitch	е	.100 BSC					
Top to Seating Plane	A	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B