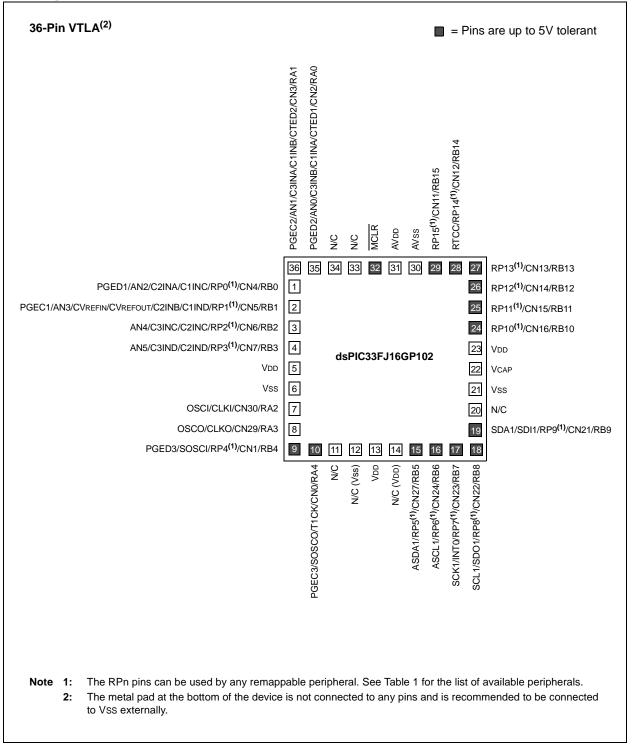


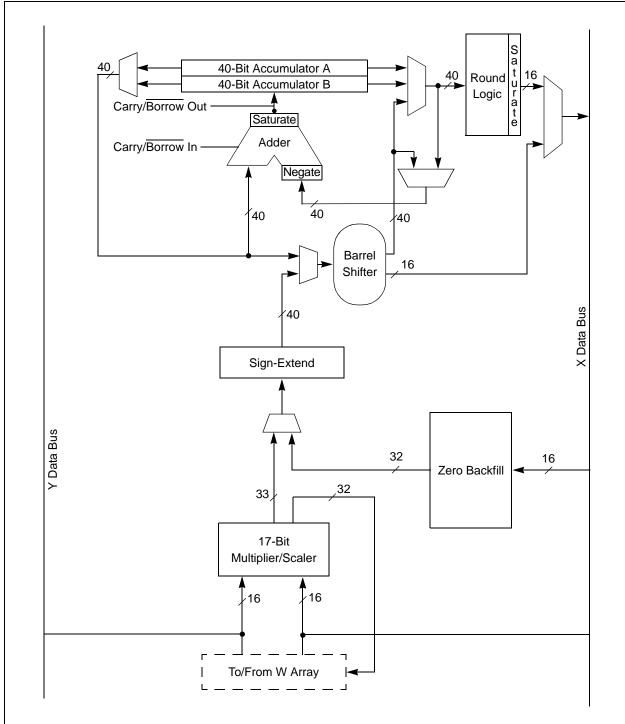
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc101-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

NOTES:

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM<3:0> bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the bit-reversed address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB<14:0> value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing will assume priority when active. For the X WAGU and Y AGU, Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

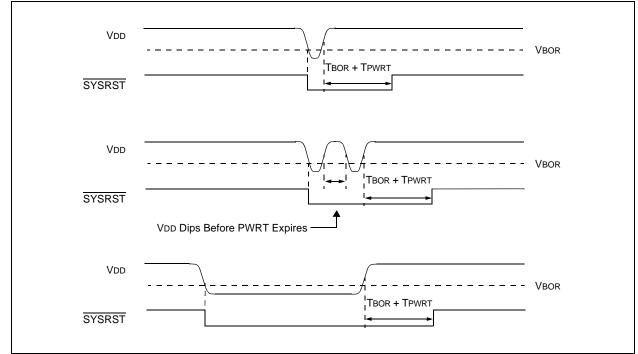
6.3 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures that the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 26.0** "**Electrical Characteristics**" for details.

The Power-on Reset (POR) status bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.4 BOR and PWRT


The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The Brown-out Reset (BOR) status bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The Power-up Timer (PWRT) provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

Refer to **Section 23.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

FIGURE 6-3: BROWN-OUT RESET SITUATIONS

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred INTOIF: External Interrupt 0 Flag Status bit

11.0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
U-0	0-0	INT2IF	T5IF ⁽¹⁾	T4IF ⁽¹⁾	0-0	0-0	0-0					
bit 15		1111211	1311	1411			bit					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF					
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-14	Unimplemen	nted: Read as '	כי									
bit 13	INT2IF: Exter	rnal Interrupt 2	Flag Status bi	t								
	1 = Interrupt	request has occ	curred									
	0 = Interrupt	request has not	occurred									
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit ⁽¹⁾									
		request has occ										
		request has not										
bit 11		Interrupt Flag S										
	•	request has occ										
	-	request has not										
bit 10-5	-	nted: Read as '										
bit 4	INT1IF: External Interrupt 1 Flag Status bit											
		request has occ request has not										
bit 3	CNIF: Input C	Change Notifica	tion Interrupt	Flag Status bit								
	-	request has occ	-	C								
	0 = Interrupt	request has not	occurred									
bit 2	CMIF: Compa	arator Interrupt	Flag Status bi	it								
		request has occ request has not										
bit 1	-	1 Master Event		ag Status bit								
		request has occ	•	0								
		request has not										
				Otativa 1.34								
bit 0	512C11F: 12C	1 Slave Events	Interrupt Flag	Status bit								
bit 0		request has occ		Status dit								

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/ MC)101/102/104 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

REGISTER	10-9: RPINE	20: PERIPH	ERAL PIN S	ELECT INPU	TREGISTER	20					
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	—	SCK1R4 ⁽¹⁾	SCK1R3 ⁽¹⁾	SCK1R2 ⁽¹⁾	SCK1R1 ⁽¹⁾	SCK1R0 ⁽¹⁾				
bit 15							bit 8				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
			SDI1R4 ⁽¹⁾	SDI1R3 ⁽¹⁾	SDI1R2 ⁽¹⁾	SDI1R1 ⁽¹⁾	SDI1R0 ⁽¹⁾				
bit 7							bit 0				
Legend:											
R = Readabl		W = Writable		-	nented bit, read						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
1 1 4 5 4 0			o.!								
bit 15-13	-	ted: Read as '			.						
bit 12-8			Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits					
	11111 = Input tied to Vss										
	11110 = Reserved										
	11010 = Reserved										
	11001 = I npu	ut tied to RP25									
	•										
	•										
	00001 = Inpu	ut tied to RP1									
		00000 = Input tied to RP0									
bit 7-5	Unimplemen	ted: Read as '	0'								
bit 4-0	SDI1R<4:0>:	Assign SPI1 E	Data Input (SD	11) to the Corre	esponding RPn	Pin bits ⁽¹⁾					
	11111 = I npu										
	11110 = Res	erved									
	•										
	11010 = Reserved										
		ut tied to RP25									
	00001 = Inpu	it tied to RP1									
	000001 = Inpu										
		•									

REGISTER 10-9: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_			RP25R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP24R<4:0> ⁽¹)	
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$				
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP25R<4:0>	Peripheral Ou	utput Function	is Assigned to	RP25 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for peripher	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP24R<4:0>	Peripheral Ou	utput Function	is Assigned to	RP24 Output F	Pin bits ⁽¹⁾	
	(see Table 10	-2 for peripher	al function nu	mbore)	-		

REGISTER 10-23: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTE	R 12-4: 15CO	N: IIMER5 C	UNIKOL RE	GISTER			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽³⁾	—	TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽³⁾	TCKPS1 ⁽³⁾	TCKPS0 ⁽³⁾	—	—	TCS ⁽³⁾	—
bit 7							bit 0
1							
Legend:	b.1. b.34		L.14	II II.		-l (Q)	
R = Reada		W = Writable		-	mented bit, rea		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	TON: Timer5	On hit(3)					
bit 10	1 = Starts 16-						
	0 = Stops 16-						
bit 14	Unimplemen	nted: Read as '	0'				
bit 13	TSIDL: Time	r5 Stop in Idle I	Node bit ⁽²⁾				
		ues timer opera			e mode		
	0 = Continue	s timer operatio	on in Idle mode	9			
bit 12-7	Unimplemen	nted: Read as '	0'	(-)			
bit 6		er5 Gated Time	Accumulation	n Enable bit ⁽³⁾			
	<u>When TCS =</u> This bit is ign						
	When TCS =						
		<u>o.</u> ne accumulatio	n is enabled				
	0 = Gated tim	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer5 Input	Clock Prescal	e Select bits ⁽³)		
		rescale value					
	10 = 1:64 pre						
	01 = 1:8 pres 00 = 1:1 pres						
bit 3-2	-	nted: Read as '	0'				
bit 1	-	Clock Source					
		clock from T5C					
		lock (Fosc/2)					
bit 0	Unimplemen	nted: Read as '	0'				
Note 1:	This register is ava	ailable in dsPIC	33FJ32(GP/N	IC)10X device	es only.		
	When 32-bit timer			-	-	ster (T4CON<3>)	, the TSIDL
	hit must be cleared	•	•	,	Ŭ	. ,	

REGISTER 12-4: T5CON: TIMER5 CONTROL REGISTER⁽¹⁾

2: When 32-bit timer operation is enabled (132 = 1) in the Timer4 Control register (14CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: When the 32-bit timer operation is enabled (T32 = 1) in the Timer4 Control register (T4CON<3>), these bits have no effect.

13.1 Input Capture Control Register

REGISTER 13-1: ICXCON: INPUT CAPTURE X CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
—		ICSIDL	—				—				
it 15							bit 8				
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0				
ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0				
it 7							bit (
egend:		HC = Hardwa	re Clearable I	oit							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
it 15-14	Unimplemen	ted: Read as ')'								
it 13	ICSIDL: Input	t Capture x Sto	o in Idle Cont	rol bit							
		ture x module									
		ture x module		o operate in Cl	PU Idle mode						
it 12-8	=	ted: Read as '									
it 7	•	Capture x Tim									
		ntents are capt ntents are capt									
it 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits										
	10 = Interrupt	t on every fourt t on every third	capture even	t							
		t on every seco t on every captu		vent							
it 4	ICOV: Input C	ICOV: Input Capture x Overflow Status Flag bit (read-only)									
		ture x overflow Capture x overf									
it 3	ICBNE: Input	Capture x Buff	er Empty Sta	tus bit (read-on	ly)						
		oture x buffer is oture x buffer is		least one more	e capture value	can be read					
it 2-0	ICM<2:0>: Inj	put Capture x N	Node Select b	oits							
	edge c 110 = Unuse 101 = Captur 100 = Captur 011 = Captur 010 = Captur	detect only, all d d (module is di re mode, every re mode, every re mode, every re mode, every	other control b sabled) 16th rising e 4th rising edge rising edge falling edge	bits are not app dge ge	licable)	s in Sleep or Idle					
		s mode) Capture x modu	ile is turned c	off							

18.1 UART Helpful Tips

- In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

18.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access
	the product page using the link above,
	enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554109

18.2.1 KEY RESOURCES

- "UART" (DS70188) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* sections
- Development Tools

) U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	(4)	—			CSS<12:8> ^{(4,6}	5)	
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<7	7:0> ^(4,5)			
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		0' = Bit is cleared x = Bit is unknown			
h :+ 44 40	0 = Skips AN	Nx for input sca k for input scan ted: Read as '0'					
		ieu. Neau as 0					
bit 14-13 bit 12-0	CSS<12:0>: /	ADC1 Input Sca Nx for input sca		_{Dits} (4,5,6)			
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN2	Nx for input sca k for input scan	n				
	CSS<12:0>: / 1 = Selects A	Nx for input sca k for input scan t 14 analog inpu	n ts, all AD1CS	SSL bits can be			on. However,
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN On devices withour	Nx for input sca k for input scan t 14 analog inpu scan without a c	n ts, all AD1CS correspondin	SSL bits can be			on. However,
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN On devices withour inputs selected for CSSx = ANx, when CTMU temperature	Nx for input sca x for input scan t 14 analog input scan without a re x = 0 through a sensor input c	n ts, all AD1CS correspondin 12 and 15. annot be sca	SSL bits can be g input on the d nned.	evice converts	S VREFL.	
bit 12-0 Note 1: 2:	CSSx = ANx, when	Nx for input scan x for input scan t 14 analog input scan without a c re $x = 0$ through e sensor input ca ,8:6> bits are av	n ts, all AD1CS correspondin 12 and 15. annot be sca	SSL bits can be g input on the d nned.	evice converts	S VREFL.	

REGISTER 19-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2,3)

they are reserved.
6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved.

REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Starts up device with FRC, then automatically switches to the user-selected oscillator source when ready 0 = Starts up device with user-selected oscillator source
PWMLOCK	PWM Lock Enable bit
	1 = Certain PWM registers may only be written after a key sequence0 = PWM registers may be written without a key sequence
WDTWIN<1:0>	Watchdog Timer Window Select bits 11 = WDT window is 24% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Reserved; do not use 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL) 010 = Primary Oscillator (MS, HS, EC) 001 = Fast RC Oscillator with Divide-by-N and PLL module (FRCDIVN + PLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in MS and HS modes) 1 = OSC2 is a clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode (10 MHz-32 MHz) 01 = MS Crystal Oscillator mode (3 MHz-10 MHz) 00 = EC (External Clock) mode (DC-32 MHz)
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode

TABLE 23-4: dsPIC33F CONFIGURATION BITS DESCRIPTION

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
	DC CHARACTERISTICS		Operati				\leq TA \leq +85°C for Industrial	
	1					-40°C :	\leq TA \leq +125°C for Extended	
Param No.	Symbol	Characteristic ⁽³⁾	Min	Typ ⁽¹⁾	Max	Units Conditions		
		Program Flash Memory						
D130a	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D132b	Vpew	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	—	10	—	mA		
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2	
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2	
D138a	Tww	Word Write Cycle Time	47.4	—	49.3	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2	
D138b	Tww	Word Write Cycle Time	47.4		49.3	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2	

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

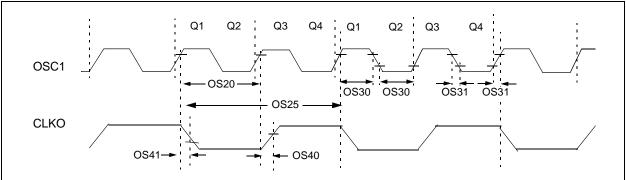

3: These parameters are ensured by design, but are not characterized or tested in manufacturing.

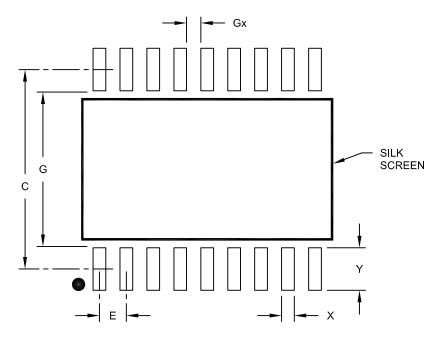
TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Characteristics	Min Typ Max Units Comments				
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.

AC CHA	RACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			or Industrial	
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾ Max Units Condit				Conditions
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	32	MHz	EC
		Oscillator Crystal Frequency	3.0 10 31		10 32 33	MHz MHz kHz	MS HS SOSC
OS20	Tosc	Tosc = 1/Fosc	31.25	—	DC	ns	
OS25	Тсү	Instruction Cycle Time ^(2,4)	62.5	_	DC	ns	
OS30	TosL, TosH	External Clock in (OSC1) ⁽⁵⁾ High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) ⁽⁵⁾ Rise or Fall Time	-	_	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,5)		6	10	ns	
OS41	TckF	CLKO Fall Time ^(3,5)		6	10	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V, TA = +25°C

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 32 MHz only.
- **5:** These parameters are characterized by similarity, but are not tested in manufacturing.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N		S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

Resets	87
BOR (Brown-out Reset)	87
BOR and Power-up Timer (PWRT)	92
CM (Configuration Mismatch Reset)	
Configuration Mismatch (CM)	
External (EXTR)	
Illegal Condition	
Illegal Opcode	
Security	93, 94
Uninitialized W Register	
IOPUWR (Illegal Condition Reset)	87
Illegal Opcode	
Security	
Uninitialized W Register	87
MCLR (Master Clear Pin)	87
Oscillator Delays	
POR (Power-on Reset)	87
Power-on Reset (POR)	92
Software RESET Instruction (SWR)	93
SWR (RESET Instruction)	
System	
Cold Reset	90
Warm Reset	90
Trap Conflict	93
TRAPR (Trap Conflict Reset)	87
Watchdog Timer Time-out (WDTO)	93
WDTO (Watchdog Timer Reset)	87
Revision History	373
RTCC	
Control Registers	245
Module Registers	244
Register Mapping	244
e	

S

Serial Peripheral Interface (SPI)	197
Control Registers	199
Helpful Tips	198
Resources	198
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	73
Special Features	261
Code Protection	261
Flexible Configuration	261
In-Circuit Emulation	261
In-Circuit Serial Programming (ICSP)	261
Watchdog Timer (WDT)	

Т

I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	330
Input Capture x (ICx)	301
Motor Control PWMx	303
Motor Control PWMx Fault	303
OCx/PWMx	302
Output Compare x (OCx)	302
Output Compare x Operation	
Reset, Watchdog Timer, Oscillator Start-up Timer	-
and Power-up Timer	298
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x,	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x ,	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x_i	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x ,	
SPIX Master Mode (Full-Duplex, CKE = 1, CKF = x , SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
for dsPIC33FJ16(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 0)	
for dsPIC33FJ32(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
for dsPIC33FJ16(GP/MC)10X	
SPIx Master Transmit Mode (Half-Duplex, CKE = 1)	
for dsPIC33FJ32(GP/MC)10X	317
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	314
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	326
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	312
SPIx Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	324
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	308
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	320
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
SMP = 0) for dsPIC33FJ16(GP/MC)10X	310
SPIx Slave Mode (Full-Duplex, CKE = 1, CKP = 1,	
SMP = 0) for dsPIC33FJ32(GP/MC)10X	322
System Reset	
Timer1/2/3 External Clock	
Timing Requirements	
10-Bit ADC Conversion	335
Capacitive Loading on Output Pins	294
CLKO and I/O	
External Clock	
I2Cx Bus Data (Master Mode)	329
I2Cx Bus Data (Slave Mode)	
Input Capture x (ICx)	
Motor Control PWMx	
Output Compare x (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	298
Simple OCx/PWMx Mode	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x,	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 0, CKP = x_i	
SPIX Master Mode (Full-Duplex, CKE = 0, CKF = x , SMP = 1) for dsPIC33FJ32(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x ,	
SMP = 1) for dsPIC33FJ16(GP/MC)10X	
SPIx Master Mode (Full-Duplex, CKE = 1, CKP = x, SMB = 1) for de DC22E $I22(CD/MC)10X$	
SMP = 1) for dsPIC33FJ32(GP/MC)10X	318