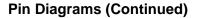


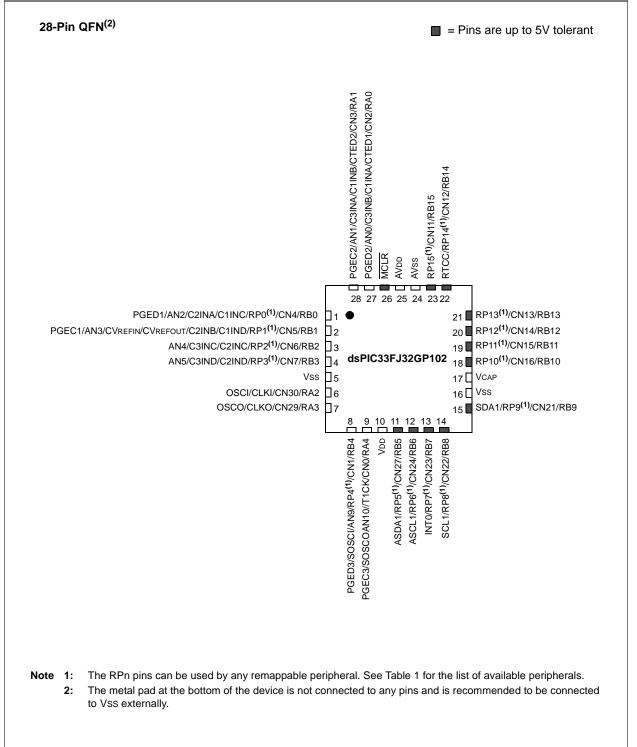
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

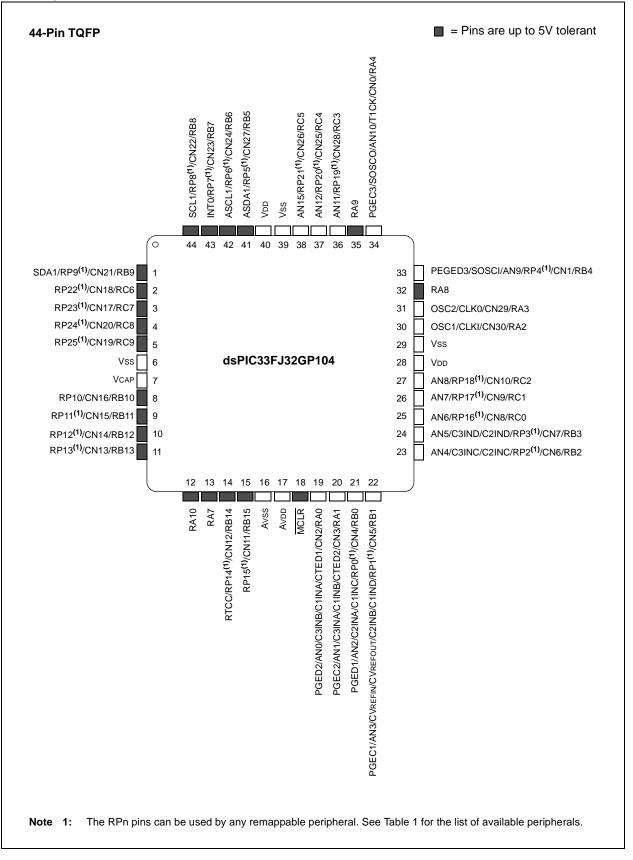
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc101-i-ss

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	33
3.0	CPU	
4.0	Memory Organization	49
5.0	Flash Program Memory	83
6.0	Resets	
7.0	Interrupt Controller	95
8.0	Oscillator Configuration	. 125
9.0	Power-Saving Features	. 133
10.0	I/O Ports	. 139
11.0	Timer1	. 165
12.0	Timer2/3 and Timer4/5	. 167
13.0	Input Capture	. 175
14.0	Output Compare	. 177
15.0	Motor Control PWM Module	. 181
16.0	Serial Peripheral Interface (SPI)	. 197
17.0	Inter-Integrated Circuit™ (I ² C™)	. 203
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	10-Bit Analog-to-Digital Converter (ADC)	. 217
20.0	Comparator Module	
21.0	Real-Time Clock and Calendar (RTCC)	. 243
22.0	Charge Time Measurement Unit (CTMU)	. 255
23.0	Special Features	. 261
24.0	Instruction Set Summary	. 269
25.0	Development Support	. 277
26.0	Electrical Characteristics	
27.0	High-Temperature Electrical Characteristics	
28.0	Packaging Information	. 343
Appe	ndix A: Revision History	. 373
Index		381
The I	/icrochip Web Site	. 387
Cust	omer Change Notification Service	. 387
Cust	omer Support	. 387
Prod	uct Identification System	. 389

NOTES:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33/PIC24 Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10V-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and therefore, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS Register to determine whether either accumulator has overflowed, or one bit to determine whether either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation:
- When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 value (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator which is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct:
- The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding will zero-extend bit 15 of the accumulator and will add it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (LSb), bit 16 of the accumulator, of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

TABLE 4-	17:	ADC1	REGIS	STER M	AP FO	R dsPIC	33FJ32(GP/MC)1	04 DEV	ICES								
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Da	ata Buffer	0							xxxx
ADC1BUF1	0302								ADC1 Da	ata Buffer	1							xxxx
ADC1BUF2	0304								ADC1 Da	ata Buffer	2							xxxx
ADC1BUF3	0306								ADC1 Da	ata Buffer	3							xxxx
ADC1BUF4	0308								ADC1 Da	ata Buffer	4							xxxx
ADC1BUF5	030A								ADC1 Da	ata Buffer	5							xxxx
ADC1BUF6	030C								ADC1 Da	ata Buffer	6							xxxx
ADC1BUF7	030E								ADC1 Da	ata Buffer	7							xxxx
ADC1BUF8	0310								ADC1 Da	ata Buffer	8							xxxx
ADC1BUF9	0312								ADC1 Da	ata Buffer	9							xxxx
ADC1BUFA	0314								ADC1 Da	ita Buffer '	10							xxxx
ADC1BUFB	0316								ADC1 Da	ta Buffer	11							xxxx
ADC1BUFC	0318								ADC1 Da	ita Buffer 1	12							xxxx
ADC1BUFD	031A								ADC1 Da	ita Buffer 1	13							xxxx
ADC1BUFE	031C								ADC1 Da	ita Buffer 1	14							xxxx
ADC1BUFF	031E								ADC1 Da	ita Buffer 1	15							xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_		FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	_	CSCNA	CHPS1	CHPS0	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS123	0326	—	_	—	—	_	CH123NB1	CH123NB0	CH123SB	—	—		_	—	CH123NA1	CH123NA0	CH123SA	0000
AD1CHS0	0328	CH0NB	_	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	—		CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFGL	032C	PCFG15	_	—						F	PCFG<12:0)> ⁽¹⁾						0000
AD1CSSL	0330	CSS15	_	_							CSS12:0>	(1)						0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PCFG<10:9> and CSS<10:9> bits are available in dsPIC33FJ32(GP/MC)104 devices only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L			
bit 15							bit			
R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1			
FLTAM		_	_	—	FAEN3	FAEN2	FAEN1			
bit 7							bit			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimpleme	nted: Read as '	0'							
bit 13-8	FAOV<3:1>	H:FAOV<3:1>L	: Fault Input A	PWMx Overric	le Value bits					
	FAOV<3:1>H:FAOV<3:1>L: Fault Input A PWMx Override Value bits 1 = The PWMx output pin is driven active on an external Fault input event									
	0 = The PW	Mx output pin is	driven inactiv	e on an externa	al Fault input e	vent				
bit 7	FLTAM: Fau	FLTAM: Fault A Mode bit								
	1 = The Fault A input pin functions in the Cycle-by-Cycle mode									
		Ilt A input pin fur Ilt A input pin lat				tes in PxFLTAC	ON<13:8>			
bit 6-3	0 = The Fau		ches all contro			tes in PxFLTAC	ON<13:8>			
bit 6-3 bit 2	0 = The Fau Unimpleme	Ilt A input pin lat	ches all contro 0'			tes in PxFLTAC	ON<13:8>			
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p	ches all contro 0' e bit pair is controlle	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>			
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH	Ilt A input pin lat nted: Read as ' Ilt Input A Enabl	ches all contro 0' e bit pair is controlle	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>			
	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p	ches all contro o' e bit pair is controlle pair is not cont	ol pins to the pro-	ogrammed stat ut A	tes in PxFLTAC	ON<13:8>			
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p	ches all contro 0' e bit pair is controlle pair is not cont e bit pair is controlle	ed by Fault Inputrolled by Fault Inputrolled by Fault	ogrammed stat ut A Input A ut A	tes in PxFLTAC	ON<13:8>			
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont	ed by Fault Inputrolled by Fault Inputrolled by Fault	ogrammed stat ut A Input A ut A	tes in PxFLTAC	ON<13:8>			
bit 2	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A	tes in PxFLTAC	ON<13:8>			
bit 2 bit 1	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A	tes in PxFLTAC	ON<13:8>			
bit 2 bit 1	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A	tes in PxFLTAC	ON<13:8>			
bit 2 bit 1 bit 0	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p It Input A Enabl 1/PWMxL1 pin p 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault	ogrammed stat ut A Input A ut A Input A ut A Input A					
bit 2 bit 1 bit 0	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH	It A input pin lat inted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p It Input A Enabl 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p	ches all contro o' e bit pair is controlle pair is not cont e bit pair is not cont e bit pair is controlle pair is controlle pair is not cont nally connecte e user must ex	of pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault ed by Fault Input rolled by Fault d to the PWM I	ogrammed stat ut A Input A ut A Input A Input A Fault control Io	gic. If using the	comparator			
bit 2 bit 1 bit 0 Note 1:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpumodules for Fault dedicated FLTA1	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL3 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is controlle pair is not cont nally connecte e user must ex- pin.	ed by Fault Inputrolled by Fault Inputrolled by Fault Input and by Fault Input trolled by Fault Input trolled by Fault Input trolled by Fault Input to the PWM I ternally connect	ogrammed stat ut A Input A ut A Input A Input A Fault control Io	gic. If using the	comparator			
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15	It A input pin lat nted: Read as It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL2 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input 1-1 for FLTA1 imp	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is controlle pair is not cont nally connecte e user must ex pin. plementation cont	ed by Fault Inputrolled by Fault Input trolled by Fault Input ed by Fault Input trolled by Fault Input rolled by Fault Input rolled by Fault Input d to the PWM I ternally connect letails.	ogrammed stat ut A Input A ut A Input A Input A Fault control lo t the desired c	gic. If using the omparator outp	comparator ut pin to the			
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH FAEN1: Fau 1 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15 The PxFLTACON	It A input pin lat nted: Read as ' It Input A Enabl 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL3 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p 1/PWMxL1 pin p t generation, the or FLTB1 input -1 for FLTA1 imp register is a write	ches all contro o' e bit pair is controlle pair is not cont e bit pair is controlle pair is controlle pair is not cont e bit pair is not cont nally connecte e user must ex- pin. plementation of te-protected re	ed by Fault Inputrolled by Fault Input trolled by Fault Input ed by Fault Input trolled by Fault Input rolled by Fault Input rolled by Fault Input d to the PWM I ternally connect letails.	ogrammed stat ut A Input A ut A Input A Input A Fault control lo t the desired c	gic. If using the omparator outp	comparator ut pin to the			
bit 2 bit 1 bit 0 Note 1: 2:	0 = The Fau Unimpleme FAEN3: Fau 1 = PWMxH 0 = PWMxH FAEN2: Fau 1 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH 0 = PWMxH Comparator outpur modules for Fault dedicated FLTA1 Refer to Table 15	It A input pin lat inted: Read as ' It Input A Enable 3/PWMxL3 pin p 3/PWMxL3 pin p 1/PWMxL3 pin p 2/PWMxL2 pin p 2/PWMxL2 pin p 1/PWMxL2 pin p 1/PWMxL1 p 1/PWMxL	ches all contro o' e bit pair is controlle pair is not cont e bit pair is not cont e bit pair is not cont e bit pair is controlle pair is not cont nally connecte e user must ex pin. plementation of ke-protected re k sequence.	ol pins to the pro- ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault ed by Fault Input trolled by Fault d to the PWM I ternally connect letails. gister. Refer to	ogrammed stat ut A Input A ut A Input A Fault control lo t the desired c Section 15.3 "	gic. If using the omparator outp Write-Protecte	comparato ut pin to the d Registers			

REGISTER 15-9: PxFLTACON: PWMx FAULT A CONTROL REGISTER^(1,2,3,4)

dsPIC33FJ16(GP/MC)101/102 AND dsPIC33FJ32(GP/MC)101/102/104

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	_	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

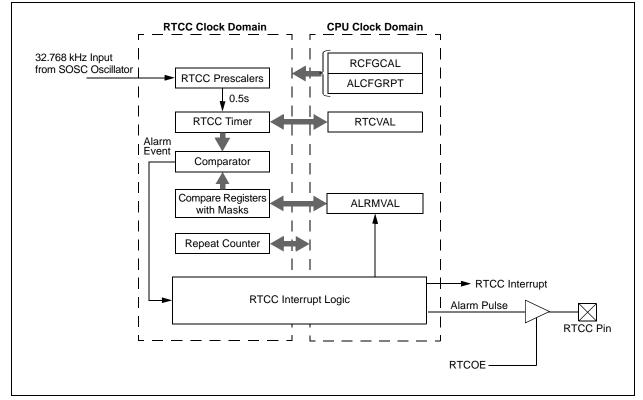
bit 11-8	SELSRCC<3:0>: Mask C Ir	nput Select bits

SELSRCC<3:0>: Mask C Input Select bits
1111 = Reserved
1110 = Reserved
1101 = Reserved
1100 = Reserved
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM1H3
0100 = PWM1L3
0011 = PWM1H2
0010 = PWM1L2
0001 = PWM1H1
0000 = PWM1L1
SELSRCB<3:0>: Mask B Input Select bits
SELSINGES. Wask D input Select bits
1111 = Reserved
-
1111 = Reserved
1111 = Reserved 1110 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1100 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1010 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved
1111 = Reserved 1110 = Reserved 1101 = Reserved 1000 = Reserved 1011 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0110 = PWM1H3 0100 = PWM1L3
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1010 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2 0010 = PWM1L2
1111 = Reserved 1110 = Reserved 1101 = Reserved 1001 = Reserved 1010 = Reserved 1010 = Reserved 1000 = Reserved 0111 = Reserved 0111 = Reserved 0110 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2

bit 7-4

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 device families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Real-Time Clock and Calendar (RTCC)" (DS70310) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices, and its operation. Some of the key features of the RTCC module are:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: external 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

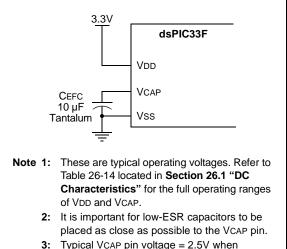
The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 21-1: RTCC BLOCK DIAGRAM

NOTES:

23.2 On-Chip Voltage Regulator


All of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-14 located in **Section 26.1** "**DC Characteristics**".

Note:	It is important for low-ESR capacitors to be
	placed as close as possible to the VCAP pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 2.5V when VDD \ge VDDMIN.

23.3 BOR: Brown-out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

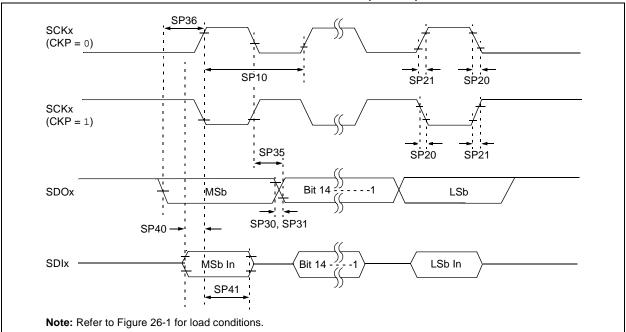
If an Oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm, Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA,OB,OAB SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)



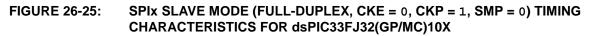
AC CHAR	ACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽²⁾		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Time		_	10	25	ns	
DO32	TIOF	Port Output Fall Time		—	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (input)		25	—		ns	
DI40	Trbp	CNx High or Low Time (input)		2	_		TCY	

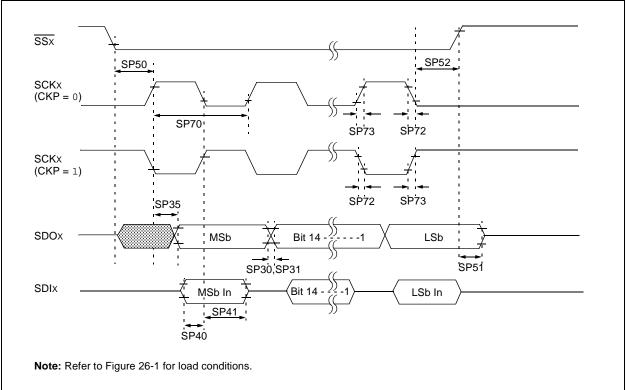
TABLE 26-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

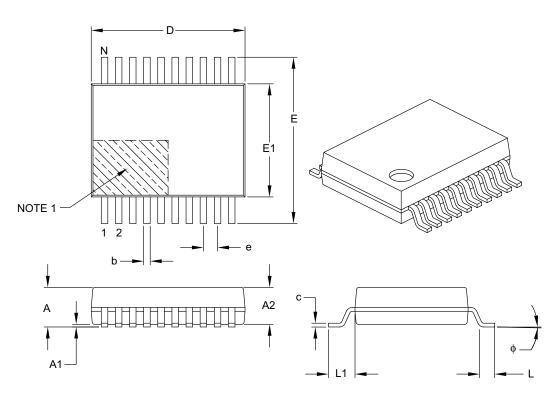
FIGURE 26-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS FOR dsPIC33FJ16(GP/MC)10X


TABLE 26-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS FOR dsPIC33FJ16(GP/MC)10X


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.4V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCKx Frequency	—	—	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	—	ns	See Parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.


- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

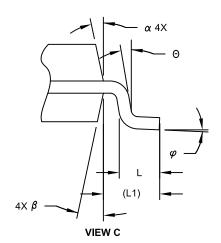
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

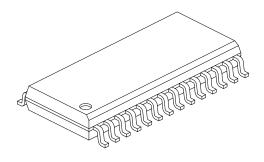
	Units		MILLIMETERS	6	
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	e	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	I		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overal Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	I		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (January 2011)

This is the initial released version of the document.

Revision B (February 2011)

All major changes are referenced by their respective section in Table A-1.

In addition, minor text and formatting changes were incorporated throughout the document.

TABLE A-1:	MAJOR SECTION UPDATE	S

Section Name	Update Description
High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers	 Pin diagram updates (see "Pin Diagrams"): 20-pin PDIP/SOIC/SSOP (dsPIC33FJ16MC101): Removed the FLTB1 pin from pin 10 28-pin SPDIP/SOIC/SSOP (dsPIC33FJ16MC102): Relocated the FLTB1 pin from pin 12 to pin 14; relocated the FLTA1 pin from pin 16 to pin 15 28-pin QFN (dsPIC33FJ16MC102): Relocated the FLTA1 pin from pin 13 to pin 12; relocated the FLTB1 pin from pin 9 to pin 11 36-pin TLA (dsPIC33FJ16MC102):
	Relocated the FLTA1 pin from pin 17 to pin 16; relocated the FLTB1 pin from pin 10 to pin 15
Section 1.0 "Device Overview"	Added Notes 1, 2, and 3 regarding the FLTA1 and FLTB1 pins to the Pinout I/O Descriptions (see Table 1-1). Added Section "".
Section 4.0 "Memory Organization"	Updated All Resets value for PxFLTACON and PxFLTABCON to the 6-Output PWM1 Register Map (see Table 4-9).
	Added Note 1 to the PMD Register Map (see Table 4-29).
Section 6.0 "Resets"	Removed Reset timing sequence information from Section 6.2 " System Reset ", as this information is provided in Figure 6-2.
Section 15.0 "Motor Control PWM Module"	Added Note 2 and Note 3 regarding the $\overline{FLTA1}$ and $\overline{FLTB1}$ pins to the 6-channel PWM Module Block Diagram (see Figure 15-1).
	Added Section 15.2 "PWM Faults" and Section 15.3 "Write- protected Registers".
	Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the note boxes located below the PxFLTACON and PxFLTBCON registers (see Register 15-9 and Register 15-10).
Section 17.0 "Inter-Integrated Circuit™ (I ² C™)"	Updated the descriptions for the conditional If STREN = 1 and If STREN = 0 statements for the SCLREL bit in the I2Cx Control Register (see Register 17-1).
Section 23.0 "Special Features"	Added the RTSP Effect column to the dsPIC33F Configuration Bits Description (see Table 23-3).
Section 26.0 "Electrical Characteristics"	Added Parameters 300 and D305 (see Table 26-42 and Table 26-43).

© 2011-2014 Microchip Technology Inc.