

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

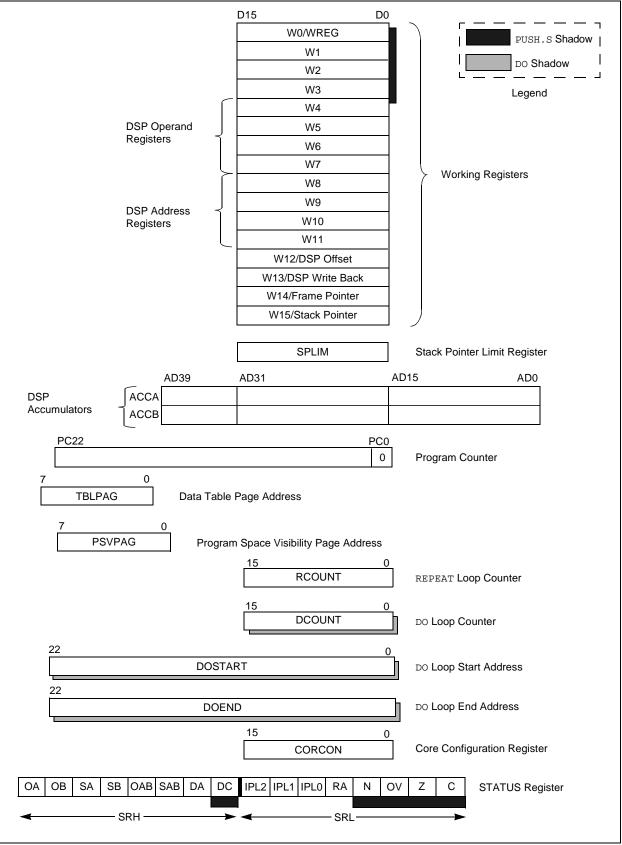
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc101-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)								
Pin Name	Pin Type	Buffer Type	PPS	Description				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
FLTA1(1,2,4)	1	ST	No	PWM1 Fault A input.				
FLTB1 ^(3,4)	1	ST	No	PWM1 Fault B input.				
PWM1L1	0		No	PWM1 Low Output 1.				
PWM1H1	0		No	PWM1 High Output 1.				
PWM1L2	0		No	PWM1 Low Output 2.				
PWM1H2	0		No	PWM1 High Output 2.				
PWM1L3	0		No	PWM1 Low Output 3.				
PWM1H3	Ō	_	No	PWM1 High Output 3.				
RTCC	0	Digital	No	RTCC Alarm output.				
CTPLS	0	Digital	Yes	CTMU pulse output.				
CTED1	I	Digital	No	CTMU External Edge Input 1.				
CTED2	I	Digital	No	CTMU External Edge Input 2.				
CVREFIN	I	Analog	No	Comparator Voltage Positive Reference Input.				
CVREFOUT	0	Analog	No	Comparator Voltage Positive Reference Output.				
C1INA	I	Analog	No	Comparator 1 Positive Input A.				
C1INB	i	Analog	No	Comparator 1 Negative Input B.				
C1INC	i	Analog	No	Comparator 1 Negative Input C.				
C1IND	i	Analog	No	Comparator 1 Negative Input D.				
C1OUT	Ō	Digital	Yes	Comparator 1 Output.				
C2INA	Ĩ	Analog	No	Comparator 2 Positive Input A.				
C2INB	l i	Analog	No	Comparator 2 Negative Input B.				
C2INC	i	Analog	No	Comparator 2 Negative Input D.				
C2INC C2IND		Analog	No	Comparator 2 Negative Input C.				
C2OUT	0	Digital	Yes	Comparator 2 Output.				
		•						
C3INA		Analog	No	Comparator 3 Positive Input A.				
C3INB		Analog	No	Comparator 3 Negative Input B.				
C3INC		Analog	No	Comparator 3 Negative Input C.				
C3IND C3OUT		Analog Digital	No Yes	Comparator 3 Negative Input D. Comparator 3 Output.				
		ST		Data I/O pin for Programming/Debugging Communication Channel 1.				
PGED1	I/O		No					
PGEC1		ST	No	Clock input pin for Programming/Debugging Communication Channel 1.				
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.				
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.				
PGED3 PGEC3	I/O	ST ST	No No	Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3.				
	- ·							
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
				input or output Analog = Analog input P = Power				
S	I = Schr	nitt Frigger	input w	ith CMOS levels O = Output I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)


Note 1: An external pull-down resistor is required for the FLTA1 pin in dsPIC33FJXXMC101 (20-pin) devices.

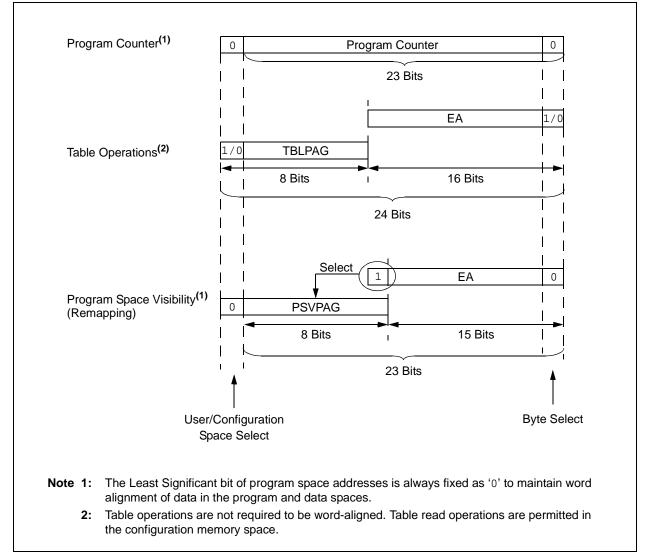
- 2: The FLTA1 pin and the PWM1Lx/PWM1Hx pins are available in dsPIC(16/32)MC10X devices only.
- 3: The FLTB1 pin is available in dsPIC(16/32)MC102/104 devices only.

PPS = Peripheral Pin Select

- 4: The PWM Fault pins are enabled during any Reset event. Refer to **Section 15.2 "PWM Faults"** for more information on the PWM Faults.
- 5: Not all pins are available on all devices. Refer to the specific device in the "**Pin Diagrams**" section for availability.
- 6: These pins are available in dsPIC33FJ32(GP/MC)104 (44-pin) devices only.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	_	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	R/W-0	IF
bit 7	SAID	SAIDW	ACCOAT	IF L3. 7	F3V	RND	bit
							Dit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is cle	ared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	-	tiply Unsigned		ol bit			
		ne multiplies a	•				
	0 = DSP engi	ne multiplies a	ire signed				
bit 11		Loop Termina					
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops are active					
	•						
	• 001 = 1 DO lo	on is activo					
		ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
		itor A saturatio					
		itor A saturatio					
bit 6		Saturation En					
		tor B saturatio					
bit 5				ine Saturation	Enable bit		
		ce write satura					
		ce write satura					
bit 4	ACCSAT: Acc	cumulator Satu	uration Mode S	Select bit			
		ration (super s					
L:1 0		ration (normal	,	··· (2)			
bit 3		terrupt Priority rrupt Priority Le					
		rupt Priority Le	•				
bit 2				ace Enable bit			
		space is visible					
	-	space is not vi		pace			
bit 1		ng Mode Sele					
		onventional) ro (convergent)					
bit 0	IF: Integer or	Fractional Mul	tiplier Mode S	elect bit			
	-			iply operations			
	0 = Fractional	l mode is enab	led for DSP m	nultiply operation	ons		

REGISTER 3-2: CORCON: CORE CONTROL REGISTER


2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	egister 0								xxxx
WREG1	0002								Working Re	egister 1								xxxx
WREG2	0004								Working Re	egister 2								xxxx
WREG3	0006								Working Re	egister 3								xxxx
WREG4	0008								Working Re	egister 4								xxxx
WREG5	000A								Working Re	egister 5								xxxx
WREG6	000C								Working Re	egister 6								xxxx
WREG7	000E								Working Re	egister 7								xxxx
WREG8	0010								Working Re	egister 8								xxxx
WREG9	0012								Working Re	egister 9								xxxx
WREG10	0014								Working Re	gister 10								xxxx
WREG11	0016								Working Re	gister 11								xxxx
WREG12	0018								Working Re	gister 12								xxxx
WREG13	001A								Working Re	gister 13								xxxx
WREG14	001C								Working Re	gister 14								xxxx
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer L	imit Registe	r							XXXX
ACCAL	0022							Accum	ulator A Lov	v Word Reg	ister							XXXX
ACCAH	0024							Accum	ulator A Hig	h Word Reg	ister							XXXX
ACCAU	0026							Accumu	ulator A Upp	er Word Re	gister							xxxx
ACCBL	0028							Accum	ulator B Lov	v Word Reg	ister							xxxx
ACCBH	002A							Accum	ulator B Hig	h Word Reg	ister							xxxx
ACCBU	002C							Accumu	ulator B Upp	er Word Re	gister							xxxx
PCL	002E							Progran	n Counter Lo	w Word Re	gister							0000
PCH	0030	—	—	—				—	—			Progra	m Counter	High Byte R	egister			0000
TBLPAG	0032	—	—	—				—	—			Table F	age Addre	ss Pointer R	egister			0000
PSVPAG	0034	—	—	—				_	—		Progra	am Memory	Visibility Pa	age Address	s Pointer Re	egister		0000
RCOUNT	0036							Repe	eat Loop Co	unter Regist	er							xxxx
DCOUNT	0038								DCOUNT	<15:0>								xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	_	—	—	—	_	—		-	—	—			DOSTAR	TH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	XXXX
DOENDH	0040		_	—	—	_	—		_	—	_			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000

. . COLL CODE DECISTED MAD

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

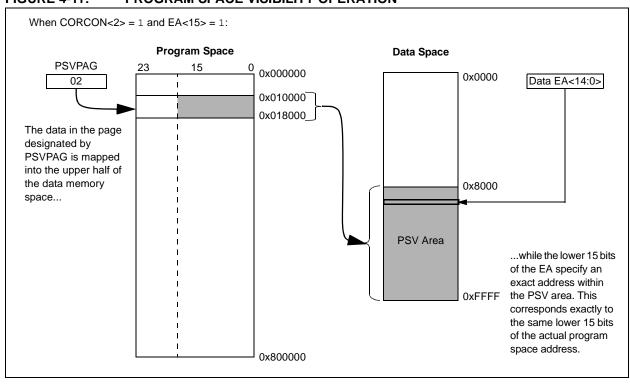
4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL and TBLRDH).

Program space access through the data space occurs if the MSb of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note:	PSV access is temporarily disabled during
	Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
—	—	INT2IE	T5IE ⁽¹⁾	T4IE ⁽¹⁾	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE				
bit 7							bit (
Legend: R = Readable	h:t		h:+		manted hit rea	d aa '0'					
-n = Value at F		W = Writable '1' = Bit is set		0 = 0 minipler 0' = Bit is cle	mented bit, rea		0.11/2				
-n = value at r	POR	1 = Bit is set		0 = Bit is cle	ared	x = Bit is unkn	lown				
bit 15-14	Unimplemen	ted: Read as '	ז'								
bit 13	-	nal Interrupt 2									
		request is enab									
	0 = Interrupt r	request is not e	nabled								
bit 12	T5IE: Timer5	Interrupt Enabl	e bit ⁽¹⁾								
	1 = Interrupt request has occurred										
		request has not									
bit 11		Interrupt Enabl									
	•	request has occ request has not									
bit 10-5	-	ted: Read as '									
bit 4	-										
511 -	INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request is enabled										
		request is not e									
bit 3	CNIE: Input C	hange Notifica	tion Interrupt	Enable bit							
	-	request is enab	-								
	0 = Interrupt r	request is not e	nabled								
bit 2	CMIE: Compa	arator Interrupt	Enable bit								
	1 = Interrupt request is enabled										
1.16.4	•	request is not e									
bit 1		1 Master Even		able bit							
		request is enab request is not e									
bit 0	•	1 Slave Events		ble bit							
		request is enab	-								
		request is not e									

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_	—		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Logondi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
bit 2-0	INT1IP<2:0>: External Interrupt 1 Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	• 001 = Interrupt is Priority 1
	000 = Interrupt source is disabled

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	T4IP2 ⁽¹⁾	T4IP1 ⁽¹⁾	T4IP0 ⁽¹⁾	—	_	_	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown
bit 15	Unimplemen	ted: Read as '	0'				

bit 14-12	T4IP<2:0>: Timer4 Interrupt Priority bits ⁽¹⁾
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 11-0	Unimplemented: Read as '0'

Note 1: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

12.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2/3 and Timer4/5 have three 2-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

Note 1: Timer4 and Timer5 are available in dsPIC33FJ32(GP/MC10X) devices only.

As a 32-bit timer, Timer2/3 and Timer4/5 permit operation in three modes:

- Two independent 16-bit timers (e.g., Timer2 and Timer3 or Timer4 and Timer5) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3 and Timer4/5)
- Single 32-bit synchronous counter (Timer2/3 and Timer4/5)

Timer2/3 and Timer4/5 also support:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during Idle and Sleep modes
- Interrupt on a 32-bit Period register match
- Time base for input capture and output compare modules (Timer2 and Timer3 only)
- ADC1 event trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers (see Register 12-1 through Register 12-4). For 32-bit timer/counter operation, Timer2/4 is the least significant word (Isw) and Timer3/5 is the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are used for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

12.1 32-Bit Operation

To configure Timer2/3 and Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3/PR5 contains the msw of the value, while PR2/PR4 contains the least significant word (lsw).
- 5. If interrupts are required, set the Timer3 (or Timer5) Interrupt Enable bit, T3IE (or T5IE). Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. While Timer2/Timer4 controls the timer, the interrupt appears as a Timer3/Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the msw of the count, while TMR2 or TMR4 contains the lsw.

12.2 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	—	—		AMSK	<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit			'0' = Bit is cle	eared	x = Bit is unkn	iown	

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

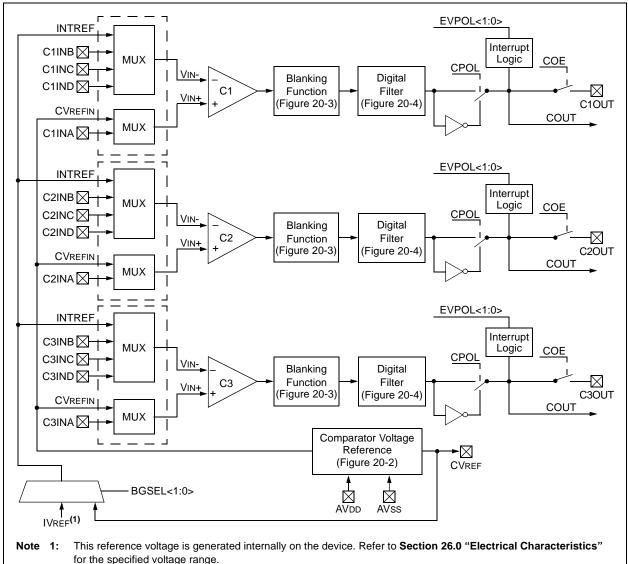
bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for Bit x of incoming message address; bit match not required in this position

0 = Disables masking for Bit x; bit match required in this position

20.0 COMPARATOR MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Comparator with Blanking" (DS70647) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The comparator module provides three comparators that can be configured in different ways. As shown in Figure 20-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

These options allow users to:

- Select the edge for trigger and interrupt generation
- Select low-power control
- Configure the comparator voltage reference and band gap
- · Configure output blanking and masking

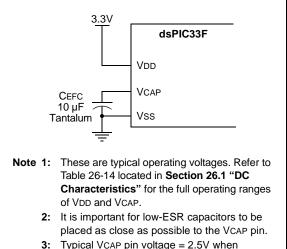
The comparator operating mode is determined by the input selections (i.e., whether the input voltage is compared to a second input voltage) to an internal voltage reference.

FIGURE 20-1: COMPARATOR I/O OPERATING MODES

REGISTER 20-4: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7	1	1					bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown			
bit 15	1 = The mas 0 = The mas	king (blanking)	function will pro function will pro	event any asse	erted ('0') compa erted ('1') compa				
bit 14	-	nted: Read as		L :4					
bit 13	OCEN: OR Gate C Input Inverted Enable bit 1 = MCI is connected to OR gate 0 = MCI is not connected to OR gate								
bit 12	OCNEN: OR Gate C Input Inverted Enable bit								
		MCI is connec MCI is not con							
bit 11	OBEN: OR Gate B Input Inverted Enable bit								
		onnected to OF ot connected to							
bit 10	OBNEN: OR Gate B Input Inverted Enable bit								
		MBI is connect MBI is not con							
bit 9	OAEN: OR Gate A Input Enable bit								
		onnected to OF ot connected to							
bit 8	OANEN: OR Gate A Input Inverted Enable bit								
		MAI is connect MAI is not con	•						
bit 7	NAGS: Negative AND Gate Output Select 1 = Inverted ANDI is connected to OR gate 0 = Inverted ANDI is not connected to OR gate								
bit 6	1 = ANDI is	tive AND Gate connected to C not connected	R gate						
bit 5	1 = MCI is c	O Gate A1 C Inp connected to AN		able bit					
		of connected 1-							
bit 4		ot connected to	-	nable bit					

DECISTED 20-4. CMVMSKCON- COMPADATOR V MASK GATING CONTROL

23.2 On-Chip Voltage Regulator


All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-14 located in **Section 26.1** "**DC Characteristics**".

Note:	It is important for low-ESR capacitors to be
	placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when VDD \ge VDDMIN.

23.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG W0 (Working register used in file register instructions)	
Ws Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }	
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions \in {W4W7}

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)							
Base Instr # Mnemonic		Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	$WREG = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
	5 min	SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK	·	Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws, Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

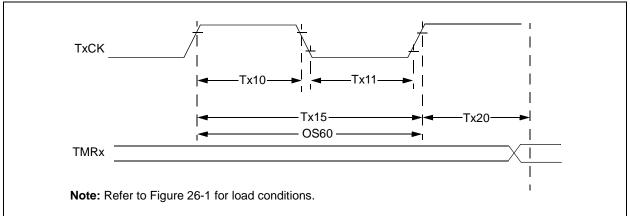
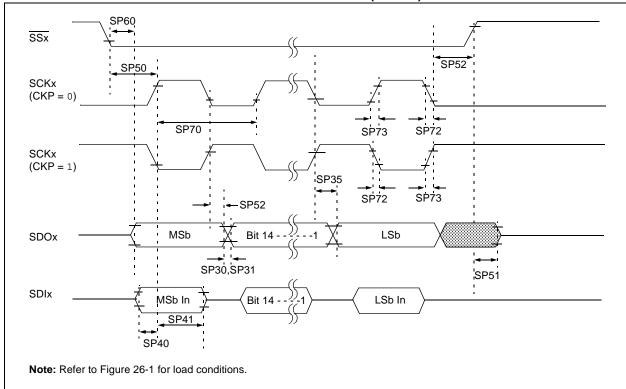

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteri	stic ⁽²⁾	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Time		_	10	25	ns	
DO32	TIOF	Port Output Fall Time		—	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (input)		25	—		ns	
DI40	Trbp	CNx High or Low Time (input)		2	—		TCY	

TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

FIGURE 26-5: TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS



Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended Param Characteristic⁽²⁾ Symbol Min Max Units Conditions Тур No. TA10 ТтхН T1CK High Synchronous Greater of: Must also meet ns Time mode 20 or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 35 ns _ ____ TA11 T1CK Low Must also meet TTXL Synchronous Greater of: ns Time mode 20 ns or Parameter TA15, (TCY + 20)/N N = prescale value (1, 8, 64, 256) Asynchronous 10 ns TA15 ΤτχΡ T1CK Input Synchronous Greater of: N = prescale value ns Period mode 40 or (1, 8, 64, 256) (2 TCY + 40)/N **OS60** Ft1 SOSC1/T1CK Oscillator DC 50 kHz ____ Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit) TA20 TCKEXTMRL Delay from External T1CK 0.75 Tcy + 40 1.75 Tcy + 40 ns Clock Edge to Timer Increment

TABLE 26-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-845-6

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.