

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

· >< F

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc101-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		rte)			Rem	appa	ble l	Perip	herals	5	М		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ^(1,2)	Input Capture	Output Compare	UART	External Interrupts ⁽³⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I²C™	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1		—	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	_	—	1 ADC, 4-ch	Y	1	3	Y	15	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	_	_	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1		—	1 ADC, 6-ch	Y	1	3	Y	21	VTLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	VTLA

TABLE 1:dsPIC33FJ16(GP/MC)101/102 DEVICE FEATURES

Note 1: Two out of three timers are remappable.

2: One pair can be combined to create one 32-bit timer.

3: Two out of three interrupts are remappable.

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70204) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16(GP/MC)101/102 The and dsPIC33FJ32(GP/MC)101/102/104 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can serve as a data, address, or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space.

3.4 CPU Control Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15	·						bit 8
(2))) (2)	(2)					
R/W-0 ⁽³		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit (
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		ator A Overflow					
		ator A has overf ator A has not o					
bit 14		ator B Overflow					
DIL 14		ator B has overf					
		ator B has not o					
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	itus bit ⁽¹⁾			
	1 = Accumula	ator A is saturat	ed or has be	en saturated at	some time		
		ator A is not sat		(4)			
bit 12		ator B Saturatio					
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	OAB: OA C	B Combined A	ccumulator C	Verflow Status	bit		
		ators A or B hav					
bit 10	SAB: SA S	B Combined Ac	cumulator 'S	ticky' Status bit			
					urated at some	time in the past	
		ccumulator A o			it will clear SA a	and SB	
bit 9	DA: DO LOOP			Cleaning this bi			
	1 = DO loop is						
		not in progres	5				
bit 8	DC: MCU AL	U Half Carry/Bo	prrow bit				
			ow-order bit	(for byte-sized o	data) or 8th low-	order bit (for wo	rd-sized data
		sult occurred	h low-order	hit (for hyte-siz	ed data) or 8th	low-order bit (f	or word-sized
	•	he result occur					
Note 1:	This bit can be rea	nd or cleared (ne	ot set).				
	The IPL<2:0> bits						
	Level. The value in	n parentheses i	ndicates the	IPL if IPL<3> =	1. User interru	ots are disabled	when
	IPL<3> = 1.						

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	R/W-0	IF
bit 7	SAID	SAIDW	ACCOAT	IF L3. 7	F3V	RND	bit
							Dit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	-	tiply Unsigned		ol bit			
		ne multiplies a	•				
	0 = DSP engi	ne multiplies a	ire signed				
bit 11		Loop Termina					
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	• 001 = 1 DO lo	on is activo					
		ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
		itor A saturatio					
		itor A saturatio					
bit 6		Saturation En					
		tor B saturatio					
bit 5				ine Saturation	Enable bit		
		ce write satura					
		ce write satura					
bit 4	ACCSAT: Acc	cumulator Satu	uration Mode S	Select bit			
		ration (super s					
L:1 0		ration (normal	,	··· (2)			
bit 3		terrupt Priority rrupt Priority Le					
		rupt Priority Le	•				
bit 2				ace Enable bit			
		space is visible					
	-	space is not vi		pace			
bit 1		ng Mode Sele					
		onventional) ro (convergent)					
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	-			iply operations			
	0 = Fractional	l mode is enab	led for DSP m	nultiply operation	ons		

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

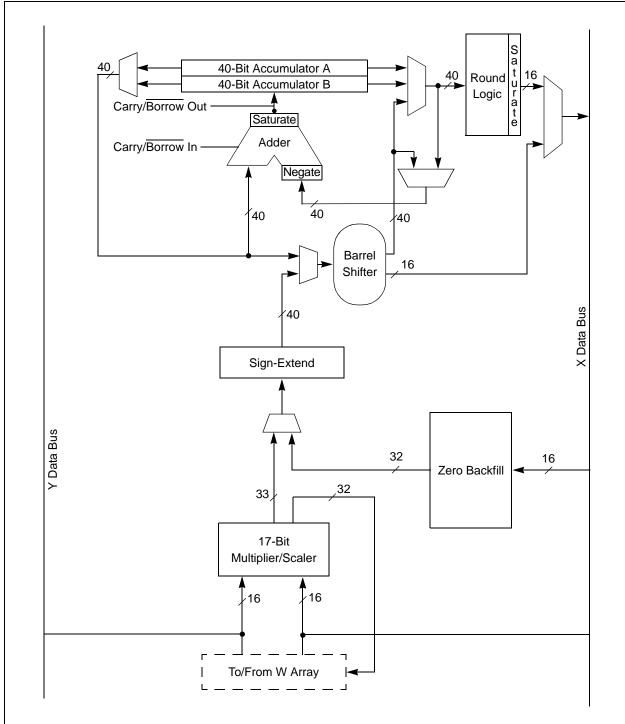
The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.


The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- · Conventional or Convergent Rounding (RND)
- · Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM

DS70000652F-page 66

TABLE 4-18: CTMU REGISTER MAP

F	ile Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C	FMUCON1	033A	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_		-	_	-	_	_	0000
C	FMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0			0000
C	FMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	—	—	-		_			-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on ALRMPTR<1:0>															xxxx
ALCFGRPT	0622	ALRMEN														0000		
RTCVAL	0624						RTCC V	alue Register	Window base	d on RTCF	PTR<1:0>							xxxx
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: PAD CONFIGURATION REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_				_	_	_	-	_		_			_	RTSECSEL	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

I	File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TR	RISA	02C0			—	-	_		TRISA<	10:7>			—			TRISA<4:0>			001F
PC	ORTA	02C2			—		_		RA<10):7>		—	_			RA<4:0>			xxxx
LA	TA	02C4	_	_	_	_	-		LATA<1	0:7>		—	_			LATA<4:0>			xxxx
O	DCA	02C6			_	_	_		ODCA<	10:7>		_	_		ODCA	<3:2>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB<	:15:14>	_	_	_	_	-	TRISB<9:7	>	_	_	TRISB4	_	_	TRISE	3<1:0>	C393
PORTB	02CA	RB<1	5:14>	_	_	_	_		RB<9:7>		_	_	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC	LATB<	15:14>	_	_	—	—	LATB<9:7>			_	LATB4	—	_	LATB	<1:0>	xxxx	
ODCB	02CE	ODCB<	:15:14>	_	_	-	-	ODCB<9:7>			_	ODCB4	_	_	_		0000	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<	<15:12>		_	_	1	RISB<9:7:	>	_	_	TRISB4	_	—	TRISE	3<1:0>	F393
PORTB	02CA		RB<1	5:12>			_		RB<9:7>		_		RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC		LATB<	15:12>			_		LATB<9:7>	•	_		LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE		ODCB<	<15:12>			_	(DDCB<9:7:	>	-	_	ODCB4		_			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTB REGISTER MAP FOR dsPIC33FJ16(GP/MC)102 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB<	:15:0>								FFFF
PORTB	02CA								RB<1	5:0>								xxxx
LATB	02CC								LATB<	15:0>								xxxx
ODCB	02CE						ODCB<	:15:4>						_	_	_		0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM<3:0> bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the bit-reversed address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB<14:0> value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing will assume priority when active. For the X WAGU and Y AGU, Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

5.2 RTSP Operation

The dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

The programming time depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). Use the following formula to calculate the minimum and maximum values for the Word write time and page erase time (see Parameters D138a and D138b, and Parameters D137a and D137b in Table 26-12, respectively).

EQUATION 5-1: PROGRAMMING TIME

 $\frac{T}{7.37 \text{ MHz} \times (FRC \text{ Accuracy})\% \times (FRC \text{ Tuning})\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 8-3) are set to `b000000, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

 $T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 47.4 \mu s$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{355 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 49.3 \mu s$$

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note:	Performing a page erase operation on the								
	last page of program memory will clear the								
	Flash Configuration Words, thereby								
	enabling code protection as a result.								
	Therefore, users should avoid performing								
	page erase operations on the last page of								
	program memory.								

Refer to **"Flash Programming"** (DS70191) in the *"dsPIC33/PIC24 Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	_	_		—	—	—				
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0				
bit 7							bit				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown				
	• • 001 = Interru	pt is Priority 7 (pt is Priority 1 pt source is dis		ty interrupt)							
bit 3	Unimplemen	ted: Read as '	0'								
bit 2-0	U1TXIP<2:0>	: UART1 Tran	smitter Interru	pt Priority bits							
	U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • • 001 = Interrupt is Priority 1										

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

	_	-	-				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			_	_	_	_
bit 15				•			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	—	T5IP2 ⁽¹⁾	T5IP1 ⁽¹⁾	T5IP0 ⁽¹⁾
bit 7					·		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	INT2IP<2:0>:	External Inter	rupt 2 Priority	bits			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	T5IP<2:0>: ⊺	ïmer5 Interrupt	Priority bits ⁽¹⁾)			
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
		pt source is dis	abled				
	1.1						

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTDIR				PTMR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTM	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			nown

REGISTER 15-2: PxTMR: PWMx TIMER COUNT VALUE REGISTER

bit 15	PTDIR: PWMx Time Base Count Direction Status bit (read-only)
	1 = PWMx time base is counting down
	0 = PWMx time base is counting up
bit 14-0	PTMR <14:0>: PWMx Time Base Register Count Value bits

REGISTER 15-3: PxTPER: PWMx TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				PTPER<14:8	>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWMx Time Base Period Value bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTDIR ⁽¹⁾			S	SEVTCMP<14:8>	(2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	ИР<7:0> ⁽²⁾			
bit 7							bit 0
Logondi							
Legend:	L : 4					-l (0)	
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	id as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

REGISTER 15-4: PxSECMP: PWMx SPECIAL EVENT COMPARE REGISTER

0 = A Special Event Trigger will occur when the PWMx time base is counting up

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.

2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L				
bit 15							bit				
R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1				
FLTAM		_	_	—	FAEN3	FAEN2	FAEN1				
bit 7							bit				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	nted: Read as '	0'								
bit 13-8	FAOV<3:1>	H:FAOV<3:1>L	: Fault Input A	PWMx Overric	le Value bits						
		Mx output pin is									
	0 = The PW	Mx output pin is	driven inactiv	e on an externa	al Fault input e	vent					
bit 7	FLTAM: Fau	FLTAM: Fault A Mode bit									
		ılt A input pin fur									
		Ilt A input pin fur Ilt A input pin lat				tes in PxFLTAC	ON<13:8>				
bit 6-3	0 = The Fau		ches all contro			tes in PxFLTAC	ON<13:8>				
bit 6-3 bit 2	0 = The Fau Unimpleme	Ilt A input pin lat	ches all contro 0'			tes in PxFLTAC	ON<13:8>				
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p	ches all contro 0' e bit pair is controlle	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>				
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH	Ilt A input pin lat nted: Read as ' Ilt Input A Enabl	ches all contro 0' e bit pair is controlle	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>				
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p	ches all contro o' e bit pair is controlle pair is not cont	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>				
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p	ches all contro 0' e bit pair is controlle pair is not cont e bit pair is controlle	ed by Fault Inputrolled by Fault Inputrolled by Fault	ogrammed stat ut A Input A ut A	tes in PxFLTAC	ON<13:8>				
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont	ed by Fault Inputrolled by Fault Inputrolled by Fault	ogrammed stat ut A Input A ut A	tes in PxFLTAC	ON<13:8>				
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A	tes in PxFLTAC	ON<13:8>				
bit 2 bit 1	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A	tes in PxFLTAC	ON<13:8>				
bit 2 bit 1	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A	tes in PxFLTAC	ON<13:8>				
bit 2 bit 1 bit 0	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl 1/PWMxL1 pin p 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A Input A						
bit 2 bit 1 bit 0	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH	It A input pin lat inted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is not cont e bit pair is controlle pair is controlle pair is not cont nally connecte e user must ex	of pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault ed by Fault Input rolled by Fault d to the PWM I	ogrammed stat ut A Input A ut A Input A Input A Fault control Io	gic. If using the	comparator				
bit 2 bit 1 bit 0 Note 1:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpumodules for Fault dedicated FLTA1	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL3 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is controlle pair is not cont nally connecte e user must ex- pin.	ed by Fault Inputrolled by Fault Input rolled by Fault Input rolle	ogrammed stat ut A Input A ut A Input A Input A Fault control Io	gic. If using the	comparator				
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15	It A input pin lat nted: Read as It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL2 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input 1-1 for FLTA1 imp	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is controlle pair is not cont nally connecte e user must ex pin. plementation cont	ed by Fault Inputrolled by Fault Input trolled by Fault Input ed by Fault Input trolled by Fault Input rolled by Fault Input rolled by Fault Input d to the PWM I ternally connect letails.	ogrammed stat ut A Input A ut A Input A Input A Fault control lo t the desired c	gic. If using the omparator outp	comparator ut pin to the				
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15 The PxFLTACON	It A input pin lat nted: Read as It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input 1-1 for FLTA1 impli register is a write	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is not cont e bit pair is not cont nally connecte e user must ex- pin. plementation of te-protected re	ed by Fault Inputrolled by Fault Input trolled by Fault Input ed by Fault Input trolled by Fault Input rolled by Fault Input rolled by Fault Input d to the PWM I ternally connect letails.	ogrammed stat ut A Input A ut A Input A Input A Fault control lo t the desired c	gic. If using the omparator outp	comparator ut pin to the				
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15	It A input pin lat inted: Read as ' It Input A Enable 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL3 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL2 pin p 1/PWMxL1 p 1/PWMxL	ches all contro o' e bit pair is controlle pair is not cont e bit pair is not cont e bit pair is not cont e bit pair is controlle pair is not cont nally connecte e user must ex pin. plementation of ke-protected re k sequence.	ed by Fault Inputrolled by Fault Input formally connected at the PWM I Iternally connected at the PWM I Iternal	ogrammed stat ut A Input A ut A Input A Fault control lo t the desired c Section 15.3 "	gic. If using the omparator outp Write-Protecte	comparato ut pin to the d Registers				

REGISTER 15-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER^(1,2,3,4)

17.3 I²C Control Registers

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit (
Legend:		HC = Hardwa	re Clearable b	it			
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own
bit 15	12CEN: 12Cx	Enable bit					
	0 = Disables	the I2Cx modu	le; all l ² C™ pir		and SCLx pins a ed by port function		8
bit 14	Unimplemer	nted: Read as '	0'				
oit 13		Cx Stop in Idle N					
		ues module op			in Idle mode		
		s module opera			2°		
oit 12	1 = Releases	CLx Release Co	ontroi bit (wher	operating as	-C slave)		
		Lx clock low (c	lock stretch)				
	If STREN = 1		,				
	Bit is R/W (i.e beginning of	e., software car	ata byte transn	nission. Hardw	d write '1' to rele are clears at er ption.		
	If STREN = 0			2	•		
					k). Hardware cle slave address b		g of every slav
bit 11	-	lligent Peripher		-			
	1 = IPMI mod	de is enabled; a	-		-		
	0 = IPMI mod	de is disabled					
bit 10		10-Bit Slave Ac					
	-) is a 10-bit slav					
hit O		is a 7-bit slave					
bit 9		able Slew Rate control is disa					
		e control is enal					
bit 8		us Input Levels					
	1 = Enables	I/O pin threshol SMBus input th	ds compliant v	vith SMBus sp	ecification		
bit 7	GCEN: Gene	eral Call Enable	bit (when ope	rating as I ² C s	lave)		
		interrupt when		-	ceived in the I2	CxRSR (module	e is enabled fo
		, call address is	disabled				

0 = General call address is disabled

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CTMUEN	_	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG					
oit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
 bit 7	_	—	_	_	_	—	bit 0					
							DILC					
_egend:												
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown						
bit 15	CTMUEN: C	TMU Enable bit										
	1 = Module is enabled											
	0 = Module is disabled											
bit 14	-	nted: Read as '0										
bit 13	CTMUSIDL: CTMU Stop in Idle Mode bit											
	1 = Discontinues module operation when device enters Idle mode											
	0 = Continues module operation in Idle mode											
bit 12	TGEN: Time Generation Enable bit ⁽¹⁾											
	 Enables edge delay generation Disables edge delay generation 											
bit 11	EDGEN: Edge Enable bit											
	1 = Edges are not blocked											
	0 = Edges are blocked											
bit 10	EDGSEQEN: Edge Sequence Enable bit											
	1 = Edge 1 event must occur before Edge 2 event can occur											
	0 = No edge sequence is needed											
bit 9	IDISSEN: Analog Current Source Control bit ⁽²⁾											
	1 = Analog current source output is grounded											
	0 = Analog current source output is not grounded											
bit 8		MU Trigger Cont										
	 1 = Trigger output is enabled 0 = Trigger output is disabled 											
bit 7-0		nted: Read as '0										
JIL 7-0	Unimpieme	meu: Reau as 0										
		e peripheral input Section 10.4 "P				able RPn pin. F	For more					
	he ADC module S&H capacitor is not automatically discharged between sample/conversion cycles											

2: The ADC module S&H capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

23.5 In-Circuit Serial Programming[™] (ICSP[™])

Devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F Flash Programming Specification for Devices with Volatile Configuration Bits"* (DS70659) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.6 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

DC CHARACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$										
Parameter No.	rameter No. Typical ⁽¹⁾ Max			Units		Conditions						
Doze Current (IDOZE) ⁽²⁾ – dsPIC33FJ16(GP/MC)10X Devices												
DC73a	13.2	17.2	1:2	mA								
DC73f	4.7	6.2	1:64	mA	-40°C	3.3V	16 MIPS					
DC73g	4.7	6.2	1:128	mA								
DC70a	13.2	17.2	1:2	mA	+25°C	3.3V	16 MIPS					
DC70f	4.7	6.2	1:64	mA								
DC70g	4.7	6.2	1:128	mA								
DC71a	13.2	17.2	1:2	mA	+85°C	3.3V	16 MIPS					
DC71f	4.7	6.2	1:64	mA								
DC71g	4.7	6.2	1:128	mA								
DC72a	13.2	17.2	1:2	mA	+125°C	3.3V	16 MIPS					
DC72f	4.7	6.2	1:64	mA								
DC72g	4.7	6.2	1:128	mA								
Doze Current (IDO	ze) ⁽²⁾ – dsPIC33F	J32(GP/MC)10	X Devices									
DC73a	13.2	17.2	1:2	mA		3.3V	16 MIPS					
DC73f	4.7	6.2	1:64	mA	-40°C							
DC73g	4.7	6.2	1:128	mA								
DC70a	13.2	17.2	1:2	mA		3.3V	16 MIPS					
DC70f	4.7	6.2	1:64	mA	+25°C							
DC70g	4.7	6.2	1:128	mA								
DC71a	13.2	17.2	1:2	mA		3.3V	16 MIPS					
DC71f	4.7	6.2	1:64	mA	+85°C							
DC71g	4.7	6.2	1:128	mA								
DC72a	13.2	17.2	1:2	mA		3.3V	16 MIPS					
DC72f	4.7	6.2	1:64	mA	+125°C							
DC72g	4.7	6.2	1:128	mA								

TABLE 26-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeros)
- CPU executing while(1) statement