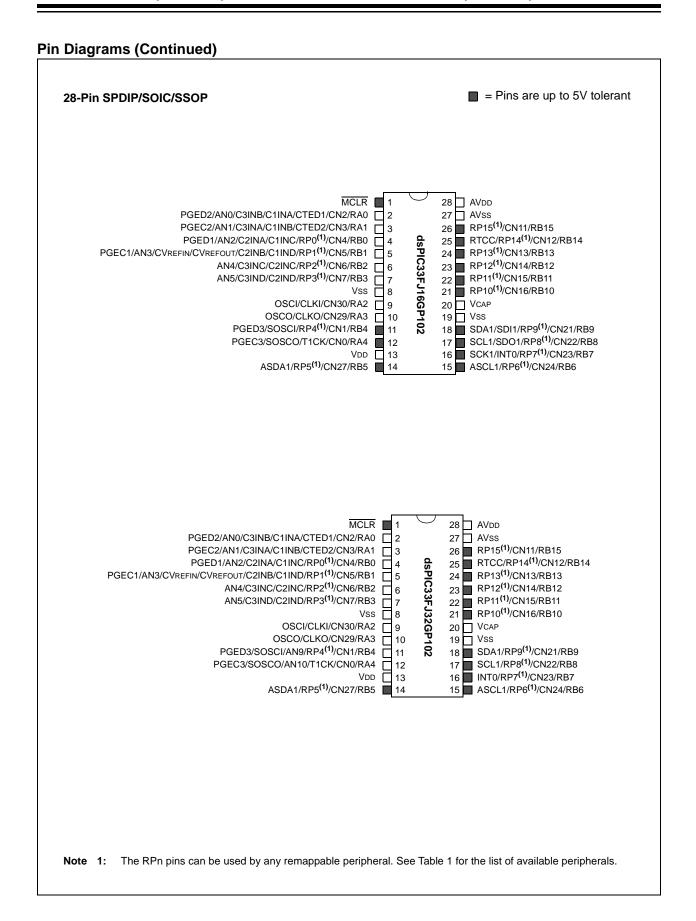


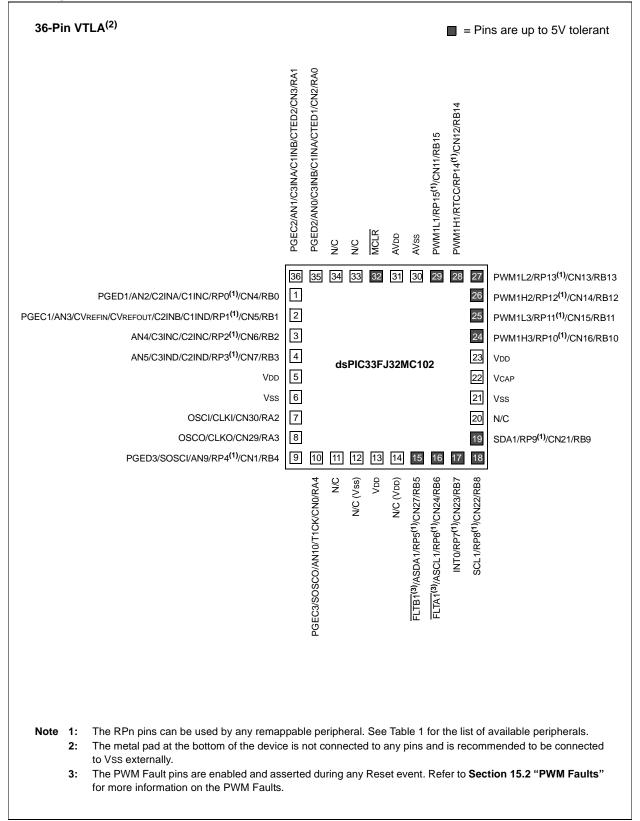
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc101t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ16MC102 product page of the Microchip Web site (www.microchip.com). In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer and Power-Saving Modes" (DS70196)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70209)
- "Motor Control PWM" (DS70187)
- "Analog-to-Digital Converter (ADC)" (DS70183)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- "CodeGuard Security" (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- "Real-Time Clock and Calendar (RTCC)" (DS70301)
- "Introduction (Part VI)" (DS70655)
- "Oscillator (Part VI)" (DS70644)
- "Interrupts (Part VI)" (DS70633)
- "Comparator with Blanking" (DS70647)
- "Charge Time Measurement Unit (CTMU)" (DS70635)

1	File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TR	RISA	02C0			—	-	_		TRISA<	10:7>			—			TRISA<4:0>			001F
PC	ORTA	02C2			—		_		RA<10):7>		—	_			RA<4:0>			xxxx
LA	TA	02C4	_	_	_	_	-		LATA<1	0:7>		—	_			LATA<4:0>			xxxx
0	DCA	02C6			_	_	_		ODCA<	10:7>		_	_		ODCA	<3:2>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB<	:15:14>	_	_	_	_	-	TRISB<9:7	>	_	_	TRISB4	_	_	TRISE	3<1:0>	C393
PORTB	02CA	RB<1	5:14>	_	_	_	_		RB<9:7>		_	_	RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC	LATB<	15:14>	_	_	—	—		LATB<9:7>	•		_	LATB4	—	_	LATB	<1:0>	xxxx
ODCB	02CE	ODCB<	:15:14>	_	_	-	-	(ODCB<9:7:	>		_	ODCB4	_	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8		TRISB<	<15:12>		_	_	1	RISB<9:7:	>	_	_	TRISB4	_	—	TRISE	3<1:0>	F393
PORTB	02CA		RB<1	5:12>			_		RB<9:7>		_		RB4	_	_	RB<	:1:0>	xxxx
LATB	02CC		LATB<	15:12>			_		LATB<9:7>	•	_		LATB4	_	_	LATB	<1:0>	xxxx
ODCB	02CE		ODCB<	<15:12> B<15:12> B<15:12> B<15:12>			_	(DDCB<9:7:	>	-	_	ODCB4		_			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTB REGISTER MAP FOR dsPIC33FJ16(GP/MC)102 DEVICES

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB<	:15:0>								FFFF
PORTB	02CA								RB<1	5:0>								xxxx
LATB	02CC								LATB<	15:0>								xxxx
ODCB	02CE						ODCB<	:15:4>						_	_	_		0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000652F-page 72

TABLE 4-37: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RCON	0740	TRAPR	IOPUWR	_		_	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)	
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	0300 (2)	
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	_			_			_	_	3040	
OSCTUN	0748	_	_	_	_	_	_	_	_	_									

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-38: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	-	_	-	_	_	ERASE	_		NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766		_	_			—		_	NVMKEY<7:0>								0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-39: PMD REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD ⁽²⁾	T4MD ⁽²⁾	T3MD	T2MD	T1MD	_	PWM1MD ⁽¹⁾	_	I2C1MD	_	U1MD		SPI1MD	-	—	AD1MD	0000
PMD2	0772	_	_	-		_	IC3MD	IC2MD	IC1MD	-			_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	-		_	CMPMD	RTCCMD	_	-			_	_	_	_	_	0000
PMD4	0776	—	_	_	_	_	_	_	_	_	_	_	_		CTMUMD	_	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available in dsPIC33FJXXMC10X devices only.

2: These bits are available in dsPIC33FJ32(GP/MC)10X devices only.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

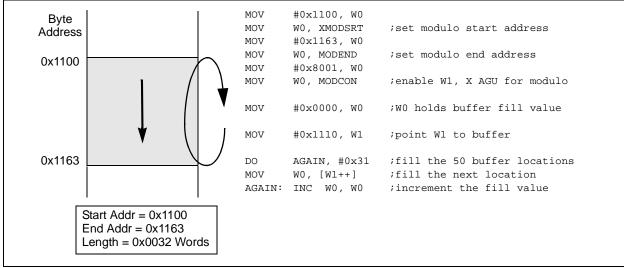
In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

- The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing.
- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	IC2IP2	IC2IP1	IC2IP0		—		—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	T2IP<2:0>: 7	Fimer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priori	ty interrupt)			
	•						
	•						
		ipt is Priority 1 ipt source is dis	abled				
bit 11		h ted: Read as '					
bit 10-8	-	: Output Compa		Interrupt Priori	ty bits		
		pt is Priority 7 (-			
	•						
	•						
	•						
	001 = Interr	int is Priority 1					
		ipt is Priority 1 ipt source is dis	abled				
bit 7	000 = Interru	ipt is Priority 1 ipt source is dis nted: Read as '					
	000 = Interru Unimplemer	ipt source is dis nted: Read as '	0'	errupt Priority bi	its		
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as ' Input Capture (0' Channel 2 Inte		its		
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as '	0' Channel 2 Inte		its		
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as ' Input Capture (0' Channel 2 Inte		its		
	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru • •	ipt source is dis nted: Read as ' Input Capture C ipt is Priority 7 (0' Channel 2 Inte		its		
bit 7 bit 6-4	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru • • 001 = Interru	ipt source is dis nted: Read as ' Input Capture (^{0'} Channel 2 Inte highest priorit		its		

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	10,00-0	11/00-0			10,00-0
	—				RP17R<4:0>(.)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			RP16R<4:0>(1)	
bit 7		•					bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
							/
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP17R<4:0>	Peripheral Ou	tput Function	is Assigned to	RP17 Output I	Pin bits ⁽¹⁾	
		-2 for peripher	•	•	•		
bit 7-5		ted: Read as '		- /			
	-					- · · · (1)	
bit 4-0	RP16R<4:0>	: Peripheral Ou	Itput Function	is Assigned to	RP16 Output I	Pin bits ⁽¹⁾	

REGISTER 10-19: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

(see Table 10-2 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
					RP19R<4:0> ⁽¹)	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_				RP18R<4:0> ⁽¹)	
bit 7							bit 0
Legend:							

Logonan				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits ⁽¹⁾
	(see Table 10-2 for peripheral function numbers)

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

Note 1: These bits are available in dsPIC33FJ32(GP/MC)104 devices only.

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select).

In Master mode operation, SCKx is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPIx MODULE BLOCK DIAGRAM

) U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15 ⁽⁴⁾ —		—			CSS<12:8> ^{(4,6}	5)	
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<7	7:0> ^(4,5)			
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
h :+ 44 40	0 = Skips AN	Nx for input sca k for input scan ted: Read as '0'					
		ieu. Neau as 0					
bit 14-13 bit 12-0	CSS<12:0>: /	ADC1 Input Sca Nx for input sca		_{Dits} (4,5,6)			
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN2	Nx for input sca k for input scan	n				
	CSS<12:0>: / 1 = Selects A	Nx for input sca k for input scan t 14 analog inpu	n ts, all AD1CS	SSL bits can be			on. However,
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN On devices withour	Nx for input sca k for input scan t 14 analog inpu scan without a c	n ts, all AD1CS correspondin	SSL bits can be			on. However,
bit 12-0	CSS<12:0>: / 1 = Selects A 0 = Skips AN On devices withour inputs selected for CSSx = ANx, when CTMU temperature	Nx for input sca x for input scan t 14 analog input scan without a re x = 0 through a sensor input c	n ts, all AD1CS correspondin 12 and 15. annot be sca	SSL bits can be g input on the d nned.	evice converts	S VREFL.	
bit 12-0 Note 1: 2:	CSSx = ANx, when	Nx for input scan x for input scan t 14 analog input scan without a c re $x = 0$ through e sensor input ca ,8:6> bits are av	n ts, all AD1CS correspondin 12 and 15. annot be sca	SSL bits can be g input on the d nned.	evice converts	S VREFL.	

REGISTER 19-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2,3)

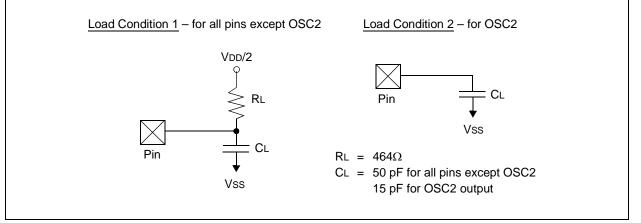
- they are reserved.
 6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33E.116(GP/MC)101/102 devices.
- 6: The CSS<10:9> bits are available on all devices, excluding the dsPIC33FJ16(GP/MC)101/102 devices, where they are reserved.

20.1 Comparator Control Registers

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMSIDL		—		—	C3EVT	C2EVT	C1EVT
bit 15					I.		bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_	—	_		C3OUT	C2OUT	C10UT
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CMSIDL: Cor	nparator Stop	in Idle Mode b	oit			
					ce enters Idle n	node	
		-	-	s in Idle mode			
bit 14-11	-	ted: Read as '					
bit 10	-	parator 3 Even					
		or event occur					
bit 9		or event did no barator 2 Even					
DIL 9	-	or event occur					
		or event did no					
bit 8	C1EVT: Com	parator 1 Even	t Status bit				
	-	or event occur					
	0 = Comparat	or event did no	ot occur				
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2		parator 3 Outp	ut Status bit				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$						
	1 = VIN + > VII $0 = VIN + < VII$	-					
	When CPOL :						
	1 = VIN + < VIN	۷-					
	0 = VIN + > VII						
bit 1		parator 2 Outp	ut Status bit				
	$\frac{\text{When CPOL}}{1 = \text{VIN+} > \text{VIN}}$						
	1 = VIN + > VII $0 = VIN + < VII$						
	When CPOL :						
	1 = VIN + < VIN						
	0 = VIN + > VII						
bit 0		parator 1 Outp	ut Status bit				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VIN}}$						
	1 = VIN + > VII $0 = VIN + < VII$						
	When CPOL :						
	1 = VIN + < VIN	۷-					
	0 = VIN + > VIN	1					

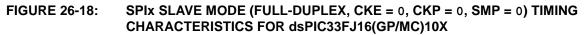
REGISTER 20-1: CMSTAT: COMPARATOR STATUS REGISTER

NOTES:


26.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC


	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{ll} \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \mbox{Operating voltage VDD range as described in Section 26.1 "DC Characteristics".} \end{array}$

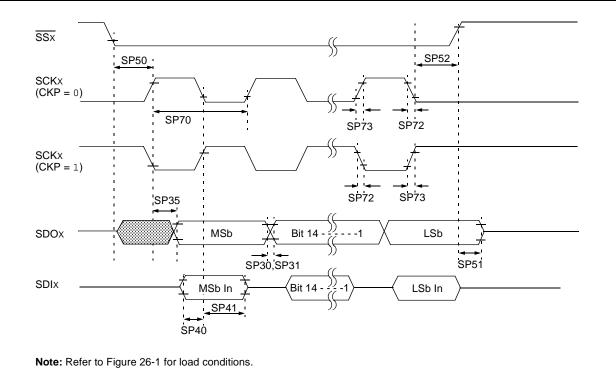
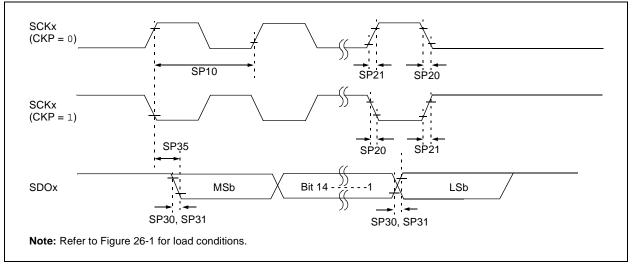

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS


Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 Pin		_	15	pF	In MS and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx			400	pF	In I ² C™ mode

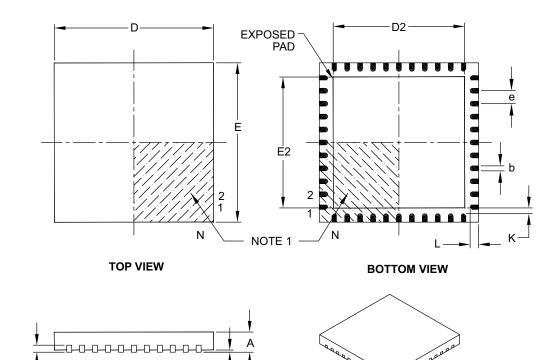
AC CHARACTERISTICS (unless otherw			Standard Operating (unless otherwise Operating temperate	2			
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 26-30	—	—	0,1	0,1	0,1	
9 MHz	—	Table 26-31	—	1	0,1	1	
9 MHz	—	Table 26-32	—	0	0,1	1	
15 MHz	_	_	Table 26-33	1	0	0	
11 Mhz	—	—	Table 26-34	1	1	0	
15 MHz	_	_	Table 26-35	0	1	0	
11 MHz		_	Table 26-36	0	0	0	

FIGURE 26-19: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

TABLE 26-42:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS FOR dsPIC33FJ32(GP/MC)10X

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCKx Input Frequency	—	_	11	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_	—		ns	See Parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	—	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits			MAX		
Number of Pins	N		44			
Pitch	е		0.65 BSC			
Overall Height	A	0.80 0.90				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D		8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25 0.30 0.3				
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	_	-		

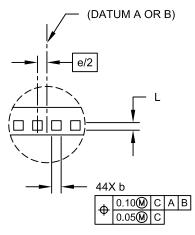
A1

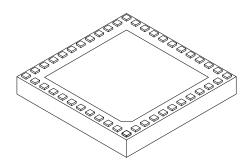
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

A3


3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Number of Pins per Side	ND		12		
Number of Pins per Side	NE		10		
Pitch	е	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel FI Temperature Rar	amily — y Size (ř ag (if ap nge ——	Kby	/te) / / / / / / / / / / / / / / / /	Exa a)	amples: dsPIC33FJ16MC102-E/SP: Motor Control dsPIC33, 16-Kbyte Program Memory, 28-Pin, Extended Temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller		
Flash Memory Family:	FJ	=	Flash program memory, 3.3V		
Product Group:	GP1 MC1	=			
Pin Count:	01 02	=			
Temperature Range:	l E	=	-40°C to +85°C (Industrial) -40°C to +125°C (Extended)		
Package:	P SS SP SO ML PT TL		Plastic Shrink Small Outline - 5.3 mm body (SSOP) Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide - 7.50 mil body (SOIC) Plastic Quad, No Lead - (28-pin) 6x6 mm body (QFN) Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP)		