

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gp102t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes, or words, anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page (TBLPAG) register is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility (PSVPAG) register is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-42 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA.

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1>				0	
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>	Data EA<15:0>			
		0	xxx xxxx	xxxx xx	xx xxxx xxxx		
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
		1xxx xxxx x		xxxx xxxx xxxx xxxx			
Program Space Visibility (Block Remap/Read)	User	0 PSVPAG<7		:7:0> Data EA<14:0>		0> ⁽¹⁾	
	(xxxx xxxx		xxx xxxx xxxx	xxxx	

TABLE 4-42: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

6.2 System Reset

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a POR or a BOR. On a Cold Reset, the FNOSC<2:0> Configuration bits in the FOSCSEL Configuration register selects the device clock source.

A Warm Reset is the result of all other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Start-up Delay	Oscillator Start-up Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd(1)	_	_	Toscd
FRCPLL	Toscd ⁽¹⁾	—	ТLOCК ⁽³⁾	Toscd ⁽¹⁾ + Tlock ⁽³⁾
MS	Toscd ⁽¹⁾	Tost(2)	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
HS	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
EC	—	—	—	—
MSPLL	Toscd(1)	Tost(2)	ТLОСК ⁽³⁾	TOSCD ⁽¹⁾ + TOST ⁽²⁾ + TLOCK ⁽³⁾
ECPLL	—	—	ТLОСК ⁽³⁾	ТLОСК ⁽³⁾
SOSC	Toscd(1)	Tost ⁽²⁾	—	Toscd ⁽¹⁾ + Tost ⁽²⁾
LPRC	Toscd(1)	—	—	Toscd ⁽¹⁾

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max. for FRC, 70 μs max. for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL Lock time (1.5 ms nominal) if PLL is enabled.

TABLE 6-1: OSCILLATOR DELAY

	-3: INTCC								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15							bit 8		
R/W-0	R/W-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	own		
n – valuo at i			•				lowin		
bit 15	NSTDIS: Inte	errupt Nestina [Disable bit						
2.1.10	1 = Interrupt	nesting is disal	bled						
	0 = Interrupt	nesting is enat	oled						
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit					
	1 = Trap was	caused by ove	erflow of Accur	nulator A					
	0 = Irap was	not caused by	overflow of A	ccumulator A					
bit 13	OVBERR: AC	cumulator B C	verflow I rap F	lag bit					
	1 = 1 rap was 0 = Trap was	not caused by ove	overflow of Accur	nulator B					
bit 12	COVAFRR: A	Accumulator A	Catastrophic (Overflow Trap F	lag bit				
51112	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator A				
	0 = Trap was	not caused by	catastrophic of	overflow of Accu	umulator A				
bit 11	COVBERR: /	Accumulator B	Catastrophic (Overflow Trap F	lag bit				
	1 = Trap was	caused by cat	astrophic over	flow of Accumu	lator B				
	0 = Trap was	not caused by	catastrophic o	overflow of Accu	umulator B				
bit 10	OVATE: Accu	umulator A Ove	erflow Trap Ena	able bit					
	1 = Trap overflow of Accumulator A 0 = Trap is disabled								
hit 9		umulator B Ov	erflow Tran En	ahle hit					
bit 0	1 = Trap over	flow of Accum	ulator B						
	0 = Trap is di	sabled							
bit 8	COVTE: Cata	astrophic Over	low Trap Enat	ole bit					
	1 = Trap on catastrophic overflow of Accumulator A or B is enabled								
	0 = Trap is di	sabled	_						
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit					
	1 = Math error0 = Math error	or trap was cau or trap was not	sed by an inva caused by an	invalid accumulator	r sniπ lator shift				
bit 6	DIV0ERR: Ar	ithmetic Error	Status bit						
	1 = Math erro	or trap was cau	sed by a divide	e-by-zero					
	0 = Math erro	or trap was not	caused by a d	ivide-by-zero					
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	MATHERR: A	Arithmetic Erro	Status bit						
	1 = Math error	or trap has occu	urred						
	v = wattreffc	n dap nas not	occurred						

INTOONA, INTERDURT CONTROL DECISTER A

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip, 4x PLL to obtain higher speeds of operation.

For example, suppose an 8 MHz crystal is being used with the selected oscillator mode of MS with PLL. This provides a Fosc of 8 MHz * 4 = 32 MHz. The resultant device operating speed is 32/2 = 16 MIPS.

EQUATION 8-2: MS WITH PLL MODE EXAMPLE

```
FCY = \frac{FOSC}{2} = \frac{1}{2} (8000000 • 4) = 16 MIPS
```

TABLE 8-1:	CONFIGURATION BIT VALU	JES FOR CLOCH	SELECTION	

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (MS) with PLL (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L
bit 15							bit
R/W-	0 U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
FLTBI	<u>м –</u>	_	_	_	FBEN3	FBEN2	FBEN1
bit 7					-		bit
Legena:	labla hit	\// _ \//ritabla	hit		nantad hit raa	l oo 'O'	
R = Read		vv = vviilable	DIL	0 = 0 minipier	arad	1 as U v – Pitio unkn	0.000
-n = value				0 = Bit is cie	areu		IOWI
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBOV<3:1>H	I:FBOV<3:1>L	- : Fault Input E	8 PWMx Overri	de Value bits		
	1 = The PWN	1x output pin is	driven active	on an external	Fault input eve	nt	
	0 = The PWN	1x output pin is	driven inactiv	e on an externa	al Fault input ev	vent	
bit 7	FLTBM: Faul	t B Mode bit					
	1 = The Fault	B input pin fur	nctions in the (Cycle-by-Cycle	mode		
	0 = The Fault	B input pin lat	ches all contro	ol pins to the pr	ogrammed stat	es in PxFLTBC	ON<13:8>
bit 6-3	Unimplemen	ted: Read as '	0'				
bit 2	FBEN3: Fault	t Input B Enabl	e bit				
	1 = PWMxH3	/PWMxL3 pin p	pair is controlle	ed by Fault Inp	ut B		
L :1 4		PVVIVIXL3 pin p	Dair is not con	trolled by Fault	Input B		
DIT			e Dit	ad by Fault Inc	+ D		
	1 = PWWXH2 0 = PWMxH2	/PWMxL2 pin p	pair is controlle	trolled by Fault inp	Input B		
bit 0	FBEN1: Fault	t Input B Enabl	e bit				
	1 = PWMxH1	/PWMxL1 pin r	pair is controlle	ed by Fault Inp	ut B		
	0 = PWMxH1	/PWMxL1 pin p	pair is not con	trolled by Fault	Input B		
Note 1:	Comparator output	ts are not inter	nally connecte	d to the PWM	Fault control lo	gic. If using the	comparator
	modules for Fault g	generation, the or FLTB1 input	user must ex pin.	ternally connec	ct the desired c	omparator outp	ut pin to the
2:	Refer to Table 15-	1 for FLTB1 im	, plementation o	details.			
3:	The PxFLTACON r for more informatio	egister is a writ	e-protected re	gister. Refer to	Section 15.3 "	Write-Protecte	d Registers"
4:	During any Reset of "PWM Faults"	event, FLTB1 is	s enabled by c	lefault and mus	st be cleared as	s described in S	ection 15.2

REGISTER 15-10: PxFLTBCON: PWMx FAULT B CONTROL REGISTER^(1,2,3,4)

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0
bit 15					L		bit 8
							,
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7						· · · · ·	bit 0
Legend:		HC = Hardwa	re Clearable b	bit			
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15 UARTEN: UARTx Enable bit ⁽¹⁾ 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by the UEN<1:0> bits 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal					<1:0> bits nsumption is		
bit 14	Unimplemen	ted: Read as ')'				
bit 13	USIDL: UART	Tx Stop in Idle N	Node bit				
	1 = Discontin	ues module op	eration when	device enters	Idle mode		
h# 40		s module opera	ation in Idle m	00e			
DIT 12		Encoder and De	ecoder Enable				
	0 = IrDA enco	oder and decod	ler are disable	ed			
bit 11	RTSMD: UAR	Tx Mode Seleo	ction for UxRT	S Pin bit			
	$1 = \frac{UxRTS}{UxRTS} p$ $0 = \frac{UxRTS}{UxRTS} p$	in is in Simplex in is in Flow Co	mode mtrol mode				
bit 10	Unimplemen	ted: Read as 'd)'				
bit 9-8	UEN<1:0>: U	ARTx Pin Enat	ole bits				
 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin is controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins are controlled by port latches 				rt latches oort latches controlled by			
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit		
	1 = UARTx w in hardwa 0 = No wake-	rill continue to s are on following -up is enabled	ample the Ux rising edge	RX pin; interru	pt is generated	on falling edge,	bit is cleared
bit 6	LPBACK: UA	RTx Loopback	Mode Select	bit			
	1 = Enables I 0 = Loopback	Loopback mode < mode is disab	e Iled				
bit 5	ABAUD: Auto	-Baud Enable	bit				
	1 = Enables I before ot	baud rate meas her data; cleare	surement on the d in hardware	he next charac e upon comple	ter – requires re tion	eception of a Sy	nc field (55h)
	0 = Baud rate	e measurement	is disabled o	r completed			
Note 1: Re ena	fer to " UART" (abling the UART	DS70188) in th module for red	e <i>"dsPIC33/F</i> ceive or transi	PIC24 Family R mit operation.	Reference Manu	al" for information	on on

2: This feature is available for 16x BRG mode (BRGH = 0) only.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0'
	0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	11 = 9-bit data, no parity
	10 = 8-bit data, odd parity
	01 = 8-bit data, even parity
	00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits
	0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is available for 16x BRG mode (BRGH = 0) only.

19.5 ADC Control Registers

REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON		ADSIDL	—			FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	—	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		C = Clearable	bit	HS = Hardwar	e Settable bit	HC = Hardware	Clearable bit
R = Reada	adable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$					as 'O'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	wn
bit 15	ADON: AD	C1 Operating M	lode bit				
	1 = ADC1 i 0 = ADC1 i	module is opera is off	ating				
bit 14	Unimpleme	ented: Read as	; 'O'				
bit 13	ADSIDL: A	DC1 Stop in Idl	e Mode bit				
	1 = Discon	tinues module	operation wh	en device ente	rs Idle mode		
	0 = Continu	ues module ope	eration in Idle	mode			
bit 12-10	Unimpleme	ented: Read as	·'O'				
bit 9-8	FORM<1:0	>: Data Output	Format bits				
	11 = Signed	d fractional (Do	UT = sddd d	lddd dd00 00	000, where s = .	NOT.d<9>)	
	10 = Fraction	d = d = d = d = d = d = d = d = d = d =	ddd dddd d	ld00 0000)	J whore - M		
	01 = Signed 00 = Intege	r (DOUT = 0000	bhd bh000 (000 (d dddd)	a, where $s = .10$	51.0<9>)	
bit 7-5	SSRC<2:0	Sample Cloc	k Source Sel	ect bits			
	111 = Inter	rnal counter en	ds sampling a	and starts conv	ersion (auto-con	vert)	
	110 = CTN	1U	1 3		(- /	
	101 = Res	erved					
	100 = Res	erved or control PWM	interval end	s sampling and	starts conversio	un(1)	
	$010 = GP^{-1}$	Timer3 compare	e ends samp	ling and starts	conversion		
	001 = Activ	ve transition on	INT0 pin end	ds sampling an	d starts conversi	on	
	000 = Clea	aring SAMP bit	ends samplir	ng and starts co	onversion		
bit 4	Unimpleme	ented: Read as	· '0'				
bit 3	SIMSAM: S	Simultaneous Sa	ample Select	bit (applicable	only when CHP	S<1:0> = 01 or 1	x)
	1 = Sample	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x) or samples CH0 and CH1					
	0 = Sample	es multiple char	nels individu	– ∪⊥) ally in sequence	ce		
bit 2	ASAM: AD	C1 Sample Aut	o-Start bit	, ,			
	1 = Sampli	ing begins imm	ediately after	last conversio	n; SAMP bit is a	uto-set	
	0 = Sampli	ng begins wher	n the SAMP I	oit is set			
Note 1:	This feature is	available in ds	PIC33FJ(16/	32)MC10X dev	ices only.		

23.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/ MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programming (DS70207) and and Diagnostics" "Device Configuration" (DS70194) in the "dsPIC33/PIC24 Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

23.1 Configuration Bits

The Configuration Shadow register bits can be configured (read as '0') or left unprogrammed (read as '1') to select various device configurations. These read-only bits are mapped starting at program memory location, 0xF80000. A detailed explanation of the various bit functions is provided in Table 23-4.

Note that address, 0xF80000, is beyond the user program memory space and belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using Table Reads.

dsPIC33FJ16(GP/MC)101/102 In and dsPIC33FJ32(GP/MC)101/102/104 devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-2. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Shadow register map is shown in Table 23-1.

TABLE 23-1: CONFIGURATION SHADOW REGISTER MAP

File Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FGS	F80004	_	_	_	—	_	_	GCP	GWRP
FOSCSEL	F80006	IESO	PWMLOCK ⁽¹⁾	—	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0
FOSC	F80008	FCKSM1	FCKSM0	IOL1WAY	—	—	OSCIOFNC	POSCMD1	POSCMD0
FWDT	F8000A	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0
FPOR	F8000C	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	ALTI2C1	—	—	—	
FICD	F8000E	Reserved ⁽²⁾	_	Reserved ⁽³⁾	Reserved ⁽³⁾	_	_	ICS1	ICS0

Legend: — = unimplemented, read as '1'.

Note 1: These bits are available in dsPIC33FJ(16/32)MC10X devices only.

2: This bit is reserved for use by development tools.

3: These bits are reserved, program as '0'.

The Configuration Flash Word maps are shown in Table 23-2 and Table 23-3.

TABLE 23-2: CONFIGURATION FLASH WORDS FOR dsPIC33FJ16(GP/MC)10X DEVICES⁽¹⁾

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	002BFC	—	IESO	PWMLOCK(2)	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC ⁽⁵⁾	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	002BFE	_	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ16GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

TABLE 23-3: CONFIGURATION FLASH WORDS FOR dsPIC33FJ32(GP/MC)10X DEVICES⁽¹⁾

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	0057FC	—	IESO	PWMLOCK(2)	PWMPIN ⁽²⁾	WDTWIN1	WDTWIN0	FNOSC2	FNOSC1	FNOSC0	FCKSM1	FCKSM0	OSCIOFNC ⁽⁵⁾	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCMD1	POSCMD0
CONFIG1	0057FE	—	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS1	ICS0	FWDTEN	WINDIS	PLLKEN	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: These bits are reserved in dsPIC33FJ32GP10X devices and read as '1'.

3: These bits are reserved, program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

5: This bit is programmed to '0' during final tests in the factory.

23.2 On-Chip Voltage Regulator

All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-14 located in **Section 26.1** "**DC Characteristics**".

Note:	It is important for low-ESR capacitors to be
	placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when VDD \ge VDDMIN.

23.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - Iit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - Iit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws, Wnd	Wnd = Zero-extend Ws	1	1	C.Z.N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

26.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 Pin			15	pF	In MS and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

AC CHAR	ACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteri	Min	Typ ⁽¹⁾	Max	Units	Conditions			
DO31	TIOR	Port Output Rise Tim	е	_	10	25	ns			
DO32	TIOF	Port Output Fall Time	9	_	10	25	ns			
DI35	TINP	INTx Pin High or Low	25	_	_	ns				
DI40	Trbp	CNx High or Low Tim	2			TCY				

TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

АС СН	ARACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions				
		Clock	Paramet	ers ⁽²⁾							
AD50	TAD	ADC Clock Period	76		_	ns					
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns					
	Conversion Rates										
AD55	tCONV	Conversion Time		12 Tad	—	_					
AD56	FCNV	Throughput Rate			1.1	Msps					
AD57	TSAMP	Sample Time	2.0 Tad								
		Timin	g Paramo	eters							
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 Tad	—	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected				
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	—	3.0 Tad						
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾		0.5 TAD	_						
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		—	20	μS					

TABLE 26-49: 10-BIT ADC CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E 0.65 BSC				
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13