

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	16 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16mc102-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

© 2011-2014 Microchip Technology Inc.

Pin Diagrams (Continued)

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 **IPL3:** CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	—	—				—	
bit 15	·						bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	—	<u> </u>	_	—	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		(0) = Bit is cleared x = Bit is unknown				
bit 15	ALTIVT: Enab	ole Alternate Int	terrupt Vector	Table bit				
	1 = Uses Alte	rnate Interrupt	Vector Table	(- I - f I4)				
L:1 4 4	0 = Uses stan	dard Interrupt	vector lable (default)				
Dit 14	DISI: DISI IN	struction Status	s dit					
	1 = DISI Inst 0 = DISI inst	ruction is active	e ctive					
bit 13-3	Unimplemen	ted: Read as ')'					
bit 2	INT2EP: Exte	rnal Interrupt 2	Edae Detect	Polarity Selec	t bit			
	1 = Interrupt of	on negative edg	ge	,				
	0 = Interrupt o	on positive edg	e					
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect	Polarity Selec	t bit			
	1 = Interrupt of	on negative edg	ge					
	0 = Interrupt o	on positive edge	e					
bit 0	INTOEP: Exte	rnal Interrupt 0	Edge Detect	Polarity Selec	t bit			
	1 = Interrupt of	on negative edg	ge					
		n positive edge	C					

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	CTMUIF	—	—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	_	—	—		U1EIF	FLTB1IF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	CTMUIF: CTM	MU Interrupt Fla	ag Status bit				
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 12-2	Unimplemen	ted: Read as '	0'				
bit 1	U1EIF: UART	1 Error Interru	ot Flag Status	bit			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 0	FLTB1IF: PW	/M1 Fault B Inte	errupt Flag Sta	atus bit ⁽¹⁾			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: This bit is available in dsPIC(16/32)MC102/104 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15			-		•	-	bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit 0
l egend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as	'0'				
bit 13	AD1IE: ADC	1 Conversion (Complete Inter	rupt Enable bit	t		
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 12	U1TXIE: UAF	RT1 Transmitte	er Interrupt Ena	able bit			
	1 = Interrupt	request is ena	bled				
hit 11		DT1 Deceiver	enableu Intorrunt Enabl	o hit			
	1 – Interrunt	request is ena	hled	ebit			
	0 = Interrupt	request is ena	enabled				
bit 10	SPI1IE: SPI1	Event Interru	ot Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 9	SPI1EIE: SPI	11 Error Interru	pt Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 8	T3IE: Timer3	Interrupt Enal	ole bit				
	$\perp = Interrupt$	request is ena	DIEO enabled				
bit 7	T2IF · Timer2	Interrunt Engl	ole hit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 6	OC2IE: Outp	ut Compare C	hannel 2 Interr	upt Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 5	IC2IE: Input (Capture Chanr	nel 2 Interrupt	Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 4	Unimplemen	ited: Read as	°0'				
bit 3	111E: Limer1	Interrupt Enal	ble bit				
	$\perp = Interrupt$	request is ena	olea enabled				
hit 2		ut Compare C	hannel 1 Interr	unt Enable bit			
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				
bit 1	IC1IE: Input (Capture Chanr	nel 1 Interrupt	Enable bit			
	1 = Interrupt	request is ena	bled .				
	0 = Interrupt	request is not	enabled				
bit 0	INTOIE: Exter	rnal Interrupt (Enable bit				
	1 = Interrupt	request is ena	bled				
	0 = Interrupt	request is not	enabled				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70193) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch (LATx) register read the latch. Writes to the Output Latch register write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that is not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		_	SCK1R4 ⁽¹⁾	SCK1R3 ⁽¹⁾	SCK1R2 ⁽¹⁾	SCK1R1 ⁽¹⁾	SCK1R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	SDI1R4 ⁽¹⁾	SDI1R3 ⁽¹⁾	SDI1R2 ⁽¹⁾	SDI1R1 ⁽¹⁾	SDI1R0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-13	Unimplement	ted: Read as ')'				
bit 12-8	SCK1R<4:0>:	: Assign SPI1 (Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits ⁽¹⁾	
	11111 = Inpu	t tied to Vss					
	11110 = Rese	erved					
	•						
	•						
	11010 = Rese	erved					
	11001 = Inpu	t tied to RP25					
	•						
	•						
	00001 = Input	t tied to RP1					
	00000 = Inpu	t tied to RP0					
bit 7-5	Unimplement	ted: Read as 'd)'				
bit 4-0	SDI1R<4:0>:	Assign SPI1 D	ata Input (SDI	1) to the Corre	esponding RPn	Pin bits ⁽¹⁾	
	11111 = Inpu	t tied to Vss					
	11110 = Rese	erved					
	•						
	•						
	11010 = Rese	erved					
	11001 = Inpu	t tied to RP25					
	•						
	•						
	00001 = l ppu	t tied to RP1					
	00000 = Input	t tied to RP0					
	· · · · · · · · · · · · · · · · · · ·						

REGISTER 10-9: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 10-15: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP8R<4:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	RP9R<4:0>:	Peripheral Out	put Function i	s Assigned to I	RP9 Output Pir	n bits	
	(see Table 10	-2 for periphera	al function nu	mbers)			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	RP8R<4:0>:	Peripheral Out	put Function i	s Assigned to I	RP8 Output Pir	n bits	
	(see Table 10	-2 for peripher	al function nu	mbers)			

REGISTER 10-16: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0> ⁽¹)	
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP10R<4:0> ⁽¹)	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
L:400	DD11D -1-0 - Derinhard Output Functi

- bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits⁽¹⁾ (see Table 10-2 for peripheral function numbers)

Note 1: These bits are not available in dsPIC33FJXX(GP/MC)101 devices.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104 family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated CircuitTM (I²CTM)" (DS70195) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I^2C^{TM}) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-Bit and 10-Bit Addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-Bit Addressing
- I²C slave operation with 10-Bit Addressing
- I²C master operation with 7-Bit or 10-Bit Addressing

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33/PIC24 Family Reference Manual"* sections.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write.

- I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- · I2CxADD register holds the slave address
- ADD10 status bit indicates 10-Bit Addressing mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 20-3: CI	MxMSKSRC: 0	COMPARATOR >	MASK SOURCE	SELECT REGISTER
-------------------	-------------	--------------	-------------	-----------------

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8	SELSRCC<3:0>: Mask	C In	put Select bi	its

SECONDOCIONASK O Imput Select bits
1111 = Reserved
1110 = Reserved
1101 = Reserved
1100 = Reserved
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM1H3
0100 = PWM1L3
0011 = PWM1H2
0010 = PWM1L2
0001 = PWM1H1
0000 = PWM1L1
SELSRCB<3:0>: Mask B Input Select bits
1111 = Reserved
1110 = Reserved
1101 = Reserved
1100 = Reserved
1011 = Reserved
1010 = Reserved
1001 = Reserved
1000 = Reserved
0111 = Reserved
0110 = Reserved
0101 = PWM1H3
0100 = PWM1L3
0011 = PWM1H2
0010 = PWM1L2
0001 = PWM1H1

bit 7-4

REGISTER 21-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

26.1 DC Characteristics

TABLE 26-1: OPERATING MIPS vs. VOLTAGE

Characteristic	Voo Bango	Tomp Bango	Max MIPS		
	(in Volts)	(in °C)	dsPIC33FJ16(GP/MC)101/102 and dsPIC33FJ32(GP/MC)101/102/104		
DC5	VBOR-3.6V ⁽¹⁾	-40°C to +85°C	16		
	VBOR-3.6V ⁽¹⁾	-40°C to +125°C	16		

Note 1: Overall functional device operation at VBOR < VDD < VDDMIN is ensured but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40		+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PIO		W	
$I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 18-pin PDIP	θJA	50		°C/W	1
Package Thermal Resistance, 20-pin PDIP	θJA	50	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θJA	50	—	°C/W	1
Package Thermal Resistance, 18-pin SOIC	θJA	63	—	°C/W	1
Package Thermal Resistance, 20-pin SOIC	θJA	63	—	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θJA	55	—	°C/W	1
Package Thermal Resistance, 20-pin SSOP	θJA	90	—	°C/W	1
Package Thermal Resistance, 28-pin SSOP	θJA	71	—	°C/W	1
Package Thermal Resistance, 28-pin QFN (6x6 mm)	θJA	37	—	°C/W	1
Package Thermal Resistance, 36-pin VTLA (5x5 mm)	θJA	31.1	—	°C/W	1
Package Thermal Resistance, 44-pin TQFP	θJA	45	—	°C/W	1, 2
Package Thermal Resistance, 44-pin QFN	θJA	32	—	°C/W	1, 2
Package Thermal Resistance, 44-pin VTLA	θJA	30	—	°C/W	1, 2

Note 1: Junction to ambient thermal resistance; Theta-JA (θ JA) numbers are achieved by package simulations.

2: This package is available in dsPIC33FJ32(GP/MC)104 devices only.

FIGURE 26-23: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS FOR dsPIC33FJ32(GP/MC)10X

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-051C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157C Sheet 1 of 2