Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | Speed | 16 MIPs | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 6x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp102-i-ss | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: #### http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - Microchip's Worldwide Web site; http://www.microchip.com - Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com to receive the most current information on all of our products. | dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 | |---| | NOTES: | FIGURE 6-2: SYSTEM RESET TIMING - POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. - BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable. - 3. PWRT Timer: The Power-up Timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT, has elapsed, the SYSRST becomes inactive, which in turn, enables the selected oscillator to start generating clock cycles. - 4. Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information. - 5. When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine. - The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay, TFSCM, has elapsed. Note: TABLE 6-2: OSCILLATOR PARAMETERS | Symbol | Parameter | Value | |--------|----------------------------------|----------------| | VPOR | POR Threshold | 1.8V nominal | | TPOR | POR Extension Time | 30 μs maximum | | VBOR | BOR Threshold | 2.5V nominal | | TBOR | BOR Extension Time | 100 μs maximum | | TPWRT | Power-up Time
Delay | 64 ms nominal | | TFSCM | Fail-Safe Clock
Monitor Delay | 900 μs maximum | When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges; otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification. #### REGISTER 7-27: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-1 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | |-------|---------|---------|---------|-----|-----|-----|-------| | _ | CTMUIP2 | CTMUIP1 | CTMUIP0 | _ | _ | _ | _ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 CTMUIP<2:0>: CTMU Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • . 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3-0 Unimplemented: Read as '0' ## 8.2 Oscillator Control Registers ## REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ | U-0 | R-0 | R-0 | R-0 | U-0 | R/W-y | R/W-y | R/W-y | |--------|-------|-------|-------|-----|----------------------|----------------------|----------------------| | _ | COSC2 | COSC1 | COSC0 | _ | NOSC2 ⁽²⁾ | NOSC1 ⁽²⁾ | NOSC0 ⁽²⁾ | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R-0 | U-0 | R/C-0 | U-0 | R/W-0 | R/W-0 | |---------|--------|------|-----|-------|-----|---------|-------| | CLKLOCK | IOLOCK | LOCK | _ | CF | _ | LPOSCEN | OSWEN | | bit 7 | | | | | | | bit 0 | | Legend: C = Clearable bit | | y = Value set from Configuration bits on POR | | | |----------------------------------|------------------|--|--------------------|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read as '0' | | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | bit 15 **Unimplemented:** Read as '0' bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator (MS, EC) with PLL 010 = Primary Oscillator (MS, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 11 **Unimplemented:** Read as '0' bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽²⁾ 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator (MS, EC) with PLL 010 = Primary Oscillator (MS, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7 CLKLOCK: Clock Lock Enable bit If Clock Switching is Enabled and FSCM is Disabled (FCKSM<1:0> (FOSC<7:6>) = 0b01): 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source can be modified by clock switching bit 6 **IOLOCK:** Peripheral Pin Select Lock bit 1 = Peripheral Pin Select is locked, a write to Peripheral Pin Select registers is not allowed 0 = Peripheral Pin Select is not locked, a write to Peripheral Pin Select registers is allowed bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled bit 4 Unimplemented: Read as '0' Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part VI)" (DS70644) in the "dsPIC33/PIC24 Family Reference Manual" for details. 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes. # 10.4.3 CONTROLLING CONFIGURATION CHANGES Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices include three features to prevent alterations to the peripheral map: - · Control register lock sequence - · Continuous state monitoring - Configuration bit pin select lock #### 10.4.3.1 Control Register Lock Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes. To set or clear IOLOCK, a specific command sequence must be executed: - Write 0x46 to OSCCON<7:0>. - Write 0x57 to OSCCON<7:0>. - 3. Clear (or set) IOLOCK as a single operation. Note: MPLAB® C30 provides built-in C language functions for unlocking the OSCCON register: __builtin_write_OSCCONL(value) _builtin_write_OSCCONH(value) See MPLAB IDE Help for more information. Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence. #### 10.4.3.2 Continuous State Monitoring In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered. #### 10.4.3.3 Configuration Bit Pin Select Lock As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset. In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers. #### REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | |-------|-----|-----|--------|--------|--------|--------|--------| | _ | _ | _ | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 **Unimplemented:** Read as '0' bit 4-0 INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the Corresponding RPn Pin bits 11111 = Input tied to Vss 11110 = Reserved : 11010 = Reserved 11001 = Input tied to RP25 . 00001 = Input tied to RP1 00000 = Input tied to RP0 #### REGISTER 10-21: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-------|-------|--------------------------|-------|-------| | _ | _ | _ | | | RP21R<4:0> ⁽¹ | 1) | | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-------|-------|--------------------------|-------|-------| | _ | _ | _ | | | RP20R<4:0> ⁽¹ |) | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) bit 7-5 **Unimplemented:** Read as '0' bit 4-0 **RP20R<4:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) **Note 1:** These bits are available in dsPIC33FJ32(GP/MC)104 devices only. #### REGISTER 10-22: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |--------|-----|-----|---------------------------|-------|-------|-------|-------|--| | _ | _ | _ | RP23R<4:0> ⁽¹⁾ | | | | | | | bit 15 | | | | | | | bit 8 | | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |-------|-----|-----|---------------------------|-------|-------|-------|-------|--| | _ | _ | _ | RP22R<4:0> ⁽¹⁾ | | | | | | | bit 7 | | | | | | | bit 0 | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12-8 RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) bit 7-5 **Unimplemented:** Read as '0' bit 4-0 RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only. ## REGISTER 10-23: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |--------|-----|-----|---------------------------|-------|-------|-------|-------|--| | _ | _ | _ | RP25R<4:0> ⁽¹⁾ | | | | | | | bit 15 | | | | | | | bit 8 | | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-------|-------|--------------------------|-------|-------| | _ | _ | _ | | | RP24R<4:0> ⁽¹ |) | | | bit 7 | | | | | | | bit 0 | | Legend: | | | | |-------------------|------------------|-----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | l as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15-13 Unimplemented: Read as '0' bit 12-8 RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) bit 7-5 Unimplemented: Read as '0' bit 4-0 RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers) Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only. | dsPIC33FJ | 16(GP/MC | c)101/102 | AND dsF | PIC33FJ3 | 2(GP/MC) | 101/102/ | /104 | |-----------|----------|-----------|---------|----------|----------|----------|------| | | • | | | | | | | | NOTES: | # 15.0 MOTOR CONTROL PWM MODULE - Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Motor Control PWM" (DS70187) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com). - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information. The dsPIC33FJ16MC10X devices have a 6-channel Pulse-Width Modulation (PWM) module. The PWM module has the following features: - Up to 16-bit resolution - · On-the-fly PWM frequency changes - Edge-Aligned and Center-Aligned Output modes - Single Pulse Generation mode - Interrupt support for asymmetrical updates in Center-Aligned mode - Output override control for Electrically Commutative Motor (ECM) operation or BLDC - Special event comparator for scheduling other peripheral events - Fault pins to optionally drive each of the PWM output pins to a defined state - Duty cycle updates configurable to be immediate or synchronized to the PWM time base #### 15.1 PWM1: 6-Channel PWM Module This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module: - 3-Phase AC Induction Motor - Switched Reluctance (SR) Motor - · Brushless DC (BLDC) Motor - Uninterruptible Power Supply (UPS) This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin. Note: #### 15.2 PWM Faults The Motor Control PWM module incorporates up to two Fault inputs, FLTA1 and FLTB1. These Fault inputs are implemented with Class B safety features. These features ensure that the PWM outputs enter a safe state when either of the Fault inputs is asserted. The FLTA1 and FLTB1 pins, when enabled and having ownership of a pin, also enable a soft internal pull-down resistor. The soft pull-down provides a safety feature by automatically asserting the Fault should a break occur in the Fault signal connection. The implementation of internal pull-down resistors is dependent on the device variant. Table 15-1 describes which devices and pins implement the internal pull-down resistors. TABLE 15-1: INTERNAL PULL-DOWN RESISTORS ON PWM FAULT PINS | Device | Fault Pin | Internal
Pull-Down
Implemented? | |------------------|-----------|---------------------------------------| | dsPIC33FJXXMC101 | FLTA1 | No | | dsPIC33FJXXMC102 | FLTA1 | Yes | | | FLTB1 | Yes | | dsPIC33FJ32MC104 | FLTA1 | Yes | | | FLTB1 | Yes | On devices without internal pull-downs on the Fault pin, it is recommended to connect an external pull-down resistor for Class B safety features. #### 15.2.1 PWM FAULTS AT RESET During any Reset event, the PWM module maintains ownership of both PWM Fault pins. At Reset, both Faults are enabled in latched mode to guarantee the fail-safe power-up of the application. The application software must clear both of the PWM Faults before enabling the Motor Control PWM module. The Fault condition must be cleared by the external circuitry driving the Fault input pin high and clearing the Fault interrupt flag. After the Fault pin condition has been cleared, the PWM module restores the PWM output signals on the next PWM period or half-period boundary. Refer to "Motor Control PWM" (DS70187) in the "dsPIC33/PIC24 Family Reference Manual" for more information on the PWM Faults. The number of PWM Faults mapped to the device pins depend on the specific variant. Regardless of the variant, both Faults will be enabled during any Reset event. The application must clear both FLTA1 and FLTB1 before enabling the Motor Control PWM module. Refer to the specific device pin diagrams to see which Fault pins are mapped to the device pins. ## 15.3 Write-Protected Registers On dsPIC33FJ(16/32)MC10X devices, write protection is implemented for the PWMxCON1, PxFLTACON and PxFLTBCON registers. The write protection feature prevents any inadvertent writes to these registers. The write protection feature can be controlled by the PWMLOCK Configuration bit in the FOSCSEL Configuration register. The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK (FOSCSEL<6>) = 0. The user application can gain access to these locked registers either by configuring the PWMLOCK bit (FOSCSEL<6>) = 0 or by performing the unlock sequence. To perform the unlock sequence, the user application must write two consecutive values (0xABCD and 0x4321) to the PWMxKEY register to perform the unlock operation. The write access to the PWMxCON1, PxFLTACON or PxFLTBCON registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to all registers, the PWMxCON1, PxFLTACON and PxFLTBCON registers require three unlock operations. The correct unlocking sequence is described in Example 15-1 and Example 15-2. ### REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED) bit 4 **P:** Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware sets or clears when Start, Repeated Start or Stop is detected. bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware sets or clears when Start, Repeated Start or Stop is detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – Indicates data transfer is output from slave 0 = Write – Indicates data transfer is input to slave Hardware sets or clears after reception of an I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware sets when I2CxRCV is written with received byte. Hardware clears when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission. # REGISTER 19-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW(1,2,3) | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |-------------------------|-----|-----|-------------------------------|-------|-------|-------|-------|--| | PCFG15 ^(4,5) | _ | _ | PCFG<12:0> ^(4,5,7) | | | | | | | bit 15 | | | | | | | bit 8 | | | R/W-0 | |------------------------------|-------|-------|-------|-------|-------|-------|-------|--| | PCFG<7:0> ^(4,5,6) | | | | | | | | | | bit 7 | | | | | | | | | Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 **PCFG15:** ADC1 Port Configuration Control bit^(4,5) 1 = Port pin is in Digital mode, port read input is enabled, ADC1 input multiplexer is connected to AVss 0 = Port pin is in Analog mode, port read input is disabled, ADC1 samples pin voltage bit 14-13 Unimplemented: Read as '0' bit 12-0 **PCFG<12:0>:** ADC1 Port Configuration Control bits^(4,5,6,7) 1 = Port pin is in Digital mode, port read input is enabled, ADC1 input multiplexer is connected to AVss 0 = Port pin is in Analog mode, port read input is disabled, ADC1 samples pin voltage **Note 1:** On devices without 14 analog inputs, all PCFGx bits are R/W by user. However, PCFGx bits are ignored on ports without a corresponding input on the device. - **2:** PCFGx = ANx, where x = 0 through 12 and 15. - **3:** The PCFGx bits have no effect if the ADC module is disabled by setting the AD1MD bit in the PMD1 register. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode. - **4:** Pins shared with analog functions (i.e., ANx) are analog by default and therefore, must be set by the user to enable any digital function on that pin. Reading any port pin with the analog function enabled will return a '0', regardless of the signal input level. - 5: The PCFG<15,12:11,8:6> bits are available in the dsPIC33FJ32(GP/MC)104 devices only and are reserved in all other devices. - **6:** The PCFG<5:4> bits are available on all devices, excluding the dsPIC33FJXX(GP/MC)101 devices, where they are reserved. - 7: The PCFG<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved. TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) | DC CHARACT | ERISTICS | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | |------------------|------------------------|---------------|--|--------------------------------|------------------|-----------------------------|--|--| | Parameter
No. | Typical ⁽¹⁾ | Max | Units | Conditions | | | | | | Idle Current (II | DLE): Core Of | f, Clock On I | Base Current | ⁽²⁾ – dsPIC33FJ16(0 | SP/MC)10X Device | S | | | | DC40d | 0.4 | 1.0 | mA | -40°C | | | | | | DC40a | 0.4 | 1.0 | mA | +25°C | 3.3V | LPRC | | | | DC40b | 0.4 | 1.0 | mA | +85°C | J.5 V | (32.768 kHz) ⁽³⁾ | | | | DC40c | 0.5 | 1.0 | mA | +125°C | | | | | | DC41d | 0.5 | 1.1 | mA | -40°C | | | | | | DC41a | 0.5 | 1.1 | mA | +25°C | 3.3V | 1 MIPS ⁽³⁾ | | | | DC41b | 0.5 | 1.1 | mA | +85°C | | 1 MIPS | | | | DC41c | 0.8 | 1.1 | mA | +125°C | | | | | | DC42d | 0.9 | 1.6 | mA | -40°C | | 4 MIPS ⁽³⁾ | | | | DC42a | 0.9 | 1.6 | mA | +25°C | 3.3V | | | | | DC42b | 1.0 | 1.6 | mA | +85°C | 3.3 V | 4 1/11/5(*) | | | | DC42c | 1.2 | 1.6 | mA | +125°C | | | | | | DC43a | 1.6 | 2.6 | mA | +25°C | | | | | | DC43d | 1.6 | 2.6 | mA | -40°C | 3.3V | 10 MIPS ⁽³⁾ | | | | DC43b | 1.7 | 2.6 | mA | +85°C | 3.3 V | 10 1011175 | | | | DC43c | 2 | 2.6 | mA | +125°C | | | | | | DC44d | 2.4 | 3.8 | mA | -40°C | | | | | | DC44a | 2.4 | 3.8 | mA | +25°C | 3.3V | 16 MIPS ⁽³⁾ | | | | DC44b | 2.6 | 3.8 | mA | +85°C | | 16 MIPS(9) | | | | DC44c | 2.9 | 3.8 | mA | +125°C | | | | | Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. - 2: Base Idle current is measured as follows: - CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail - CLKO is configured as an I/O input pin in the Configuration Word - External Secondary Oscillator (SOSC) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs) - All I/O pins are configured as inputs and pulled to Vss - MCLR = VDD, WDT and FSCM are disabled - No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed) - 3: These parameters are characterized, but not tested in manufacturing. ## FIGURE 26-3: CLKO AND I/O TIMING CHARACTERISTICS ## **TABLE 26-20: I/O TIMING REQUIREMENTS** | AC CHARACTERISTICS | | | Standard Ope
(unless other)
Operating temp | wise state | ed)
-40°C ≤ | TA ≤ + 85 | 5°C for In | dustrial
Extended | |--------------------|--------|-----------------------------------|--|------------|-----------------------|------------------|------------|----------------------| | Param
No. | Symbol | Characteristic ⁽²⁾ | | Min | Typ ⁽¹⁾ | Max | Units | Conditions | | DO31 | TioR | Port Output Rise Tim | е | _ | 10 | 25 | ns | | | DO32 | TioF | Port Output Fall Time | | _ | 10 | 25 | ns | | | DI35 | TINP | INTx Pin High or Low Time (input) | | 25 | | | ns | | | DI40 | TRBP | CNx High or Low Tim | ne (input) | 2 | _ | _ | Tcy | | Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. 2: These parameters are characterized, but are not tested in manufacturing. ## FIGURE 26-29: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) ## FIGURE 26-30: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) ## 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |--------------------------|------------------|-------------|----------|-------|--| | Di | Dimension Limits | | | MAX | | | Number of Pins | N | | 28 | • | | | Pitch | е | | 0.65 BSC | | | | Overall Height | Α | ı | _ | 2.00 | | | Molded Package Thickness | A2 | 1.65 | 1.75 | 1.85 | | | Standoff | A1 | 0.05 | _ | _ | | | Overall Width | E | 7.40 | 7.80 | 8.20 | | | Molded Package Width | E1 | 5.00 | 5.30 | 5.60 | | | Overall Length | D | 9.90 | 10.20 | 10.50 | | | Foot Length | L | 0.55 | 0.75 | 0.95 | | | Footprint | L1 | | 1.25 REF | | | | Lead Thickness | С | 0.09 | _ | 0.25 | | | Foot Angle | ф | 0° | 4° | 8° | | | Lead Width | b | 0.22 | _ | 0.38 | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-073B # 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging MILLIMETERS Units MIN **Dimension Limits** NOM MAX 0.65 BSC Contact Pitch Ε Optional Center Pad Width W2 4.25 Optional Center Pad Length T2 4.25 Contact Pad Spacing C1 5.70 Contact Pad Spacing C2 5.70 Contact Pad Width (X28) X1 0.37 Y1 1.00 Contact Pad Length (X28) 0.20 Distance Between Pads G #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2105A ## **Revision E (September 2012)** This revision includes updates to the values in Section 26.0 "Electrical Characteristics" and updated packaging diagrams in Section 28.0 "Packaging Information". There are minor text edits throughout the document. ## **Revision F (January 2014)** This revision adds the High-Temperature Electrical Characteristics chapter and updated packaging diagrams in **Section 28.0** "**Packaging Information**". There are minor text edits throughout the document.